
Document number: P0319R0

Date: 2016-05-22

Project: ISO/IEC JTC1 SC22 WG21 Programming Language C++

Audience: Library Evolution Working Group / Concurrency Working Group

Reply-to: Vicente J. Botet Escribá <vicente.botet@nokia.com>

Abstract

This paper proposes the addition of emplace factories for future<T> and emplace functions for
promise<T> as we have proposed for of any and optional in P0032R2.

1. Introduction
2. Motivation
3. Proposal
4. Design rationale
5. Proposed wording
6. Implementability
7. Open points
8. Acknowledgements
9. References

This paper proposes the addition of emplace factories for future<T> and emplace functions for
promise<T> as we have proposed for of any and optional in P0032R2.

While we have added the future<T> factories make_ready_future and

Adding Emplace functions for
promise<T>/future<T>

Table of Contents

Introduction

Motivation

mailto:vicente.botet@wanadoo.fr
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0032r2.pdf
file:///Users/viboes/github/std_make/doc/proposal/future/p0319r0.md#introduction
file:///Users/viboes/github/std_make/doc/proposal/future/p0319r0.md#motivation
file:///Users/viboes/github/std_make/doc/proposal/future/p0319r0.md#proposal
file:///Users/viboes/github/std_make/doc/proposal/future/p0319r0.md#design-rationale
file:///Users/viboes/github/std_make/doc/proposal/future/p0319r0.md#proposed-wording
file:///Users/viboes/github/std_make/doc/proposal/future/p0319r0.md#implementability
file:///Users/viboes/github/std_make/doc/proposal/future/p0319r0.md#open-points
file:///Users/viboes/github/std_make/doc/proposal/future/p0319r0.md#acknowledgements
file:///Users/viboes/github/std_make/doc/proposal/future/p0319r0.md#references
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0032r2.pdf

make_exceptional_future into P0159R0, we don't have emplace factories as we have for
shared_ptr and unique_ptr and we could have for any and optional if P0032R2 is

accepted.

The C++ standard should be coherent for features that behave the same way on different types and
complete, that is, don't miss features that could make the user code more efficient.

We propose to:

Add promise<T>::set_exception(E) member function that sets a promise
exception_ptr from an exception.

Add promise<T>::emplace(Args...) member function that emplaces the value instead of
setting it.

Add future<T> emplace factory
emplace_ready_future<T>(Args...) / make_ready_future<T>(Args...) .

Add future<T> emplace factory
emplace_exceptional_future<T,E>(Args...)/make_exceptional_future<T,E>(Args...) .

Some times a promise setter function must construct the promise value type and possibly the exception,
that is the value or the exceptions are not yet built.

Before

 void promiseSetter(promise<X>& p, bool cnd) {
 if (cnd)
 p.set_value(X(a, b, c));
 else
 p.set_exception(make_exception_ptr(MyException(__FILE_, __LINE__)));
 }

Note that we need to repeat X .

With this proposal we can just emplace either the value or the exception.

Proposal

Emplace assignment for promises

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0032r2.pdf

 void producer(promise<int>& p) {
 if (cnd) p.set_value(a, b, c);
 else p.set_exception(MyException(__FILE_, __LINE__));
 }

Note that not only the code can be more efficient, it is also clearer and more robust as we don't repeat
neither X ..

Some future producer functions may know how to build the value at the point of construction and possibly
the exception. However, when the value type is not available it must be constructed explicitly before making
a ready future. The same applies for a possible exception that must be built.

Before

 future<X> futureProducer(bool cnd1, bool cnd2) {
 if (cnd1)
 return make_ready_future(X(a, b, c));
 if (cnd2)
 return make_exceptional_future<X>(MyException(__FILE_, __LINE__));
 else
 return somethingElse();
 }

The same reasoning than the previous section applies here. With this proposal we can just write less code
and have more (as possible more efficient).

future<int> futureProducer(bool cnd1, bool cnd2) {
 if (cnd1)
 return make_ready_future<X>(a, b, c);
 if (cnd2)
 return make_exceptional_future<X>(MyException(__FILE_, __LINE__));
 else
 return somethingElse();
 }

Emplace factory for futures

Design rationale

Why should we provide some kind of emplacement for

Wrapping and type-erasure classes should all provide some kind of emplacement as it is more efficient to
emplace than to construct the wrapped/type-erased type and then copy or assign it.

The current standard and the TS provide already a lot of such emplace operations, either in place
constructors, emplace factories, emplace assignments.

std::experimental::optional provides in place constructors and it could provide emplace factory
if P0032R0 is adopted.

This proposal just extends the current future factories to emplace factories.

Should we provide a future in_place constructor? For coherency purposes and in order to be generic,
yes, we should. However we should also provide a constructor from a T which doesn't exists neither. This
paper doesn't proposes this yet.

std::experimental::optional provides emplace assignments via optional::emplace()

and it could provide emplace factory if P0032R0 is accepted.

We believe that promise<T> should provide and similar interface. However, a promise accepts to be set
only once, and so the function name should be different for the authors.

These changes are entirely based on library extensions and do not require any language features beyond
what is available in C++ 14.

The wording is relative to P0159R0.

The current wording make use of decay_unwrap_t as proposed in P0318R0, but if this is not accepted
the wording can be changed without too much troubles.

future / promise ?

Why emplace factories instead of in_place constructors?

Promise emplace assignments

Impact on the standard

Proposed wording

Thread library

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0318r0.pdf

X.Y Header <experimental/future> synopsis

Replace the makereadyfuture declaration in [header.future.synop] by

namespace std {
namespace experimental {
inline namespace concurrency_v2 {

template <int=0, int ..., class T>
future<decay_unwrap_t<T>> make_ready_future(T&& x) noexcept;
template <class T>
future<T> make_ready_future(remove_reference<T> const& x) noexcept;
template <class T>
future<T> make_ready_future(remove_reference<T> && x) noexcept;
template <class T, class ...Args>
future<T> make_ready_future(Args&& ...args) noexcept;
}}
}

X.Y Class template promise

Add [futures.promise] the following in the synopsis

template <class ...Args>
void promise::set_value(Args&& ...args);
template <class U, class... Args>
void promise::set_value(initializer_list<U> il, Args&&... args);

Add the following

template <class ...Args>
void promise::set_value(Args&& ...args);

Requires: is_constructible<R, Args&&...>

Effects: atomically initializes the stored value as if direct-non-list-initializing an object of type R with the
arguments forward<Args>(args)...) in the shared state and makes that state ready.

Postconditions: this contains a value.

[NDLR] Throws and Error conditions as before

template <class U, class... Args>
void promise::set_value(initializer_list<U> il, Args&&... args);

Requires: is_constructible<R, initializer_list<U>&, Args&&...>

Effects: atomically initializes the stored value as if direct-non-list-initializing an object of type R with the
arguments il, forward<Args>(args)...) in the shared state and makes that state ready.

Postconditions: this contains a value.

[NDLR] Throws and Error conditions as before

Function template makereadyfuture

[NDLR] Add to [futures.make_ready_future] the following

template <class T>
future<T> make_ready_future(remove_reference<T> const& v) noexcept;
template <class T>
future<T> make_ready_future(remove_reference<T> && r) noexcept;
template <class T, class ...Args>
future<T> make_ready_future(Args&& ...args) noexcept;

Effects: The function creates a shared state immediately ready emplacing the T with x for the first
overload, forward<T>(r) for the second and T{args...} for the third.

Returns: A future associated with that shared state.

Postconditions: The returned future contains a value.

Boost.Thread contains an implementation of the emplace value functions.

The authors would like to have an answer to the following points if there is at all an interest in this proposal.
Most of them are bike-shedding about the name of the proposed functions:

shared_ptr and unique_ptr factories make_shared and make_unique emplace already

Implementability

Open Points

emplace_ versus make_ factories

http://www.boost.org/doc/libs/1_60_0/doc/html/thread.html

the underlying type and are prefixed by make_ . For coherency purposes the function emplacing future
should use also make_ prefix.

promise<R> has a set_value member function that accepts a

void promise::set_value(const R& r);
void promise::set_value(R&& r);
void promise<R&>::set_value(R& r);
void promise<void>::set_value();

There is no reason for constructing an additional R to set the value, we can emplace it

template <typename ...Args>
void promise::set_value(Args&& as);

optional names this member function emplace . However, a promise accepts to be set only once,
and so the function name should be different. Should we add a new member emplace function to
promise<T> or overload set_value ?

In addition to emplace value functions we could also have emplace exceptions functions. This would need
to update also exception_ptr emplace factories. While this cases can perform better, the exceptional
case need less optimizations.

Thanks to Jonathan Wakely for his suggestion to limit the proposal to the emplace value cases which
should be more consensual.

N4480 N4480 - Working Draft, C++ Extensions for Library Fundamentals

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4480.html

P0032R0 P0032 - Homogeneous interface for variant, any and optional

promise::emplace versus promise::set_value

Future work

Acknowledgements

References

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4480.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r0.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r0.pdf

P0032R2 P0032 - Homogeneous interface for variant, any and optional - Revision 1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0032r2.pdf

P0159R0 P0159 - Draft of Technical Specification for C++ Extensions for Concurrency

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html

P0318R0 decay_unwrap and unwrap_reference

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0318r0.pdf

P0338R0 - C++ generic factories

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0338r0.pdf

make.impl C++ generic factory - Implementation

https://github.com/viboes/std-make/blob/master/include/experimental/stdmakev1/make.hpp

Boost.Thread http://www.boost.org/doc/libs/1600/doc/html/thread.html

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0032r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0318r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0338r0.pdf
https://github.com/viboes/std-make/blob/master/include/experimental/std_make_v1/make.hpp
http://www.boost.org/doc/libs/1_60_0/doc/html/thread.html

