
P0052 - Generic Scope Guard and RAII Wrapper for the

Standard Library

Peter Sommerlad and Andrew L. Sandoval

2015-09-27

Document Number: P0052 (update of N4189, N3949, N3830, N3677)

Date: 2015-09-27

Project: Programming Language C++

1 History

1.1 Changes from N4189

• Attempt to address LWG specification issues from Cologne (only learned about
those in the week before the deadline from Ville, so not all might be covered).

– specify that the exit function must be either no-throw copy-constructible, or
no-throw move-constructible, or held by reference. Stole the wording and
implementation from unique ptr’s deleter ctors.

– put both classes in single header <scope>

– specify factory functions for Alexandrescu’s 3 scope exit cases for scope_exit.
Deliberately did’t provide similar things for unique_resource.

• remove lengthy motivation and example code, to make paper easier digestible.

• Corrections based on committee feedback in Urbana and Cologne.

1.2 Changes from N3949

• renamed scope_guard to scope_exit and the factory to make_scope_exit. Rea-
son for make is to teach users to save the result in a local variable instead of just
have a temporary that gets destroyed immediately. Similarly for unique resources,
unique_resource, make_unique_resource and make_unique_resource_checked.

• renamed editorially scope_exit::deleter to scope_exit::exit_function.

1

2 P0052 2015-09-27

• changed the factories to use forwarding for the deleter/exit_function but not
deduce a reference.

• get rid of invoke’s parameter and rename it to reset() and provide a noexcept

specification for it.

1.3 Changes from N3830

• rename to unique_resource_t and factory to unique_resource, resp. unique_-
resource_checked

• provide scope guard functionality through type scope_guard_t and scope_guard

factory

• remove multiple-argument case in favor of simpler interface, lambda can deal with
complicated release APIs requiring multiple arguments.

• make function/functor position the last argument of the factories for lambda-
friendliness.

1.4 Changes from N3677

• Replace all 4 proposed classes with a single class covering all use cases, using
variadic templates, as determined in the Fall 2013 LEWG meeting.

• The conscious decision was made to name the factory functions without ”make”,
because they actually do not allocate any resources, like std::make_unique or
std::make_shared do

2 Introduction

The Standard Template Library provides RAII classes for managing pointer types, such
as std::unique_ptr and std::shared_ptr. This proposal seeks to add a two generic
RAII wrappers classes which tie zero or one resource to a clean-up/completion routine
which is bound by scope, ensuring execution at scope exit (as the object is destroyed)
unless released early or in the case of a single resource: executed early or returned by
moving its value.

3 Acknowledgements

• This proposal incorporates what Andrej Alexandrescu described as scope guard
long ago and explained again at C++ Now 2012 ().

P0052 2015-09-27 3

• This proposal would not have been possible without the impressive work of Pe-
ter Sommerlad who produced the sample implementation during the Fall 2013
committee meetings in Chicago. Peter took what Andrew Sandoval produced for
N3677 and demonstrated the possibility of using C++14 features to make a single,
general purpose RAII wrapper capable of fulfilling all of the needs presented by
the original 4 classes (from N3677) with none of the compromises.

• Gratitude is also owed to members of the LEWG participating in the February 2014
(Issaquah) and Fall 2013 (Chicago) meeting for their support, encouragement, and
suggestions that have led to this proposal.

• Special thanks and recognition goes to OpenSpan, Inc. (http://www.openspan.com)
for supporting the production of this proposal, and for sponsoring Andrew L. San-
doval’s first proposal (N3677) and the trip to Chicago for the Fall 2013 LEWG
meeting. Note: this version abandons the over-generic version from N3830 and
comes back to two classes with one or no resource to be managed.

• Thanks also to members of the mailing lists who gave feedback. Especially Zhihao
Yuan, and Ville Voutilainen.

• Special thanks to Daniel Krügler for his deliberate review of the draft version of
this paper (D3949).

4 Impact on the Standard

This proposal is a pure library extension. A new headers, <scope> is proposed, but it
does not require changes to any standard classes or functions. It does not require any
changes in the core language, and it has been implemented in standard C++ conforming
to C++14. Depending on the timing of the acceptance of this proposal, it might go
into library fundamentals TS under the namespace std::experimental or directly in the
working paper of the standard, once it is open again for future additions.

5 Design Decisions

5.1 General Principles

The following general principles are formulated for unique_resource, and are valid for
scope_exit correspondingly.

• Simplicity - Using unique_resource should be nearly as simple as using an un-
wrapped type. The generator functions, cast operator, and accessors all enable
this.

4 P0052 2015-09-27

• Transparency - It should be obvious from a glance what each instance of a unique_-

resource object does. By binding the resource to it’s clean-up routine, the decla-
ration of unique_resource makes its intention clear.

• Resource Conservation and Lifetime Management - Using unique_resource makes
it possible to ”allocate it and forget about it” in the sense that deallocation is
always accounted for after the unique_resource has been initialized.

• Exception Safety - Exception unwinding is one of the primary reasons that unique_-
resource is needed. Nevertheless the goal is to introduce a new container that
will not throw during construction of the unique_resource itself. However, there
are no intentions to provide safeguards for piecemeal construction of resource and
deleter. If either fails, no unique resource will be created, because the factory func-
tion unique resource will not be called. It is not recommended to use unique_-

resource() factory with resource construction, functors or lambda capture types
where creation, copying or moving might throw.

• Flexibility - unique_resource is designed to be flexible, allowing the use of lamb-
das or existing functions for clean-up of resources.

• Alexandrescu’s SCOPE_SUCCESS and SCOPE_FAIL macros that make use of the new
uncaught_exceptions() functionality are not (yet) in the scope of this sugges-
tions, but could be added easily through additional factory functions and a possible
additional template parameter.

5.2 Prior Implementations

Please see N3677 from the May 2013 mailing (or http://www.andrewlsandoval.com/scope -
exit/) for the previously proposed solution and implementation. Discussion of N3677 in
the (Chicago) Fall 2013 LEWG meeting led to the creation of unique_resource and
scope_exit with the general agreement that such an implementation would be vastly
superior to N3677 and would find favor with the LEWG. Professor Sommerlad produced
the implementation backing this proposal during the days following that discussion.

N3677 has a more complete list of other prior implementations.
N3830 provided an alternative approach to allow an arbitrary number of resources

which was abandoned due to LEWG feedback
The following issues have been discussed by LEWG already:

• Should there be a companion class for sharing the resource shared_resource ?
(Peter thinks no. Ville thinks it could be provided later anyway.) LEWG: NO.

• Should scope_exit() and unique_resource::invoke() guard against deleter
functions that throw with try deleter(); catch(...) (as now) or not? LEWG:
NO, but provide noexcept in detail.

• Does scope_exit need to be move-assignable? LEWG: NO.

P0052 2015-09-27 5

5.3 Open Issues to be Discussed

• Should we make the regular constructors private and friend the factory functions
only?

• Should we provide a factory for type-erasing the deleter/exit function using std::function?

• Should we provide factories make_scope_success(ef) and make_scope_fail(ef)

to enable Alexandrescu’s three scope-exiting modes?

6 Technical Specifications

The following formulation is based on inclusion to the draft of the C++ standard.
However, if it is decided to go into the Library Fundamentals TS, the position of the
texts and the namespaces will have to be adapted accordingly, i.e., instead of namespace
std:: we suppose namespace std::experimental::.

6.1 Header

In section [utilities.general] add an extra rows to table 44

Table 1: Table 44 - General utilities library summary

Subclause Header

20.nn Scope Guard Support <scope>

6.2 Additional sections

Add a a new section to chapter 20 introducing the contents of the header <scope>.

6.3 Scope Guard Support [utilities.scope]

This subclause contains infrastructure for a generic scope guard and RAII resource wrap-
per.

Header <scope> synopsis

namespace std {

template <typename EF>

struct scope_exit;

template <typename EF>

6 P0052 2015-09-27

scope_exit<see below > make_scope_exit(EF &&exit_function) noexcept;

template <typename EF>

scope_exit<see below > make_scope_fail(EF && exit_function) noexcept;

template <typename EF>

scope_exit<see below > make_scope_success(EF && exit_function) noexcept;

template<typename R,typename D>

class unique_resource;

template<typename R,typename D>

unique_resource<R,see below >

make_unique_resource(R && r,D&& d) noexcept;

template<typename R,typename D>

unique_resource<R,see below >

make_unique_resource_checked(R r, R invalid, D && d) noexcept;

}

1 The header <scope> defines the class templates scope_exit unique_resource and
the factory function templates make_scope_exit(), make_scope_success(), make_-

scope_fail(), make_unique_resource and make_unique_resource_checked to cre-
ate their instances. The usage of the RAII wrappers assumes that the exit function-
s/deleter provided do not throw exceptions and that they are either nothrow_move_-

constructible or nothrow_copy_constructible or kept by reference. [Note: If a
user desires type erasure on the scope exit functions, wrapping in std::function is
recommended. — end note]

6.3.1 Class Template scope_exit [scope.scope exit]

template <typename EF>

struct scope_exit {

// construction
explicit

scope_exit(see below f1) noexcept;

explicit

scope_exit(see below f2) noexcept;

// move
scope_exit(scope_exit &&rhs) noexcept;

// release
~scope_exit() ;

void release() noexcept;

scope_exit(scope_exit const &)=delete;

scope_exit& operator=(scope_exit const &)=delete;

scope_exit& operator=(scope_exit &&)=delete;

private:

EF exit_function; // exposition only

P0052 2015-09-27 7

};

1 [Note: scope_exit is meant to be a universal scope guard to call its deleter function
on scope exit. — end note]

2 A client-supplied template argument EF shall be a function object type (20.9), lvalue
reference to function, or lvalue reference to function object type for which, given a value
f of type EF the expression f() is valid.

3 Requires: EF shall be a MoveConstructible function object type or reference to such. The
expression exit_function() shall be valid. Move construction of EF shall not throw an
exception.

4 If the exit function type EF is not a reference type, EF shall satisfy the requirements of
Destructible (Table 24).

explicit

scope_exit(see below f1) noexcept;

explicit

scope_exit(see below f2) noexcept;
5 The signature of these constructors depends upon whether EF is a reference type.

If EF is non-reference type A, then the signatures are:

scope_exit(const A& f);

scope_exit(A&& f);

6 If EF is an lvalue reference type A&, then the signatures are:

scope_exit(A& f);

scope_exit(A&& f);

7 If EF is an lvalue reference type const A&, then the signatures are:

scope_exit(const A& f);

scope_exit(const A&& f);

8 Requires:

• If EF is not an lvalue reference type then

– If f is an lvalue or const rvalue then the first constructor of this pair
will be selected. EF shall satisfy the requirements of CopyConstructible
(Table 21), and the copy constructor of EF shall not throw an exception.
This scope_exit will hold a copy of f.

– Otherwise, f is a non-const rvalue and the second constructor of this pair
will be selected. EF shall satisfy the requirements of MoveConstructible
(Table 20), and the move constructor of EF shall not throw an exception.
This scope_exit will hold a value move constructed from f.

• Otherwise EF is an lvalue reference type. f shall be reference-compatible with
one of the constructors. If f is an rvalue, it will bind to the second constructor
of this pair and the program is ill-formed. [Note: The diagnostic could be

8 P0052 2015-09-27

implemented using a static_assert which assures that EF is not a reference
type. — end note] Else f is an lvalue and will bind to the first constructor
of this pair. The type which EF references need not be CopyConstructible

nor MoveConstructible. This scope_exit will hold a EF which refers to the
lvalue f. [Note: EF may not be an rvalue reference type. — end note]

9 Effects: constructs a scope exit object that will call f() on its destruction if not
release()ed prior to that.

scope_exit(scope_exit &&rhs) noexcept;

10 Effects: Move constructs exit_function from rhs.exit_function. Copies the
release state from rhs, and sets rhs to the released state, preventing it from
invoking its copy of exit_function.

~scope_exit();

11 Effects: Calls exit_function() unless release() was previously called.

void release() noexcept;

12 Effects: Prevents exit_function() from being called on destruction.

6.3.2 scope_exit Factory Functions [scope.make scope exit]

template <typename EF>

scope_exit<see below > make_scope_exit(EF && exit_function) noexcept;

template <typename EF>

scope_exit<see below > make_scope_fail(EF && exit_function) noexcept;

template <typename EF>

scope_exit<see below > make_scope_success(EF && exit_function) noexcept;
1 The factory functions create scope_exit objects, that run exit_function at scope

exit if not release()d under the following conditions:

make scope exit always, if scope is left

make scope fail if scope is left with an exception

make scope success if scope is left without any exception

2 [Note: These factory functions allow declarative control flow when used with lamb-
das as arguments as introduced by Andrej Alexandrescu. If the exit_function

throws when called from scope_exit’s destructor and that object was not con-
structed with make_scope_success, this causes the program to terminate(). —
end note]

P0052 2015-09-27 9

3 The return value is as follows: If EF is a non-const lvalue reference type

4 Returns: scope_exit<EF>(std::forward<EF>(exit_function))

5 otherwise

6 Returns: scope_exit<std::remove_reference_t<EF>>(std::forward<EF>(exit_-

function))

7 [Note: The first case keeps the exit function by reference the other by value.
To enable type erasure for scope_exit objects, e.g., for keeping them as class
members, use function<void()> as template argument. — end note]

6.3.3 Unique Resource Wrapper [scope.unique resource]

6.3.4 Class Template unique_resource

[scope.unique resource.unique resource]

template<typename R,typename D>

class unique_resource {

R resource; // exposition only
D deleter; // exposition only
bool execute_on_destruction; // exposition only

public:

// construction
unique_resource(R && resource, see below d1, bool shouldRun=true) noexcept;

unique_resource(R && resource, see below d2, bool shouldRun=true) noexcept;

// move
unique_resource(unique_resource &&other) noexcept;

unique_resource& operator=(unique_resource &&other) noexcept ;

// resource release
~unique_resource() ;

void reset() ;

void reset(R && newresource) ;

R const & release() noexcept;

// resource access
R const & get() const noexcept ;

operator R const &() const noexcept ;

R operator->() const noexcept ;

// deleter access
const D & get_deleter() const noexcept;

unique_resource& operator=(unique_resource const &)=delete;

unique_resource(unique_resource const &)=delete;

};

1 [Note: unique_resource is meant to be a universal RAII wrapper for resource handles
provided by an operating system or platform. Typically, such resource handles are of
trivial type and come with a factory function and a clean-up or deleter function that

10 P0052 2015-09-27

do not throw exceptions. The clean-up function together with the result of the factory
function is used to create a unique_resource variable, that on destruction will call the
clean-up function. Access to the underlying resource handle is achieved through a set of
convenience functions or type conversion. — end note]

2 The template argument D shall be a function object type (20.9), lvalue reference to
function, or lvalue reference to function object type for which, given a value d of type D

and a value r of type R, the expression d(r) is valid and does not throw an exception.
3 If the deleter’s type D is not a reference type, D shall be MoveConstructible and satisfy

the requirements of Destructible (Table 24).
4 R shall be a MoveConstructible and MoveAssignable. Move construction and move

assignment of D and R shall not throw an exception.

unique_resource(R && resource, see below d1, bool shouldRun=true) noexcept;

unique_resource(R && resource, see below d2, bool shouldRun=true) noexcept;
5 Effects: constructs a unique_resource by moving resource. The constructed object

will call deleter(resource) on its destruction if not release()ed prior to that. On
construction the resource is to be in a non-released state.

6 The signature of these constructors depends upon whether D is a reference type.
If D is non-reference type A, then the signatures are:

unique_resource(R&& p, const A& deleter);

unique_resource(R&& p, A&& deleter);

7 If D is an lvalue reference type A&, then the signatures are:

unique_resource(R&& p, A& deleter);

unique_resource(R&& p, A&& deleter);

8 If D is an lvalue reference type const A&, then the signatures are:

unique_resource(R&& p, const A& deleter);

unique_resource(R&& p, const A&& deleter);

9 Requires:

• If D is not an lvalue reference type then

– If deleter is an lvalue or const rvalue then the first constructor of this
pair will be selected. D shall satisfy the requirements of CopyConstructible
(Table 21), and the copy constructor of D shall not throw an exception.
This unique_resource will hold a copy of deleter.

– Otherwise, deleter is a non-const rvalue and the second constructor of
this pair will be selected. D shall satisfy the requirements of MoveConstructible
(Table 20), and the move constructor of D shall not throw an exception.
This unique_resource will hold a value move constructed from deleter.

• Otherwise D is an lvalue reference type. deleter shall be reference-compatible
with one of the constructors. If deleter is an rvalue, it will bind to the second
constructor of this pair and the program is ill-formed. [Note: The diagnostic

P0052 2015-09-27 11

could be implemented using a static_assert which assures that D is not
a reference type. — end note] Else deleter is an lvalue and will bind to
the first constructor of this pair. The type which D references need not be
CopyConstructible nor MoveConstructible. This unique_resource will
hold a D which refers to the lvalue deleter. [Note: D may not be an rvalue
reference type. — end note]

10 Postconditions: get() == r. get_deleter() returns a reference to the stored
deleter. If D is a reference type then get_deleter() returns a reference to the
lvalue deleter.

[Example:

D d;

unique_resource<int, D> p1(42, D()); // D must be MoveConstructible

unique_resource<int, D> p2(42, d); // D must be CopyConstructible

unique_resource<int, D&> p3(42, d); // p3 holds a reference to d

unique_resource<int, const D&> p4(42, D()); // error: rvalue deleter object com-
bined

// with reference deleter type

— end example]

unique_resource(unique_resource &&other) noexcept;

11 Effects: move-constructs a unique_resource from other’s members then calls other.release().

unique_resource& operator=(unique_resource &&other) noexcept ;

12 Effects: this->reset(); Move-assigns members from other then calls other.release().

~unique_resource() ;

13 Effects: this->reset();

void reset() ;

14 Effects: If release() has not been called, invokes the equivalent of this->get_-

deleter()(resource); Otherwise no action is taken.

void reset(R && newresource) ;

15 Effects: Invokes the deleter function for resource if it was not previously released,
e.g. this->reset(); Then moves newresource into the tracked resource member,
e.g. this->resource = std::move(newresource); Finally sets the object in the non-
released state so that the deleter function will be invoked on destruction if release()

is not called first.
16 [Note: This function takes the role of an assignment of a new resource. — end note]

[Note: If calling the get_deleter()(get()) might throw, use of one of the reset()

member functions in a try-block can avoid termination if unique resource is deleted
during stack unwinding when another exception is thrown. Afterwards the unique -
resource should be release()d before it is destroyed. — end note]

12 P0052 2015-09-27

R const & release() noexcept;
17 Effects: Set the object in the released state so that the deleter function will not be

invoked on destruction or reset().
18 Returns: resource

R const & get() const noexcept ;

operator R const &() const noexcept ;

R operator->() const noexcept ;
19 Requires: operator-> is only available if

is_pointer<R>::value &&

(is_class<remove_pointer_t<R>>::value || is_union<remove_pointer_t<R>>::value)

is true.
20 Returns: resource.

const DELETER & get_deleter() const noexcept;
21 Returns: deleter

6.3.5 Factories for unique_resource [unique resource.unique resource]

template<typename R,typename D>

unique_resource<R,remove_reference_t<D>>

make_unique_resource(R && r,D &&d) noexcept;
1 The return value is as follows: If D is a non-const lvalue reference type
2 Returns: unique_resource<R,D>(std::move(r),

std::forward<D>(d),true)
3 otherwise
4 Returns: unique_resource<R,remove_reference_t<D>>(std::move(r),

std::forward<D>(d),true)

template<typename R,typename D>

unique_resource<R,D>

make_unique_resource_checked(R r, R invalid, D &&d) noexcept;
5 Requires: R is EqualityComparable
6 The return value is as follows: If D is a non-const lvalue reference type
7 Returns:

unique_resource<R,D>(std::move(r),

std::forward<D>(d),!bool(r==invalid)
8 otherwise
9 Returns:

unique_resource<R,remove_reference_t<D>>(std::move(r),

std::forward<D>(d),!bool(r==invalid)

P0052 2015-09-27 13

7 Appendix: Example Implementations

This implementation is incomplete and might not conform to the specification.

7.1 Scope Guard Helper

#ifndef SCOPE_EXIT_H_

#define SCOPE_EXIT_H_

#include <exception>

// modeled slightly after Andrescu’s talk and article(s)

namespace std{

namespace experimental{

namespace _detail{

enum class scope_run{

exit,success,fail

};

struct exception_counter{

exception_counter() noexcept

:count{std::uncaught_exceptions()}

{

}

bool is_new_exception() const {

return std::uncaught_exceptions() > count;

}

int count;

};

}

template <typename EF,_detail::scope_run scope=_detail::scope_run::exit>

struct scope_exit {

// construction
explicit

scope_exit(std::conditional_t<

std::is_reference<EF>{}

,EF

,std::add_lvalue_reference_t<EF const>>

f) noexcept

:exit_function{f}

{}

explicit

scope_exit(std::remove_reference_t<EF> &&f) noexcept

:exit_function{std::move(f)}

{

static_assert(std::is_nothrow_move_constructible<EF>::value

,"EV must be nothrow move constructible");

14 P0052 2015-09-27

static_assert(!std::is_lvalue_reference<EF>{}

,"can not pass rvalue for reference type");

}

// move
scope_exit(scope_exit &&rhs) noexcept

:exit_function{std::forward<EF>(rhs.exit_function)}

,execute_on_destruction_flag{rhs.execute_on_destruction_flag}

{

rhs.release();

}

// release
~scope_exit()

{

if (execute_on_destruction_flag && execute_on_destruction())

exit_function();

}

void release() noexcept { execute_on_destruction_flag=false;}

scope_exit(scope_exit const &)=delete;

scope_exit& operator=(scope_exit const &)=delete;

scope_exit& operator=(scope_exit &&)=delete;

private:

EF exit_function; // exposition only
bool execute_on_destruction_flag{true}; // exposition only
_detail::exception_counter ec; // exposition only
bool execute_on_destruction()const { // exposition only

switch(scope){ // not really a switch, since compile time constant
case _detail::scope_run::fail:

return ec.is_new_exception(); // only run if new exepc-
tion

case _detail::scope_run::success:

return !ec.is_new_exception(); // only run if everything worked
fine

case _detail::scope_run::exit:;

}

return true; // run always
}

};

template <typename EF>

auto make_scope_exit(EF &&exit_function) noexcept {

return

scope_exit<

std::conditional_t<

std::is_lvalue_reference<EF>{} && !std::is_const<EF>{},

EF, /∗ this is an lvalue reference ∗/
std::remove_reference_t<EF>> /∗ store it by value, move/copy must not throw ∗/

>(std::forward<EF>(exit_function));

}

P0052 2015-09-27 15

template <typename EF>

auto make_scope_fail(EF &&exit_function) noexcept {

return

scope_exit<

std::conditional_t<

std::is_lvalue_reference<EF>{} && !std::is_const<EF>{},

EF, /∗ this is an lvalue reference ∗/
std::remove_reference_t<EF>> /∗ store it by value, move/copy must not throw ∗/

,_detail::scope_run::fail

>(std::forward<EF>(exit_function));

}

template <typename EF>

auto make_scope_success(EF &&exit_function) noexcept {

return

scope_exit<std::conditional_t<

std::is_lvalue_reference<EF>{} && !std::is_const<EF>{},

EF, /∗ this is an lvalue reference ∗/
std::remove_reference_t<EF>> /∗ store it by value, move/copy must not throw ∗/
,_detail::scope_run::success

>(std::forward<EF>(exit_function));

}

}

}

#endif /∗ SCOPE EXIT H */

7.2 Unique Resource

#ifndef UNIQUE_RESOURCE_H_

#define UNIQUE_RESOURCE_H_

#include <type_traits>

namespace std{

namespace experimental{

namespace __detail {

template <typename D, typename R,typename=void>

struct provide_operator_arrow_for_pointer_to_class_types{}; // R is non-pointer or
pointer-to-non-class-type

template <typename DERIVED, typename R>

struct provide_operator_arrow_for_pointer_to_class_types<DERIVED, R,

typename std::enable_if<std::is_pointer<R>::value

&& (

std::is_class<std::remove_pointer_t<R>>::value ||

std::is_union<std::remove_pointer_t<R>>::value)

>::type >

{

16 P0052 2015-09-27

R operator->() const {

return static_cast<const DERIVED*>(this)->get();

}

};

}

template<typename R,typename D>

class unique_resource

:public

__detail::provide_operator_arrow_for_pointer_to_class_types<

unique_resource<R,D>,R> {

R resource; // exposition only
D deleter; // exposition only
bool execute_on_destruction; // exposition only

public:

// construction
explicit

unique_resource(R && resource,

std::conditional_t<std::is_reference<D>{},D,std::add_lvalue_reference_t<D const>> deleter,

bool shouldrun=true) noexcept

: resource{std::move(resource)}

, deleter{deleter}

, execute_on_destruction{shouldrun}{

static_assert(std::is_nothrow_move_constructible<R>{},"resource must be nothrow_move_constructible");

}

explicit

unique_resource(R && resource,

std::remove_reference_t<D> && deleter, bool shouldrun=true) noexcept

: resource{std::move(resource)}

, deleter{std::move(deleter)}

, execute_on_destruction{shouldrun}{

// static assert(std::is nothrow move constructible¡R¿,”resource must be nothrow move con-
structible”);

static_assert(!std::is_lvalue_reference<D>{},"deleter must not be an rvalue");

}

// move
unique_resource(unique_resource &&other) noexcept

:resource(std::move(other.resource))

,deleter(std::move(other.deleter))

,execute_on_destruction{other.execute_on_destruction}

{

other.release();

}

unique_resource(unique_resource const &)=delete; // no copies!
unique_resource& operator=(unique_resource &&other)

P0052 2015-09-27 17

noexcept(noexcept(unique_resource::reset()))

{

this->reset();

this->deleter=std::move(other.deleter);

this->resource=std::move(other.resource);

this->execute_on_destruction=other.execute_on_destruction;

other.release();

return *this;

}

unique_resource& operator=(unique_resource const &)=delete;

// resource release
~unique_resource() //noexcept(noexcept(this-¿reset()))
{

this->reset();

}

void reset() //noexcept(noexcept(unique resource::get deleter()(resource)))
{

if (execute_on_destruction) {

this->execute_on_destruction = false;

this->get_deleter()(resource);

}

}

void reset(R && newresource) //noexcept(noexcept(unique resource::reset()))
{

this->reset();

this->resource = std::move(newresource);

this->execute_on_destruction = true;

}

R const & release() noexcept{

this->execute_on_destruction = false;

return this->get();

}

// resource access
R const & get() const noexcept {

return resource;

}

operator R const &() const noexcept {

return resource;

}

// deleter access
const D &

get_deleter() const noexcept {

return this->deleter;

}

};

//factories

18 P0052 2015-09-27

template<typename R,typename D>

auto

make_unique_resource(R && r,D &&d) noexcept {

return unique_resource<remove_reference_t<R>,

std::conditional_t<

std::is_lvalue_reference<D>{} && !std::is_const<D>{},

D, /∗ this is an lvalue reference ∗/
std::remove_reference_t<D>> /∗ store it by value, move/copy must not throw ∗/

>(std::move(r)

,std::forward<D>(d)

,true);

}

template<typename R,typename D>

auto

make_unique_resource_checked(R r, R invalid, D && d) noexcept

{

bool shouldrun = not bool(r == invalid);

return unique_resource<R

,std::conditional_t<

std::is_lvalue_reference<D>{} && !std::is_const<D>{},

D, /∗ this is an lvalue reference ∗/
std::remove_reference_t<D>> /∗ store it by value, move/copy must not throw ∗/
>(std::move(r), std::forward<D>(d), shouldrun);

}

}

}

// example only, not specified.
#include <functional>

template <typename R>

auto

make_unique_resource_type_erased(R &&r

, std::function<void(std::remove_reference_t<R>)> &&d)

{

return std::experimental::make_unique_resource(std::move(r),std::move(d));

}

#endif /∗ UNIQUE RESOURCE H */

