

Document number P0273R1

Date 2016-10-17

Authors Richard Smith <richard@metafoo.co.uk>
Chandler Carruth <chandlerc@google.com>
David Jones <dlj@google.com>

Audience Evolution

Proposed modules changes from
implementation and deployment experience

Introduction
N4465, presented at the 2015-05 WG21 meeting in Lenexa (hereafter referred to as “the
Lenexa proposal”), proposes a modules extension for C++. While that proposal provides a
good basis for a modules proposal, we believe it is lacking in a few key aspects which will be
critical to satisfying the requirements of our users and the broader C++ community. This
paper describes a set of modifications to that proposal, based in part on user experience
with the C++ modules implementation in Clang, that we believe will better address the needs
of the C++ community and significantly aid in the broad adoption of modules.

All syntax appearing in this work is hypothetical. Any resemblance to real syntax, living or
dead, is purely coincidental.

Changes since R0
The following changes were approved by EWG in Jacksonville:

● The module-declaration specifying that a translation unit is a module must be the first
declaration in the source file. Vote: 6 | 14 | 9 | 2 | 0 1

● Module partitions, allowing a single module (and its notion of module ownership) to
be split across multiple interface files. Vote: 11 | 12 | 3 | 4 | 0

● Module implementations begin with "module implementation M " stanza rather
than "module M ". Vote: 10 | 11 | 8 | 3 | 0

Wording changes for the above will be provided as a separate paper, but not for this meeting
as it is anticipated that CWG will be fully occupied resolving NB comments for C++17.

R0 suggested that module names be string literals denoting a filesystem location for the
corresponding file. Committee feedback was that allowing modules to be found based on

1 Per WG21 convention for 5-way polls, these results are:
Strongly in favor | in favor | neutral | against | strongly against

mailto:richard@metafoo.co.uk
mailto:chandlerc@google.com
mailto:dlj@google.com

their name may be useful, but the names should be specified as a dotted sequence of
identifiers rather than a string. An implementation might, for instance, specify a mapping
from dotted names to paths by replacing periods with directory separators and searching
along some set of include paths, but this need not be specified by the Modules TS.
Alternative implementation strategies, where no such mapping is necessary because the
build system is aware of module dependencies, should also be supported. By moving this
concern from the realm of the TS to that of the implementation, we require no further EWG
discussion, and leave open multiple avenues of investigation so that more experience can
be gained from the TS and fed back into the Standard.

The section on module ownership has been removed, as the Kona updates to the Lenexa
proposal addressed the relevant concerns.

Specific changes

Exported macros
Some important and extremely common C++ libraries choose to expose macros as part of
their public interface. These include:

Qt
MFC
ICU
Some of the boost libraries
Google Mock and Google Test
CxxTest
The C++ standard library (NULL, offsetof, feature test macros, …)

If we wish to provide a fully-modular experience for people using these libraries, we should
not relegate these interfaces to a second-class position. Instead, we should provide a way
for these macros to be intentionally exported by a module, in the cases where the macro is a
deliberate part of the design of the library.

Can't we keep the macros in a separate, #included file?
In some cases, the library maintainers may be happy to accommodate this. But in other
cases, there will be resistance to what some see as a forced artificial refactoring of the
library in order to placate an unnecessary restriction. These users will not embrace the
modules system, and this in turn will hinder adoption.

Further, in some cases (such as the boost.preprocessor library), the compilation time cost of
reading the macro definitions and building the preprocessor data structures is significant,
and we cannot avoid repeating this cost across translation units unless we provide a way to
pretranslate the macros.

The arguments against including macros in modules are focused on accidental macro
interference, from macros the user did not intend to import. This does not seem like a
realistic problem for macros that are intentionally exported as part of the interface of a library
that is intentionally imported into end user code. However, it does argue that macros should
not be exported by default from modular compilations.

Prior EWG discussion
Previous discussion on this topic led to several EWG polls, which we take as guidance to
proceed with a proposal to allow modules in the Modules TS to export macros:

Allow exporting and importing macros somehow in some specification? 12 | 11 | 4 | 5 | 1
Should we have just one TS (including macro import/export)? 5 | 11 | 13 | 3 | 0

Questions were raised about providing an import syntax that would either produce an error if
the imported module exports macros or filter out macros, but there was no clear consensus
for proceeding in either of those directions, so our proposed solution does not provide such
facilities at this time.

Proposed solution
We propose that, at the point of macro definition within a module, the module author can
explicitly nominate that the macro is to be exported, by inserting the token export between
the # and define tokens:

#export define CHECK_EQ(x, y) \
 ::my::lib::CheckImpl((x), (y), #x, #y, __FILE__, __LINE__)

Exported macro definitions are expected to be unique: if two modules export macros with the
same name, those modules are imported into a translation unit, and the macro name is
used, the program is rejected due to ambiguity.

In order to support legacy module partitions (see below), we propose one more feature:

#export_macros

This directive instructs the preprocessor to export all macros defined by the current
translation unit. The purpose of this directive is to permit an incremental transition away from
"import legacy "; see below for details.

Legacy module imports
In order for a modules system for C++ to be successful, it must be possible to incrementally
and gradually transition existing code. And we must accept that some code will never be
transitioned to a C++ module system, perhaps because it is too costly to change, or it is C
code, or must compile with earlier compilers, or the license prohibits modifications.

Consider the case of a modular C++ library that wraps a legacy library, and re-exports some
of its interface:

module WrapFoo;
export module {

#include "foo_widget.hpp"
}
export std::unique_ptr<Widget> make_widget(...);

The above code is subtly broken. Consider a user of that code, which has itself not been
transitioned to modules yet:

import WrapFoo;
#include "other_library.hpp" // #includes "foo_widget.hpp"
// …

This will not compile: the compiler will see repeated definitions of every entity defined by
"foo_widget.hpp", because it is textually included after a module containing it is imported.
The problem is that we have violated a fundamental rule for correct usage of textual
headers:

if the declarations from a textual header are visible, the include guard macro
for that header must also be visible

In order to fix this, the WrapFoo module must export the include guard macro of
"foo_widget.hpp".

Careful ordering of imports and #include s alone cannot address these issues in the face
of module partitions. Consider the somewhat more complex example where the user of
WrapFoo above is itself a module with several partitions:

WrapBar.cppm

module WrapBar;
import partition “WrapBarPart1.cppm”;
import partition “WrapBarPart2.cppm”;
// ...

WrapBarPart1.cppm

module partition WrapBar;
import WrapFoo;
// ...

WrapBarPart2.cppm

module partition WrapBar;
import partition “WrapBarPart1.cppm”;

export module {
 #include “bar.hpp” // #includes “foo_widget.hpp” eventually
}

This will end up necessitating the inclusion of the bar.hpp header file after WrapFoo has
already been imported, and declarations from foo_widget.hpp have been made visible as a
consequence.

Proposed solution
We propose to solve this with a new form of module import:

import legacy string-literal ;

This declaration is equivalent to an import of a module containing

module unique ;
#export_macros
export module {

#include string-literal
}

(where unique is the name of a unique module; this module should be the same for all
legacy imports of the same file , and shall be different for legacy imports of two different 2

files). This precise equivalence allows an incremental transition away from legacy module
imports, whenever the library in question is ready to do so.

Our WrapFoo module interface then contains this:

import legacy "foo_widget.hpp"

as a way of declaratively stating the intent to import the legacy interface from
"foo_widget.hpp".

Transparent migration
With the above features, an implementation can choose to provide a transparent migration
path to modules for code that already intends to provide a modular, self-contained interface
from its header files. This requires an implementation to be informed of the set of headers
that it should treat as modular. It can then treat

2 We leave determination of "the same file" implementation-defined. Unlike other facilities requiring a
notion of "same file" such as #pragma once, the consequence of two handles to the same file being
determined as "different" is merely that equivalent modules will be (harmlessly) imported twice, rather
than a change in program semantics.

#include HDR

(where HDR names such a modular header) as an import of an implicitly-generated module

module unique-name ;
import legacy HDR ;

That transparent migration path is not proposed by this proposal, but we explicitly intend for
it to be a natural (and conforming, as mapping from #include s to source files is
implementation-defined) extension.

Exports and internal linkage
As per the Lenexa proposal, we do not permit internal-linkage entities to be exported from a
module. That creates problems when mass-exporting the contents of a legacy header, which
may contain internal linkage entities. We propose a slight refinement to the Lenexa
proposal’s rule: for an isolated export declaration such as

export static int f();

the declaration is ill-formed, but for an internal-linkage declaration appearing in an export
block, such as

export {
static int f();
// other things

}

the internal-linkage entity is simply not exported. (This differs from Clang's approach, where
such an entity is still exported, but in the case of ambiguity between multiple definitions of
distinct but equivalent internal-linkage entities, an arbitrary selection is made.)

In addition, we propose that the existing rule that the pre-existing rule that namespace scope
variables of const-qualified type implicitly receive internal linkage be removed for a variable
declared within a module interface unit (thus, such a variable can be exported, and receives
module linkage by default if not exported):

module my.constants;
const int kFoo = 123;
export const int kBar = 456; // ok
export int getFoo();

module implementation my.constants;
int getFoo() { return kFoo; } // ok, module linkage

module implementation somewhere.else;

import my.constants;
int a = kBar; // ok
int b = kFoo; // error, not exported

This change has been discussed offline with Gabriel Dos Reis and at least partially matches
the existing behavior of the MSVC implementation.

