
p0647r0 - Floating point value access for std::ratio
Peter Sommerlad

2017-05-20

Document Number: p0647r0
Date: 2017-05-20
Project: Programming Language C++
Audience: LWG/LEWG
Target: C++20

1 Motivation

Preparing for standardizing units and using std::ratio for keeping track of fractions often one needs
to get the quotient as a floating point number or as a number of a type underlying a quantity,
e.g., a fixpoint type. Doing that manually means adding a cast before doing the division. This is
tedious and it would be nice to just access the value, as one can do with std::integral_constant. I
believe that omission is just a historical accident, because it was not possible to do compile-time
computation with floating point values when ratio was invented. There are some options on how to
access the fraction as a compile-time entity. I chose to make the value member a long double and
provide a templatized explicit conversion operator for accessing the fraction.

2 Acknowledgements

— Authors of N2661: Howard Hinnant, Walter Brown, Jeff Garland, Marc Paterno.
— Members of the LiaW workshop "Towards Units" at C++Now 2017: Billy Baker, Charles

Wilson, Daniel Pfeifer, Dave Jenkins, Manuel Bergler, Morris Hafner, Nicolas Holthaus, Peter
Bindels, Steven Watanabe, Tuan Tran.

1



2 p0647r0 2017-05-20

3 Changes Proposed

Modify section 23.26.3 by inserting floating point access to the fractional value represented.

3.0.1 Class template ratio [ratio.ratio]
namespace std {

template <intmax_t N, intmax_t D = 1>
class ratio {
public:

static constexpr intmax_t num;
static constexpr intmax_t den;

using type = ratio<num, den>;

static constexpr long double value{ static_cast<long double>(num)/den };
template<typename R>
explicit constexpr operator R() const noexcept {

return static_cast<R>(num)/static_cast<R>(den);
}

};
}


