

Paper Number P0329R1

Date 2016-09-26

Authors Tim Shen <timshen@google.com>
Richard Smith <richard@metafoo.co.uk>

Audience CWG

Designated Initialization Wording
This is a formal wording for the designated initialization proposal P0329R0.

Wording
Change 8.6 [dcl.init]p1 as follows
 braced-init-list:
 { initializer-list , opt }
 { designated-initializer-list , opt }
 { }
 designated-initializer-list :
 designated-initializer-clause
 designated-initializer-list , designated-initializer-clause
 designated-initializer-clause:
 designator brace-or-equal-initializer
 designator:
 . identifier

Change in 8.6.4 [dcl.init.list]p1:

List-initialization is initialization of an object or reference from a braced-init-list . Such an
initializer is called an initializer list , and the comma-separated initializer-clause s of the
initializer-list list or designated-initializer-clause s of the designated-initializer-list are called the
elements of the initializer list. [...]

Add a new bullet at the start of 8.6.4 [dcl.init.list]p3:

If the braced-init-list contains a designated-initializer-list , T shall be an aggregate class whose
non-static data members include the identifier s of the designated-initializer-clause s of the
designated-initializer-list in declaration order, and aggregate initialization is performed
([dcl.init.aggr]).

mailto:timshen@google.com
mailto:richard@metafoo.co.uk
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0329r0.pdf

Add a new paragraph to 8.6.1 [dcl.init.aggr]:

The initializations of the elements of the aggregate are evaluated in the element order. That is,
every value computation and side effect associated with a given element is sequenced before
every value computation and side effect associated with any element that follows it in order.

Change in 8.6.1 [dcl.init.aggr]p3:

When an aggregate is initialized by an initializer list as specified in 8.6.4, the elements of the
initializer list are taken as initializers for the elements of the aggregate. If the initializer list is a
designated-initializer-list , the aggregate shall be of class type, and the initialized elements of the
aggregate are the elements named by the identifier s in each designated-initializer-clause , where
each identifier shall name a direct non-static data member of the class. Otherwise, the initialized
elements of the aggregate are the first n elements of the aggregate, in order, where n is the
number of elements in the initializer list, excluding the second and subsequent non-static data
member of a union. Each initialized element is copy-initialized from the corresponding
initializer-clause or the brace-or-equal-initializer of the corresponding
designated-initializer-clause . If the initializer-clause is an expression that initializer is of the form
assignment-expression or = assignment-expression and a narrowing conversion (8.6.4) is
required to convert the expression, the program is ill-formed. [Note: If an initializer-clause is
itself an initializer list, the element is list-initialized, which will result in a recursive application of
the rules in this section if the element is an aggregate. — end note] [Example: …]

Change 8.6.1 [dcl.init.aggr]p6 as follows

[Note: Static data members, anonymous union members, and anonymous bit-fields are not
considered elements members of the class for purposes of aggregate initialization. — end note]

Change 8.6.1 [dcl.init.aggr]p7 as follows

An initializer-list initializer list is ill-formed if the number of initializer-clauses or
designated-initializer-clauses exceeds the number of members or elements to initialize of the
aggregate, if multiple designated-initializer-clause s name the same element, or if multiple
members of the same union are initialized elements.

Change 8.6.1 [dcl.init.aggr]p8 as follows

If there are fewer initializer-clauses in the list than there are elements in the aggregate, then
Each non-variant element of the aggregate that is not explicitly an initialized element is shall be
initialized from its default member initializer (9.2) or, if there is no default member initializer, from
an empty initializer list (8.6.4). If the aggregate is a union, or for each anonymous union member
of a non-union aggregate of class type, if no union member is an initialized element, then:

● If any union member has a default member initializer, that member is initialized from its
default member initializer.

● Otherwise, the first member of the union (if any) is copy-list-initialized from an empty
initializer list.

Change 8.6.1 [dcl.init.aggr]p11 as follows

If an incomplete or empty initializer-list initializer list leaves a member of reference type
uninitialized, the program is ill-formed.

Change 8.6.1 [dcl.init.aggr]p17 as follows

[Note: When a union is initialized with a brace-enclosed initializer, only one non-static data
member can be initialized. the braces shall only contain an initializer-clause for the first
non-static data member of the union. [Example:
 union u { int a; const char* b; };
 u a = { 1 };
 u b = a;
 u c = 1; // error
 u d = { 0, "asdf" }; // error
 u e = { "asdf" }; // error
 u f = { .b = "asdf" };
 u g = { .a = 1, .b = "asdf" }; // error
] — end note]

Add new paragraph after 13.3.3.1.5 [over.init.list]p1 as follows

If the initializer list is a designated-initializer-list , a conversion is only possible if the parameter
has an aggregate type that can be initialized from the initializer list according to the rules for
aggregate initialization ([dcl.init.aggr]), in which case the implicit conversion sequence is a
user-defined conversion sequence whose the second standard conversion sequence is an
identity conversion. [Example:
 struct A { int x, y; };
 struct B { int y, x; };
 void f(A a, int); // #1
 void f(B b, …); // #2
 void g() {
 f({.x = 1, .y = 2}, 0); // OK, calls #1
 f({.y = 2, .x = 1}, 0); // error, selects #1 , initialization of a fails
 // due to [dcl.init.list]p3

 }
— end example]

