
Concepts and Ref-qualifiers

Author: Douglas Gregor, Apple
Document number: N2832=09-0022
Date: 2009-02-08
Project: Programming Language C++, Library Library Working Group
Reply-to: Douglas Gregor <doug.gregor@gmail.com>

Introduction

This proposal updates the Standard Library’s assignability concepts to avoid a type-safety hole that concerns associated
member function requirements within concepts and their interaction with ref-qualifiers [?].

The type-safety hole occurs due to the way in which associated member function requirements are type-checked. For
example, consider a simple Assignable concept:

auto concept Assignable<typename T> {

T& T::operator=(const T&);

}

Using this concept, we can assign to both an lvalue and an rvalue of type T, as in the following well-formed code:

template<typename T>

requires Assignable<T> && std::DefaultConstructible<T>

void f(T x) {

x = T(); // okay
T() = x; // okay

}

This code is well-formed since the type-checking of the assignment expressions is done using an archetyp for T and the
operator= requirement is translated into a member function of the archetype.

However, the Assignable concept applies to built-in types, e.g., the following concept map is well-formed:

concept_map Assignable<int> { }

The concept map is well-formed because type-checking for the operator= requirement involves type-checking an
expression a = b, where a is an lvalue. Hence, both the concept map Assignable<int> and the constrained function
template f are well-formed, but attempting to instantiate f<int> will result in an error because one cannot assign to an
rvalue of non-class type.

Closing this type-safety hole in the language will be the subject of a separate proposal. This proposal, in the other hand,
modifies all of the assignability concepts by adding a & ref-qualifier to the operator= requirement, so they constrained
templates will only be permitted to assign to lvalues. This change avoids the type-safety hole and prepares for the
language changes that will close that hole.

mailto:doug.gregor@gmail.com

2

20.1.3 Operator concepts [concept.operator]

auto concept HasAssign<typename T, typename U> {

typename result_type;

result_type T::operator=(U) &;

}

28 Note:describes types with an assignment operator.

20.1.8 Copy and move [concept.copymove]

result_type T::operator=(T&& rv) &; // inherited from HasAssign<T, T&&>

7 Postconditions:the constructed T object is equivalent to the value of rv before the assignment. [Note:there is no
requirement on the value of rv after the assignment. — end note]

2

	20.1.3 Operator concepts
	20.1.8 Copy and move

