
Document Number: N3388=12-0078
Date: 2012-04-23
Reply to: Christopher Kohlhoff <chris@kohlhoff.com>

Using Asio with C++11
This paper is intended as both an introduction to the Asio library and as a brief overview of its
implementation and use in conjunction with C++11.

1. C++11 variant of the Asio library
Rather than using the Boost distribution of the Asio library, this paper is based around a variant of
Asio that stands alone from Boost. The goals of this variant include:

• using only C++11 language and library features in the interface;

• demonstrating that the library can be implemented using only the C++11 standard library and
the facilities provided by the operating system.

This variant is available at http://github.com/chriskohlhoff/asio/tree/cpp11-only.

2. Addressing simple use cases with I/O streams
In many applications, networking is not a core feature, nor is it seen as a core competency of the
application’s programmers. To cater to these use cases, Asio provides a high-level interface to TCP
sockets that is designed around the familiar C++ I/O streams framework.

Using the library in this way is as easy as constructing a stream object with the remote host’s
details:

tcp::iostream s("www.boost.org", "http");

Next, deciding whether you want the socket to give up if the host is non-responsive:
s.expires_from_now(std::chrono::seconds(60));

Then, send and receive any data as needed. In this case you send a request:
s << "GET / HTTP/1.0\r0.2cm\n";
s << "Host: www.boost.org\r\n";
s << "Accept: */*\r\n";
s << "Connection: close\r\n\r\n";

And then receive and process the response:
std::string header;
while (std::getline(s, header) && header != "\r")
 std::cout << header << "\n";
std::cout << s.rdbuf();

If at any time there is an error, the tcp::iostream class’s error() member function may be used to
determine the reason for failure:

if (!s)
{
 std::cout << "Socket error: " << s.error().message() << "\n";
 return 1;
}

1 of 9

mailto:chris@kohlhoff.com
mailto:chris@kohlhoff.com
http://github.com/chriskohlhoff/asio/tree/cpp11-only
http://github.com/chriskohlhoff/asio/tree/cpp11-only

3. Understanding synchronous operations
Synchronous operations are functions that do not return control to the caller until the
corresponding operating system operation completes. In Asio-based programs their use cases
typically fall into two categories:

• Simple programs that do not care about timeouts, or are happy to rely on the timeout behaviour
provided by the underlying operating system.

• Programs that require fine grained control over system calls, and are aware of the conditions
under which synchronous operations will or will not block.

Asio may be used to perform both synchronous and asynchronous operations on I/O objects such
as sockets. However, synchronous operations provide an opportunity to give a simple, conceptual
overview of the various parts of Asio, your program, and how they work together. As an
introductory example, let's consider what happens when you perform a synchronous connect
operation on a socket.

Your program will have at least one io_service object. The io_service represents your program's
link to the operating system's I/O services.

asio::io_service io_service;

To perform I/O operations your program will need an I/O object such as a TCP socket:
tcp::socket socket(io_service);

When a synchronous connect operation is performed, the following sequence of events occurs:

1. Your program initiates the connect operation by calling the I/O object:
socket.connect(server_endpoint);

2. The I/O object forwards the request to the io_service.

3. The io_service calls on the operating system to perform the connect operation.

N3388=12-0078 - Using Asio with C++11

2 of 9

4. The operating system returns the result of the operation to the io_service.

5. The io_service translates any error resulting from the operation into an object of type
std::error_code. The result is then forwarded back up to the I/O object.

6. The I/O object throws an exception of type std::system_error if the operation failed. If the
code to initiate the operation had instead been written as:
std::error_code ec;
socket.connect(server_endpoint, ec);

then the error_code variable ec would be set to the result of the operation, and no exception
would be thrown.

1. Understanding asynchronous operations
Asynchronous operations do not block the caller, but instead involve the delivery of a notification
to the program when the corresponding operating system operation completes. Most non-trivial
Asio-based programs will make use of asynchronous operations.

When an asynchronous operation is used, the following sequence of events occurs.

1. Your program initiates the asynchronous connect operation by calling the I/O object:
socket.async_connect(
 server_endpoint,
 your_completion_handler);

The async_connect() function is an initiating function. Initiating functions in Asio are named
with the prefix async_. An initiating function takes a function object, called a completion handler,
as its final parameter. In this particular case, your_completion_handler is a function or function
object with the signature:
void your_completion_handler(
 const std::error_code& ec);

N3388=12-0078 - Using Asio with C++11

3 of 9

The exact signature required for the completion handler depends on the asynchronous
operation being performed. The Asio reference documentation indicates the appropriate form
for each operation.

2. The I/O object forwards the request to the io_service.

3. The io_service signals to the operating system that it should start an asynchronous connect
operation.

Time passes. (In the synchronous case this wait would have been contained entirely within the
duration of the connect operation.) During this time the operating system is notionally responsible
for the asynchronous operation, which is referred to as outstanding work.

4. The operating system indicates that the connect operation has completed by placing the result
on a queue, ready to be picked up by the io_service.

5. Your program must make a call to io_service::run() (or to one of the similar io_service
member functions) in order for the result to be retrieved. A call to io_service::run() blocks
while there is outstanding work1. You would typically call it as soon as you have started your
first asynchronous operation.

6. While inside the call to io_service::run(), the io_service dequeues the result of the
operation, translates it into an error_code, and then passes it to your completion handler.

2. Chaining asynchronous operations
An asynchronous operation is considered outstanding work until its associated completion
handler is called and has returned. The completion handler may in turn call other initiating
functions, thus creating more outstanding work.

N3388=12-0078 - Using Asio with C++11

4 of 9

1 Outstanding work is logically represented by an object of type io_service::work. The io_service::run()
function blocks if one or more io_service::work objects exist, and all asynchronous operations behave as-if
they have an associated io_service::work object.

Consider the case where a connect is followed by other I/O operations on the socket:
socket.async_connect(
 server_endpoint,
 [&](std::error_code ec)
 {
 if (!ec)
 {
 socket.async_read_some(
 asio::buffer(data),
 [&](std::error_code ec, std::size_t length)
 {
 if (!ec)
 {
 async_write(socket,
 asio::buffer(data, length),
 [&](std::error_code ec, std::size_t length)
 {
 // ...
 });
 }
 });
 }
 });

The completion handler for the asynchronous connect operation, here expressed as a C++11
lambda, initiates an asynchronous read operation. This has its own associated outstanding work,
and its completion handler creates yet more work in the form of an asynchronous write.
Consequently, the io_service::run() does not return until all operations in the chain have
completed.

Of course, in real programs these chains are often longer and may contain loops or forks. In these
programs, io_service::run() may execute indefinitely.

3. Handling errors
Asio’s approach to error handling is based on the view that exceptions are not always the right
way to handle errors. In network programming, for example, there are commonly encountered
errors such as:

• You were unable to connect to a remote IP address.

• Your connection dropped out.

• You tried to open an IPv6 socket but no IPv6 network interfaces are available.

These might be exceptional conditions, but equally they may be handled as part of normal control
flow. If you reasonably expect it to happen, it's not exceptional. Respectively:

• The IP address is one of a list of addresses corresponding to a host name. You want to try
connecting to the next address in the list.

• The network is unreliable. You want to try to reestablish the connection and only give up after n
failures.

• Your program can drop back to using an IPv4 socket.

Whether the error is exceptional depends on the context within the program. Furthermore, some
domains may be unwilling or unable to use exceptions due to code size or performance
constraints. For this reason, all synchronous operations provide both throwing:

N3388=12-0078 - Using Asio with C++11

5 of 9

socket.connect(server_endpoint); // Throws std::system_error on error.

and non-throwing overloads:
std::error_code ec;
socket.connect(server_endpoint, ec); // Sets ec to indicate error.

For similar reasons, Asio does not use separate completion handlers based on whether or not an
operation completes with an error. To do so would create a fork in the chain of asynchronous
operations which may not match the program’s idea of what constitutes an error condition.

4. Managing object lifetimes
When using asynchronous operations, a particular challenge is object lifetime management. Asio
adopts an approach where there is no explicit support for managing object lifetime. Instead, the
lifetime requirements are placed under program control according to rules based on how an
initiating function is declared:

• By value, const reference and rvalue reference parameters.

These are copied or moved as required by the library implementation until no longer required.
For example, the library implementation maintains a copy of the completion handler object
until after the handler is called.

• Non-const reference parameters, this pointer.

The program is responsible for ensuring that the object remains valid until the asynchronous
operation is complete.

An approach employed in many Asio-based programs is to tie object lifetime to the completion
handler. This may be achieved using std::shared_ptr<> and std::enable_shared_from_this<>:

class connection :
 std::enable_shared_from_this<connection>
{
 tcp::socket socket_;
 vector<unsigned char> data_;
 // ...
 void start_read()
 {
 socket_.async_read_some(socket_,
 asio::buffer(data_),
 std::bind(&connection::handle_read,
 shared_from_this(), _1, _2));
 }
 // ...
};

With C++11, this approach can give an excellent tradeoff between usability and performance. Asio
is able to leverage movable completion handlers to minimise the costs associated with reference
counting. Since programs typically consist of chains of asynchronous operations, ownership of the
pointer can be transferred along the chain; the reference count is only updated at the beginning
and end of the chain.

However, some programs require fine grained control over object lifetimes, memory usage, and
execution efficiency. By putting object lifetime under program control, these use cases are also
supported. For example, an alternative approach is to create all objects at program startup. The
completion handlers are then not required to play a role in object lifetime, and may be trivially
cheap to copy.

N3388=12-0078 - Using Asio with C++11

6 of 9

5. Optimising memory allocation
Many asynchronous operations need to allocate an object to store state associated with the
operation. For example, a Windows implementation needs OVERLAPPED-derived objects to pass to
Win32 API functions.

By default, Asio will allocate space for this bookkeeping information using ::operator new().
However, chains of asynchronous operations provide an opportunity for optimisation here. Each
chain can have a block of memory associated with it, and the same block can be reused for each
sequential operation in the chain. This means it is possible to write asynchronous protocol
implementations that perform no ongoing memory allocations.

The hook for this custom memory allocation is the asynchronous operation’s completion handler.
The handler identifies the larger context in which the operation is being performed. By passing this
completion handler to the initiating function, Asio is able to allocate the necessary memory prior to
signalling the operating system to start the asynchronous operation.

6. Dealing with concurrency
Protocol implementations typically involve the coordination of multiple chains of asynchronous
operations. For example, one chain of operations may handle message sending, another receiving,
and a third may implement application-layer timeouts. All of these chains require access to
common variables, such as sockets, timers, and buffers. Furthermore, these asynchronous
operations may continue indefinitely.

Asynchronous operations provide a way to realise concurrency without the overhead and
complexity of threads. However, Asio’s interface is designed to support a spectrum of threading
approaches, some of which are outlined below.

Single-threaded designs
Asio guarantees that completion handlers will be called only from within io_service::run()2.
Therefore, by calling io_service::run() from exactly one thread, a program can prevent parallel
execution of handlers.

This design is the recommended starting point for most programs, as no explicit synchronisation
mechanism is required. However, care must be taken to keep handlers short and non-blocking.

Use threads for long running tasks
A variant of the single-threaded design, this design still uses a single io_service::run() thread
for implementing protocol logic. Long running or blocking tasks are passed to a background
thread and, once completed, the result is posted back to the io_service::run() thread.

By using a shared-nothing message passing approach3, programs can ensure that objects are not
shared between the io_service::run() thread and any background worker thread. Thus, explicit
synchronisation is still not required.

Multiple io_services, one thread each
In this design, I/O objects are assigned a “home” io_service, which is run from a single thread.
Different objects should communicate only by message passing.

This design can make more effective use of multiple CPUs, while limiting sources of contention.
Explicit synchronisation is not required, but handlers must be kept short and non-blocking.

N3388=12-0078 - Using Asio with C++11

7 of 9

2 Or from one of the similar io_service member functions run_one(), poll() or poll_one().

3 Asio supports message passing through the io_service member functions post() and dispatch().

One io_service, multiple threads
The io_service::run() function may be called from multiple threads to set up a thread pool for a
single io_service. The implementation distributes available work across the threads in an
arbitrary fashion.

As completion handlers can be called from any of the threads then, unless the protocol
implementation is trivial and consists of a single chain of operations, some form of synchronisation
may be required. Asio provides the io_service::strand class for this purpose.

A strand prevents concurrent execution of any completion handler associated with it. In the
example above, where we have a protocol implementation that consists of three chains of
operations (for sending, receiving and timeouts), a strand ensures that the related chains’ handlers
are serialised. Other protocol implementations running on other strands are still able to utilise any
of the other threads in the pool. Furthermore, unlike a mutex, if a strand is “in use” it will not
block the calling thread, but will instead switch to run other ready handlers on other strands to
keep the thread busy.

As with custom memory allocation, strand synchronisation uses an hook associated with the
completion handler. That is, the completion handler identifies the larger context in which the
operation is being performed. This custom invocation hook allows the synchronisation mechanism
to scale up to abstractions that are based on composition of operations, as we will see below.

7. Passing the buck: developing efficient abstractions
A key design goal of Asio is to support the creation of higher level abstractions. The primary
mechanism for this is composition of asynchronous operations. In Asio terminology, these are
known simply as “composed operations”.

As an example, consider a hypothetical user-defined asynchronous operation that implements the
pass-through transfer of all data read from one socket to another. The initiating function might be
declared as follows:

template <typename Handler>
void async_transfer(
 tcp::socket& socket1, tcp::socket& socket2,
 std::array<unsigned char, 1024>& working_buffer,
 Handler handler);

This function would be implemented in terms of two underlying asynchronous operations: a read
from socket1 and a write to socket2. Each of these operations has an intermediate completion
handler, and the relationship between them is illustrated in the image below:

N3388=12-0078 - Using Asio with C++11

8 of 9

These intermediate completion handlers can “pass the buck” by customising the allocation and
invocation hooks to simply call the user’s completion handler’s hooks. In this way, the
composition has deferred all choices on memory allocation and synchronisation to the user of the
abstraction. The user of the abstraction gets to select the appropriate tradeoff between ease of use
and efficiency, and does not need to pay for any synchronisation cost if explicit synchronisation is
not required.

Asio provides a number of these composed operations out-of-the-box, such as the non-member
functions async_connect(), async_read(), async_write() and async_read_until(). Closely
related composed operations may also be grouped in objects as in Asio’s buffered_stream<> and
ssl::stream<> templates.

8. Scope and extensibility
Given the size of the Asio library, the proposals put before WG21 have been limited to a minimal
viable subset that is focused primarily on networking with TCP and UDP, buffers and timers.
However, Asio’s interface is designed to allow both user and implementor extensibility through a
number of mechanisms. Some of these mechanisms are described below.

Additional I/O services
The io_service class implements an extensible, type-safe, polymorphic set of I/O services, indexed
by service type. I/O services exist to manage the logical interface to the operating system on behalf
of the I/O objects. In particular, there are resources that are shared across a class of I/O objects. For
example, timers may be implemented in terms of a single timer queue. The I/O services manage
these shared resources, and are designed so that they impose no cost if not used.

Asio implements additional I/O services to provide access to certain operating system-specific
functionality. Examples include:

• Windows-specific services for performing overlapped I/O on HANDLEs

• A Windows-specific service for waiting on kernel objects such as events, processes and threads.

• A POSIX-specific service for stream-oriented file descriptors

• A service for safe integration of signal handling via signal() or POSIX sigaction().

New I/O services may be added without impacting existing users of the library.

Socket type requirements
Although the Asio-based proposal is limited to TCP and UDP sockets, the interface is based
around type requirements, such as Protocol and Endpoint. These type requirements are designed
to allow the library to work with other types of sockets. The Asio library itself has used these type
requirements to add support for ICMP and UNIX domain sockets.

Stream type requirements
The Asio library defines several type requirements for both synchronous and asynchronous
stream-oriented I/O. These type requirements are implemented by the TCP socket interface, and
also by abstractions such as ssl::stream<> and buffered_stream<>. By implementing these type
requirements, a class may be used with the composed operations like async_read(),
async_read_until() and async_write(). The type requirements are also intended for use in
higher level abstractions such as an asynchronous wrapper over HTTP.

N3388=12-0078 - Using Asio with C++11

9 of 9

