
Wording for Modules

Gabriel Dos Reis

Document number: P0143R2
Date: 2016-03-04

Working group: CWG
Reply to: gdr@microsoft.com

Revises: P0143R1

Abstract

This documents provides formal wording for a module system for C++. This
document is to be read in conjunction with document P0142R0 “A Module
System for C++”. The proposed wording are with respect to WG21 Commit-
tee Draft (N4567).

1 Changes from previous

1.1 Delta from P0143R1

• change qmod-seq to module-name-qualifier-seq

• change qmod to module-name-qualifier

• extend declaration with export-declaration

• Rewrite export-declaration

1.2 Delta from P0143R0

• Incorporated CWG review feedback from the December 07, 2015 Telecon-
ference Review

1.3 Delta from N4466

• Allow attributes on module declarations and import directives

• Add “proclaimed ownership declaration” of entities not owned by the current
module

• Incorporate reviews from Core Working Group at the Fall 2015 meeting in
Kona, HI:

1

gdr@microsoft.com


– formal definition of module unit purview, module purview, module
ownership.

– clarify that an export declaration shall always appear in a module purview.
– new linkage: module linkage
– allow block-scope extern declarations to refer to previous declarations.
– add the notion of namespace partition to clarify how existing name

lookup rules carry over unchanged to modules.
– clarify the scopes searched during instantiation of exported templates.

2 New Keywords

Add these two keywords to Table 3 in paragraph 2.11/1:
module import

3 Modules as Entities

Modify paragraph 3/3 as follows:
An entity is a value, object, reference, function, enumerator, type,
class member, bit-field, template, template specialization, namespace,
module, parameter pack, or this.

Modify paragraph 3/4 as follows:
A name is a use of an identifier (2.10), operator-function-id (13.5),
literal-operator-id (13.5.8), conversion-function-id (12.3.2), or template-
id (14.2), or module-name (7.7) that denotes an entity or label (6.6.4,
6.1).

Add a sixth bullet to paragraph 3/8 as follows:
– they are module-names composed of the same dotted sequence

of identifiers.

Append the following phrase to paragraph 3.1/2:
, or a module-declaration, or a module-import-declaration, or a module-
export-declaration, or a proclaimed-ownership-declaration. [Example:

import std.io; // make names from std . io available
module M; // declare module M
export module std.random; // import and export names from std . random
export struct Point { // define and export Point
int x;

int y;

};

–end example.]

P0143R2 – 2 – C++ Modules



3.1 ODR: Owning Module is Part of an Entity’s Identity

Add a seventh bullet to 3.2/6 as follows:

– if a declaration of D that is not a proclaimed-ownership-declaration
appears in the purview of a module (7.7), all other such declara-
tions shall appear in the purview of the same module and there
can be at most one definition of D in the owning module.

The purpose of this requirement is to implement module ownership of declarations.
Add a new paragraph 3.3.2/13 as follows:

The point of declaration of a module is immediately after the module-
name in a module-declaration.

3.2 Program and Linkage

Change the definition of translation-unit in paragraph 3.5/1 to:

translation-unit:
toplevel-declaration-seqopt

toplevel-declaration-seq:
toplevel-declaration
toplevel-declaration-seq toplevel-declaration

toplevel-declaration:
module-declaration
module-export-declaration
module-import-declaration
exported-fragment-group
proclaimed-ownership-declaration
declaration

module-declaration:
module module-name attribute-specifier-seqopt ;

module-export-declaration:
export module-declaration

module-import-declaration:
import module-name attribute-specifier-seqopt;

P0143R2 – 3 – C++ Modules



exported-fragment-group:
export { fragment-seq }

fragment-seq:
fragment
fragment-seq fragment

fragment:
module-declaration
module-import-declaration
declaration

proclaimed-owernship-declaration:
extern module module-name : declaration

module-name:
module-name-qualifier-seqopt identifier

module-name-qualifier-seq:
module-name-qualifier .
module-name-qualifier-seq identifier .

module-name-qualifier:
identifier

3.2.1 Module linkage

Insert a new bullet between first and second bullet of paragraph 3.5/2:

— When a name has module linkage, the entity it denotes is owned
by a module M and can be referred to by names from other scopes
of the same module unit (7.7) or from scopes of other module
units part of M.

Insert a new paragraph before paragraph 3.5/8

A name declared at namespace scope, that does not have internal
linkage by the previous rules, and that is introduced by an non-
exported declaration has module linkage. The name of any class mem-
ber where the enclosing class has a name with module linkage also
has module linkage.

P0143R2 – 4 – C++ Modules



3.2.2 Block-scope extern declarations

Modify 3.5/6 as follows:

6 The name of a function declared in block scope and the name of a
variable declared by a block scope extern declaration have linkage.
If there is a visible declaration of an entity with linkage having the
same name and type, ignoring entities declared outside the innermost
enclosing namespace scope, the block scope declaration declares that
same entity and receives the linkage of the previous declaration. If
that entity was exported by an imported module, the program is ill-
formed. If there is more than one such matching entity, the program is
ill-formed. Otherwise, if no matching entity is found, the block scope
entity receives external linkage and is owned by the global module.

4 Lookup Rules Adjusted

From end-user perspective, there are really no new lookup rules to learn. The
“old” rules are the “new” rules, with appropriate adjustment in the definition of
“namespace” which is now clarified as the collection of “namespace partitions”.

Modify paragraph 3.3.6/1 as follows:

1 The declarative region of a namespace-definition is its namespace-
body. Entities declared in a namespace-body are said to be members
of the namespace, and names introduced by these declarations into
the declarative region of the namespace are said to be member names
of the namespace. A namespace member name has namespace scope.
Its potential scope includes its namespace from the name’s point of
declaration (3.3.2) onwards; and for each using-directive (7.3.4) that
nominates the member’s namespace, the member’s potential scope
includes that portion of the potential scope of the using-directive that
follows the members point of declaration. If the name X of a names-
pace member is declared in a namespace partition (7.3) of a names-
pace N in the module interface unit of a module M , the potential
scope of X includes the namespace partitions of N in every module
unit of M and, if the name X is exported, in every translation unit
that imports M . [Example:

// m−1.ixx
module M;

export int sq(int i) { return i*i; }

// m−2.cxx
import M;

int main() { return sq(9); } // OK: ’sq’ from module M

–end example.]

P0143R2 – 5 – C++ Modules



5 Exported Functions

5.1 Constexpr and inline functions

Add a new paragraph 7.1.2/7 as follows:
An exported inline function shall be defined in the same translation
unit containing its export declaration. An exported inline function has
the same address in each translation unit importing its owning mod-
ule. [Note: There is no restriction on the linkage (or absence thereof)
of entities that the function body of an exported inline function can
reference. A constexpr function is implicitly inline –end note.]

6 Non-global namespace-scope exported declarations

Add a new alternative to declaration in paragraph 7/1 as follows

declaration:
block-declaration
nodeclspec-function-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition
empty-declaration
attribute-declaration
export-declaration

export-declaration:
export declaration
export { declaration-seqopt }

7 Namespace partition

Modify paragraph 7.3/1 as follows:

1 A namespace is an optionally-named declarative region. The name of
a namespace can be used to access entities declared in that names-
pace; that is, the members of the namespace. Unlike other declara-
tive regions, the definition of a namespace can be split over several
parts of one or more translation units. A namespace partition is the
collection of all the namespace-definitions of the same namespace in
a translation unit. A namespace consists of all its namespace par-
titions. A namespace with external linkage is always exported re-
gardless of whether any of its namespace-definition is introduced by
export. [Note: There is no way to define a namespace with module
linkage –end note.] [Example:

P0143R2 – 6 – C++ Modules



module M;

namespace N { // N has external linkage and is exported
}

–end example.]

8 Module Declaration

Add a new section 7.7 titled “Modules” as follows:

1 A translation-unit shall contain at most one module-declaration as a
toplevel-declaration. A module unit is a translation-unit that contains
a module-declaration. Such a translation unit is said to be part of the
module designated by the module-name. A module-name has external
linkage.

2 A module is a collection of module units, at most one of which contains
export-declarations or exported-fragment-groups or module-export-declarations.
Such a distinguished module unit is called the module interface unit.
Any other module unit is called a module implementation unit.

3 A module unit purview starts at the module-declaration and extends to
the end of the translation unit. The purview of a module M is the set
of module unit purviews of M’s module units.

4 A namespace-scope declaration D of an entity (other than a module) in
the purview of a module M is said to be owned by M. Equivalently, the
module M is the owning module of D.

5 The global module is the collection of all declarations not in the purview
of any module-declaration. By extension, such declarations are said
to be in the purview of the global module. [Note: The global module
has no name and is not introduced by any module-declaration. –end
note.]

Add a new subsection 7.7.1 titled “Export declaration”:

1 An export-declaration shall appear in the purview of a module other
than the global module. It shall not contain more one export keyword.
The interface of a module M is the set of all export-declarations in its
purview. An export-declaration shall declare at least one entity. The
names of all entities in the interface of a module are visible to any
translation unit importing that module. All entities with linkage other
than internal linkage declared in a module interface unit of a module
M are visible to all module units of M. The entity and the declaration
introduced by an export-declaration are said to be exported.

2 The name introduced by the declaration of an export-declaration shall
have external linkage. If that declaration introduces an entity with
a non-dependent type, then that type shall have external linkage or
shall involve only types with external linkage. [Example:

P0143R2 – 7 – C++ Modules



module M;

export static int n = 43; // error : n has internal linkage
namespace {

struct S { };

}

export void f(S); // error : parameter type has internal linkage

–end example.]

3 In a exported-fragment-group, each fragment is processed as an ex-
ported declaration.

4 If an export-declaration introduces a namespace-definition, then each
member of the corresponding namespace-body is implicitly exported
and subject to the rules of export declarations.

Add a new subsection 7.7.2 titled “Import declaration”:

1 An import-declaration adds the namespace partitions with external
linkage from the interface of the nominated module to the list of
namespace partitions of the current translation unit, thereby making
visible to name lookup the declarations in the interface of the nomi-
nated module. [Note: The entities are not redeclared in the translation
unit containing the import-declaration. –end note.]

Add a new subsection 7.7.3 titled “Module exportation”:

1 A module-export-declaration nominating a module M’ in the purview of
a module M makes all exported names of M’ visible to any translation
unit importing M. [Note: A module interface unit (for a module M)
containing an import-declaration does not make the imported names
transitively visible to translation units importing the module M. –end
note.]

Add a new section 7.7.4 titled “Proclaimed ownership declaration”:

1 A proclaimed-ownership-declaration asserts that the entities introduced
by the declaration are exported by the nominated module. It shall not
be a defining declaration.

2 A program is ill-formed (no diagnostic required) if the owning module
in the proclaimed-ownership-declaration does not export the entities
introduced by the declaration.

9 Templates

9.1 Ownership of specializations

Add a new paragraph to 14.7:

P0143R2 – 8 – C++ Modules



7 If the template argument list of the specialization of an exported tem-
plate involves a non-exported entity, then the resulting specialization
has module linkage and is owned by the module that contains the
point of instantiation.

8 If all entities involved in the template-argument list of the specializa-
tion of an exported template are exported, then the resulting special-
ization has external linkage and is owned by the owning module of the
template.

Modify second bullet of paragraph 14.6.4/1

— Declarations from namespace partitions associated with the types of
the function arguments both from the instantiation context (14.6.4.1)
and from the definition context.

P0143R2 – 9 – C++ Modules


	Changes from previous
	Delta from P0143R1
	Delta from P0143R0
	Delta from N4466

	New Keywords
	Modules as Entities
	ODR: Owning Module is Part of an Entity's Identity
	Program and Linkage
	Module linkage
	Block-scope extern declarations


	Lookup Rules Adjusted
	Exported Functions
	Constexpr and inline functions

	Non-global namespace-scope exported declarations
	Namespace partition
	Module Declaration
	Templates
	Ownership of specializations


