
Type Name Strings For C++

Document Number: ISO/IEC JTC1 SC22 WG21 N3437=12-0127

Author: Axel Naumann axel@cern.ch

Date: 2012-09-24

Contents

1 Motivation 2

2 Use Cases 2
2.1 Serialization . 2
2.2 Type Introspection . 3
2.3 Language Binding . 4

3 Features 4
3.1 Type Name Representation . 4
3.2 Runtime Type Information . 6
3.3 Impact On Use Cases, Relationship With Type Introspection . . 6

4 Characterization of Implementation, Cost 6

5 Comments on Existing Proposals 7

6 Summary 7

Abstract

Several proposals for introspection-oriented extensions are on the table. All of
them miss a fundamental ingredient: representation of type names as strings.

This paper describes use cases of type introspection and reflection based on
CERN’s experience, where the existing proposals fall short, and which features
an implementation that could facilitate the use cases discussed. It argues that
such an extension could turn C++ into a much more versatile language, and help

1

Document Number: ISO/IEC JTC1 SC22 WG21 N3437=12-0127
Type Name Strings For C++

with notoriously difficult areas such as serialization, language binding, runtime
documentation and signal-slot.

This paper is not a proposal; it is meant to show which parts of introspection
might benefit from additional features as compared to current C++. Its purpose
is to discuss a fundamental step, not a Grand Theory of Everything. Depending
on the relevance of this topic outside our field, we’d be happy to prepare a
proposal with a prototype implementation.

1 Motivation

The connection between types and strings is strong and simple: type names
play a key role in C++ as they are used for type identification. Given that a
(fully qualified) type name is traditionally unique in a program, they can be
used to identify a type also at runtime. Traditional occurrences of this use are
plug-in mechanisms (“You want type A? Let me load libA for you”), signal-slot
(“Function func in class Slot should now be called!”), serialization (“the next
bytes to read belong to an object of type Klass”), language binding (“the python
function argument points to an object of type CxxKlass”), and even dynamic
documentation (“let me show you the documentation on the data type Fancy”);
they are discussed below.

With the current standard, implementations are platform-dependent due to
type info::name() providing platform-dependent results. If on the other hand
they are based on template meta-programming, they are difficult to access out-
side the type system (for instance in a persistent type description database).
Combined, they cause a lot of overhead to the above use cases. Instead, some
implementations generate code to annotate types, where the annotation gets at-
tached to the types through preprocessor macros defining static data members.
None of that is especially beautiful, nor simple to implement, nor easy to use.

This note will analyze several key use cases in light of their need for a string
representation of type names. Given these use cases, a (short) list of required
features is compiled.

2 Use Cases

2.1 Serialization

Serialization requires the description of the in-memory layout of a data type.
C++ does not provide a tool for this; while this would be good to have, it is
beyond the scope of this note.

All useful (de-)serialization routines are written based on extensible type
information databases. Examples include:

• Google’s Protocol Buffers http://code.google.com/p/protobuf,

• Boost::serialization http://www.boost.org/libs/serialization,

2

http://code.google.com/p/protobuf
http://www.boost.org/libs/serialization

Document Number: ISO/IEC JTC1 SC22 WG21 N3437=12-0127
Type Name Strings For C++

• Qt QDataStream http://doc.qt.digia.com/4.7/qdatastream.html or

• CERN ROOT [1] http://root.cern.ch

They allow additional types to be defined and implementations to be provided,
e.g. through shared libraries, without a change to the underlying deserialization
routines. What all tools depend on, though, is the identification of their element
in their type description database given an object. If the serialized representa-
tion of an object of type std::vector<long int> comes in, e.g. through a network
socket, the deserialization routines need to know which type description this
corresponds to. Using the string representation of the type name for identifying
the type introspection data is thus a natural choice.

The approaches of Boost and Qt serialization bind the serialization to the
type; here, the serialization library depends on the types it can serialize. Pro-
tocol Buffers even defines the types itself, by generating their C++ definitions.
Additionally, all (but an extension of Protocol Buffers) lack a key feature of
ROOT serialization, which is self description: ROOT files contain a definition
of the data layout (which is defined at runtime), which in turn requires type
names as the only way of identifying types across implementations, binaries,
operating systems etc. This enables reading the file without the types’ defi-
nitions loaded into the binary (a mock-up object can be constructed from the
data layout), and schema evolution, where the type definition on disk and in
the binary are different.

2.2 Type Introspection

For the purpose of this paper, type introspection is defined as the ability of an
object to identify its type towards a client that is not aware of the type, i.e. the
client’s code does not contain a definition of the object’s type.

Type introspection enables remote procedure calls: if the type string for
an object can be retrieved in one implementation and be looked up in another
implementation, then applications can agree on a type’s member functions in a
dynamical way, by passing the ingredients of their signatures. A server might
offer “clients can call a function named Func1 passing a serialized representation
of an object of type A; I will return the serialized representation of type B.”.
C++ clients will be able to determine whether that function can be called given
a parameter value list.

A less obvious use case for type introspection is data exploration. It’s a
wonderful tool for complex data structures: users (or developers) can explore
objects and their relationship, through a mixture of runtime type evaluation,
type introspection data and documentation identified by the type name at run-
time.

It helps to identify which bits of data users are interested in and how these
data behave. Suppose the data to analyze by a program contains manufacturing
quality data. The algorithm is supplied at runtime. To do that, the user can see
which data fields exist: for instance the manufacturing site might have a data
member that specifies the country of the location – maybe a good candidate for

3

http://doc.qt.digia.com/4.7/qdatastream.html
http://root.cern.ch

Document Number: ISO/IEC JTC1 SC22 WG21 N3437=12-0127
Type Name Strings For C++

a relevant parameter in quality studies. This might sound surreal, but it is very
close to how physicists do data analysis at CERN. Data exploration reduces the
gap between code development, code execution and documentation, which can
turn development data-centric instead of type-centric.

2.3 Language Binding

An introspection database enables type descriptions to cross language borders: a
structure containing two members of type float and one containing a collection
of int can be defined in most languages. Conversions can be (and are) done
dynamically at runtime, based on type introspection data. This is especially
useful when binding to a language with a dynamic type system. Also here, the
key prerequisite is the identification of the type, to be able to retrieve the type
description for a given object from a persistent type introspection database.

3 Features

As mentioned before, these use cases require only a minimal (and minimally
invasive) set of features.

3.1 Type Name Representation

It might be possible to standardize a canonical type name for each type. For
users this would be the optimal case: removing ambiguities and the need to
convert or parse type name strings.

Alternatively, the implementation must be able to retrieve the type info

object for (a defined subset of) a type’s fully qualified type name aliases. For
the purpose of clarity, this paper calls this function

stat ic const std : : type info∗
std : : type info : : from name(const char∗)

This would be accompanied by a new name retrieval function, which for
clarity is called

const char∗ std : : type info : : id name ()

It would return a valid C++ type name, i.e. a name that is not mangled, and
that can serve as input to type info::from name() for all other implementations.

type info::from name() requires the type to be defined, else its type info ob-
ject is unavailable. That is likely an unnecessary restriction, especially for run-
time features that can provide a definition given the type name, for instance
plug-in systems or just-in-time compilers. It would thus be beneficial to have a
conversion of a type name into the type name returned by type info::id name(),
as if its type info object existed. Again for improved clarity, this paper refers
to it as

stat ic const char∗
std : : type info : : to id name (const char∗)

4

Document Number: ISO/IEC JTC1 SC22 WG21 N3437=12-0127
Type Name Strings For C++

Given type info::to id name(), a simple type info retrieval function expecting
the string returned by to id name() as parameter would suffice. For the purpose
of clarity, this paper calls this function

stat ic const std : : type info∗
std : : type info : : from id name (const char∗)

from name() and to id name() do not need to be able to accept all possible
versions of type names as input, but only a defined, standardized subset. The
subset definition should enable the implementation to treat identifiers as a set
of tokens, without knowledge about their nature. A possible subset could be all
type names with all default template arguments removed, with all typedefs re-
solved, with signedness and unsignedness specified where applicable, and all inte-
ger types that optionally allow it to end on int, and all expressions (for template
arguments) evaluated. Thus, ”std :: vector<long∗, std :: allocator<long∗>>” would
not be part of the allowed input subset; but ”std :: vector< signed long int ∗ >”

would be part of the allowed input subset. Ideally all that is left for an im-
plementation to do is to normalize the location of the cv-qualifiers and spacing.

Some type names will be implementation-defined. Clients are thus forced
to deal with “synchronizing” the type names across different implementations.
This is not a deterioration of today’s situation for clients.

As examples for above definition of allowed input, n1, n2 and n3 must com-
pare equal:

const std : : type info &n1 = ∗std : : type info : : from name(
” std : : vector<const v o l a t i l e long i n t∗>”) ;

const std : : type info &n2 = ∗std : : type info : : from name(
” std : : vec to r < const v o l a t i l e long i n t ∗ >”) ;

const std : : type info &n3 = ∗std : : type info : : from name(
” std : : vector<v o l a t i l e const long i n t ∗ >”) ;

Combining the different type name retrieval paths, the two strings id1 and
id2 must string-compare equal for all type names tn in the subset of allowed
type names:

const char∗ id1 =
std : : type info : : to id name (tn) ;

const char∗ id2 =
std : : type info : : from name(tn)−>id name () ;

const char∗ id3 =
std : : type info : : from id name (id1)−>id name () ;

To make the new features available, one of these alternatives could be im-
plemented:

• A canonical type name defined for all types by the standard; or

• type info::to id name(), type info::from id name() and type info::id name(),
where the “id name” is standardized except for optional white space and
commutative keywords, where the existence (white space) and order (key-
words) is fixed by the implementation.

type info::from name() is thus optional and not a prerequisite for the features
described here.

5

Document Number: ISO/IEC JTC1 SC22 WG21 N3437=12-0127
Type Name Strings For C++

3.2 Runtime Type Information

The name for types must be accessible e.g. through the std::type info object for
a type, as outlined above for std::type info::id name(). The existing functions
for retrieving the std::type info given an object are sufficient for this discussion.

3.3 Impact On Use Cases, Relationship With Type Intro-
spection

Currently, given a type info object, one cannot retrieve a key that can be used
in a universal, implementation-independent way to identify the type description
in an external type description database, which is the fundamental ingredient
for all use cases described above. The usual reaction is instead to intrusively
annotate all supported types by a key, e.g. through a static data member.

Alternatively, to use the type info object as key, compiled code must define
a connection between the type info object and a static key. That compiled code
is loaded into the binary at runtime. Given a type info object, the static key is
looked up, which in turn serves as the key in the type description database.

Both could be dramatically simplified. Standardization of a canonical type
name would allow the use of a type name as a key, after mapping implementation-
defined type names, as is already done now. Alternatively, all type names
used as key in a type description database would need to be replaced by their
implementation-specific version by calling std::type info::to id name(const char∗).

Type name normalization is a key ingredient of type description systems. It
does not provide answers to “which data members does class A have”. But it fa-
cilitates the use of existing type description libraries considerably. The features
discussed here are independent of whether type introspection and reflection fea-
tures will be available in a future C++ version, and what form they might have.
This note does however point out use cases that are difficult to satisfy with a
type introspection implementation that is similar to type traits, i.e. specifically
without a string representation.

4 Characterization of Implementation, Cost

A basic implementation of type name parsing would have to be available in the
C++ runtime libraries if the type names are not standardized. It would likely
incorporate features that already exist in today’s compilers. There is no CPU
time penalty for clients not using this feature, the only cost is an increased
runtime library size.

Additionally, a program would need a type name database at runtime, if
runtime type information is requested, which is the only way to extract a type
name from a type. This could be done by extending the current data structures
used to represent std::type info.

The amount of string constants introduced by this interface is not negligible.
An example, one of ROOT’s libraries has about 24k non-blank lines in header

6

Document Number: ISO/IEC JTC1 SC22 WG21 N3437=12-0127
Type Name Strings For C++

files defining more than 600 types; their type names (in an arbitrary notation)
consume 12k bytes in total (including the string-terminating \0). The storage
cost could be reduced by storing the types’ unqualified name and the types’
declaration scope, and constructing the fully qualified name on demand.

5 Comments on Existing Proposals

Existing proposals and implementations in the Standard Library offer charac-
terization of types at compile-time [2], [3]. This is not sufficient for the use cases
outlined in the paper: they provide a wonderful tool to describe types within
one translation unit, and to build reflection data in a static way. But they do
not provide a way to make this description persistent with a unique key: the
type name.

Other proposals and comments go far beyond what is discussed here, de-
scribing possible implementations of reflection databases. They either require
language changes [4] or show the complexity of such an endeavor [5]. Both
(though not explicitly) mention type name strings, another proof of the rele-
vance of this topic for reflection. The scope of this note is much reduced, though,
making it hopefully more realistic to agree on an implementation, and providing
a more focused and basic seed for future extensions in the region of reflection
for C++.

6 Summary

While C++ is providing more and more compile-time-centric features, string-
based type identification enables C++ to cover more use cases. Zero-terminated
strings are a common denominator for many languages, or at least for their
binding libraries. Using them for type communication across languages will
thus also help language bindings in a simple, straight-forward way. This paper
has shown that type name strings can dramatically simplify problems that are
currently impossible to solve without crude external scaffolding.

Acknowledgments

Thanks to the following people for their feedback and discussions: Philippe
Canal (Fermilab), Vassil Vassilev and Jakob Blomer (both CERN).

References

[1] Ilka Antcheva et al, ROOT - A C++ framework for petabyte data storage,
statistical analysis and visualization. Computer Physics Communications;
Anniversary Issue; Volume 180, Issue 12, December 2009, Pages 2499-2512.

7

Document Number: ISO/IEC JTC1 SC22 WG21 N3437=12-0127
Type Name Strings For C++

[2] David Vandevoorde, Reflective Metaprogramming in C++ N1471=03-0054,
2003

[3] Detlef Vollmann, Aspects of Reflection in C++, N1751=05-0011, 2005

[4] Dean Michael Berris, Matt Austern, Lawrence Crowl, Rich Pointers,
N3340=12-0030, 2012

[5] Walter E. Brown, Philippe Canal, Mark Fischler, Jim Kowalkowski, Pere
Mato, Marc Paterno, Stefan Roiser, Lassi Tuura, A Case for Reflection,
N1775=05-0035, 2005

8

	Motivation
	Use Cases
	Serialization
	Type Introspection
	Language Binding

	Features
	Type Name Representation
	Runtime Type Information
	Impact On Use Cases, Relationship With Type Introspection

	Characterization of Implementation, Cost
	Comments on Existing Proposals
	Summary

