Doc No: N2768=08-0278

Date: 2008-09-19

Author: Pablo Halpern
Bloomberg, L.P.

phalpern@halpernwightsoftware.com

Allocator Concepts, part 1 (revision 2)

Contents
SUINIMATY ..t a et a bbb bbbt et n s sa e s s eneas 1
Changes from N2654c.coiiiiiiii s 2
List Of ChANGEScuiiiiiiiciicci e 2
FUture Proposals ... 2
Document CONVENTIONScouiiiiiiiiiiiiiicic e e 3
Proposed WOTdIng........c.coiiiiiiiiiiiciic s 3
The addressof FUNCHON..........ccoiiiiiiiiii e 3
Header Changes..........coouviiiiiiiiiiccece e 4
AllOCAtOr CONECEPL ...cuviiiiiiiiiitct et 5
Allocator-related Element CONCEPLScccouvueiriiuiiiiiiiiiiiiiiiiciciccceeee e 10
Scoped Allocator Adaptorcooueuiiiiiiiiiiicc s 14
Element CONSEIUCHONc.cciiiiiiiiiiicc s 17
AcKkNOWIEdGEMENLS ... s 18
REEIOIICES ..ottt 18
Summary

This paper defines concepts for Allocator and a number of related requirements and specifies
concept constraints and concept maps for a number of library classes and class templates.
Most of these concepts are used in N2738: Concepts for the C++0x Standard Library: Containers
and N2735: Concepts for the C++0x Standard Library: Utilities. Other parts of the library that are
affected by these concepts are described here.

There are a number of notable consequences of adding concepts to allocators:

1. The pointer types in the Allocator concept are now defined with sufficient precision
that we are able to remove the weasel words that previously prevented portable use of
fancy pointer types in allocators.

2. Several traits defined in the WP can be replaced by auto concepts, freeing the
programmer from having to specify them explicitly for his/her types.

N2768: N2768 Allocator Concepts, part 1 (revision 2) Page 1 of 19

3. A default implementation of Allocator<X>::construct () allows C++03 allocators
to work as C++0x allocators by automatically providing a variadic construct ()
function.

Changes from N2654

This document is mostly a subset of N2654, Allocator Concepts (rev 1). It comprises those
parts of the Allocator Concepts paper that we feel might reasonably move forward at the
September 2008 meeting in San Francisco and provides “place holder” concepts for completing
the work of conceptifying the allocator requirements. In particular, any allocator-related
concept that is required by the utilities or containers sections is represented either in whole or
as a placeholder. Specific details needed to implement the scoped allocator model (N2554) and
allocator-specific move and swap (N2525) have been left out of this document and deferred to
a future (part 2) document.

List of changes
¢ Eliminated RandomA-ccessAllocator, SimpleAllocator, and MinimalAllocator for now.
e Removed machinery for creating concept maps for ConstructibleWithAllocator.
¢ Renamed ConstructibleAsElement to AllocatableElement

e Eliminated the ScopedAllocator concept. Moved scoped allocator dispatch into the
AllocatableElement concept.

e Eliminated the allocator propagation concepts — We will find a cleaner way of making
that mechanism work.

e Changed construct(pointer, args...) and destroy(pointer) to
construct(value_type* args...) and destroy(value_type*) in the Allocator concept.

e Added HasAllocatorType concept

e Added requirement that pointer and const_pointer be Regular and that none of the
regular operations throw an exception.

Future Proposals

In addition to a proposal conceptifying scoped allocators and allocator propagation, I expect to
submit proposals in time for the next meeting addressing the following features that were
originally proposed in N2654:

N2768: N2768 Allocator Concepts, part 1 (revision 2) Page 2 of 19

1. Not all allocators require allocation of elements at once. The Allocator concept can be
split into two concepts, a basic one that allocates single objects and does not require
random-access pointer types, and a refinement that allocates memory for multiple,
contiguous elements and for which the pointer type is a random-access iterator. (An in-
between concept that allocates multiple objects and provides only forward-iterator
pointers is possible if reasonable use cases can be demonstrated.)

2. User-defined container types that don’t want to deal with non-raw pointer types, etc.,
could be constrained with a SimpleAllocator concept, which would require that the
allocator use raw pointers.

3. An allocator author could allow a container to bypass calls to construct () and
destroy () by somehow specifying that the allocator doesn’t do anything special in
those functions. This is useful for, e.g., vector<int>, where no destructor is needed
and where resize can be specialized to use memset (). The default allocator
(std::allocator) would fall into this category.

Document Conventions

All section names and numbers are relative to the March 2008 working draft, N2588.
Existing and proposed working paper text is indented and shown in dark blue. Small edits to the working
paper are shown with red-strikeouts-for-deleted-text-and green underlining for inserted text within the indented

blue original text. Large proposed insertions into the working paper are shown in the same dark blue indented
format (no green underling).

Comments and rationale mixed in with the proposed wording appears as shaded text.

Requests for LWG opinions and guidance appear with light (yellow) shading. It is expected
that changes resulting from such guidance will be minor and will not delay acceptance of this
proposal in the same meeting at which it is presented.

Proposed Wording

The addressof Function
In section 20.6 [memory] within the synopsis of header <memory>, add before
uninitialized copy:

template <ObjectType T> T* addressof (T& r);
template <ObjectType T> T* addressof (T&& r);

In section 20.6.10, insert the following;:

template <ObjectType T> T* addressof (T& r);

N2768: N2768 Allocator Concepts, part 1 (revision 2) Page 3 of 19

template <ObjectType T> T* addressof (T&& r);

Returns: The actual address of the object referenced by r, even in the presence of an overloaded
operator&.

This function is useful in its own right but is required for describing and implementing a
number of allocator features. An implementation can be found in the boost library.

Header changes
Insert the following at the top of section 20.6:

Header <memory_concepts> synopsis:
namespace std {
/I Allocator concepts
auto concept Allocator<typename Alloc> see below

/I Allocator-related element concepts
auto concept HasAllocatorType<class T> see below
auto concept UsesAllocator<class T, class Alloc> see below

concept ConstructibleWithAllocator<class T, class Alloc,

class... Args> see below
template <Allocator Alloc, class T, class... Args>

requires Unspecified
concept map ConstructibleWithAllocator<T, Alloc, Argsé&s&...> seebelow

concept AllocatableElement<class Alloc,class T,class... Args> see below
template <Allocator Alloc, class T, class... Args>
requires HasConstructor<T, Args&&...>

concept map AllocatableElement<Alloc,T,Argsé&s&...> see below
}

In section 20.6, header <memory> synopsis, remove declarations of allocator-related traits:

d H
D qr
T
il
B H-

Q
QO n O H

ar

oo 117 o
oot o oot

ed_allgcator;

@

o)
=9
(ONRONUOIN()

(U]
o
10) .
A
Q

O

D W qt qf

N

=7

& |
I_J.

11
T

© h n Y
>
=~
—
Q
2
)
part
]
c
Q
part

a q- Q P

V()]
rq I_AA
Q@
rq I_AA

|.
{
q
I_
I_
D D
a qr
L

HORNO)]
Hh Hh

=
~
T

)]
He-

3 .
L7

The is scoped allocator trait remains until the next proposal, when it will be replaced by
a different, concept-based mechanism for identifying and handling scoped allocators.

Also concept maps and allocator-related constraints:

/1 20.6.5, the default allocator:
template <class T> class allocator;
template <ObjectType T>

N2768: N2768 Allocator Concepts, part 1 (revision 2) Page 4 of 19

concept map Allocator<allocator<T> > { };
template <> class allocator<void>;
template <class T, class U>

bool operator==(const allocator<T>&, const allocator<U>&) throw();
template <class T, class U>
bool operator!=(const allocator<T>&, const allocator<U>&) throw();

/1 20.6.6, scoped allocator adaptor
template <etassAllocator OuterA, eixassAllocator InnerA = void>

class scoped allocator adaptor;
template <—etassAllocator Alloc>

class scoped allocator adaptor<Alloc, void>;
template <—edassAllocator OuterA, etassAllocator InnerA>

struct is scoped allocator<scoped allocator adaptor<OuterA, InnerA> >

true type { };

template <—elassAllocator OuterA, etessAllocator InnerA>

struct allocator propagate never<scoped allocator adaptor<OuterA,
InnerA> >

true type { };

template<typenameAllocator OuterAl, +£yperameAllocator OuterA2,
EypepameAllocator InnerA>

bool operator==(const scoped allocator adaptor<OuterAl,InnerA>& a,

const scoped allocator adaptor<OuterA2, InnerA>& b);

template<—&ypernameAllocator OuterAl, E£yperameAllocator OuterA?2,
EypepameAllocator InnerA>

bool operator!=(const scoped allocator adaptor<OuterAl, InnerA>& a,

const scoped allocator adaptor<OuterAZ, InnerA>& b);

/1 20.6.7, raw storage iterator:
template <class OutputlIterator, class T> class raw storage iterator;

/1 20.6.8, temporary buffers:
template <class T>

pair<T*,ptrdiff t> get temporary buffer(ptrdiff t n);
template <class T>

void return temporary buffer (T* p);

/1 20.6.9, construct element

template <etaessAllocator Alloc, class T, class... Args>
requires AllocatableElement<Alloc, T, Argsé&é&...>
void construct element (Alloc& alloc, T& r, Args&&... args);

Allocator Concept

Remove section 20.1.2 [allocator.requirements] entirely.
Allocator concepts have been consolidated into section 20.6.

Insert the following section before the current section 2.6.2:

N2768: N2768 Allocator Concepts, part 1 (revision 2) Page 5 of 19

We have kept most of the text of [allocator.requirements] here, although much of it has been
moved from tables into numbered paragraphs when translating the allocator requirements
into concepts. Text that was copied almost verbatim from [allocator.requirements] is shown
with appropriate mark-up.

20.6.2 Allocators [allocator.introduction]

The library describes a standard set of requirements for allocators, which are objects that encapsulate the
information about an allocation model. This information includes the knowledge of pointer types, the type of
their difference, the type of the size of objects in this allocation model, as well as the memory allocation and
deallocation primitives for it. All of the string types (clause 21) and containers (clause 23) are parameterized
in terms of allocators.

The above are modified versions of the [allocator.requirements], paragraphs 1 and 2.

If the alignment associated with a specific over-aligned type is not supported by an allocator, instantiation of
the allocator for that type may fail. The allocator also may silently ignore the requested alignment. [Note:
additionally, the member function allocate for that type may fail by throwing an object of type

std: :bad alloc.—end note]

The above is a verbatim copy of [allocator.requirements], paragraph 6.

Note that Tables 39 and 40 are gone. Also gone are the weasel words preventing portable use
of allocators with non-raw pointer types ([allocator.requirements], paragraphs 4 and 5). A
moment of silence please!

20.6.2.1 Allocator Concept [allocator. concept]

auto concept Allocator<typename X>
CopyConstructible<X>, EqualityComparable<X> {

ObjectType value type = typename X::value type;
Dereferenceable pointer = see below;
Dereferenceable const pointer = see below;
requires Regular<pointer>

&& RandomAccessIterator<pointer>

&& Regular<const pointer>

&& RandomAccessIterator<const pointer>;
SignedIntegrallike difference type =

RandomAccessIterator<pointer>::difference type;

typename generic pointer = void*;
typename const generic pointer = const void*;
typename reference = value typeé&;
typename const reference = const value typeé&;
UnsignedIntegrallike size type = see below;

N2768: N2768 Allocator Concepts, part 1 (revision 2) Page 6 of 19

template<ObjectType T> class rebind = see below;

requires Destructible<value type>;

requires Convertible<pointer, const pointer>
&& Convertible<pointer, generic pointer>
&& SameType<pointer::reference, value typeé&>
&& SameType<pointer::reference, reference>;

requires Convertible<const pointer, const generic pointer>
&& SameType<const pointer::reference, const value typeé&>
&& SameType<const pointer::reference, const reference>;

requires SameType<rebind<value type>, X>;
requires SameType<generic pointer

, rebind<unspecified unique type>: : generic pointer>;

/1 see description of generic pointer, below
requires SameType<const generic pointer

, rebind< unspecified unique type>: : const generic pointer>;

/I see description of generic pointer, below

pointer X::allocate(size type n);

pointer X::allocate(size type n, const generic pointer p);

void X::deallocate (pointer p, size type n);
size type X::max size() const ({
return numeric limits<size type>::max(); }

template<ObjectType T>
X::X(const rebind<T>& vy);

template<typename... Args>
requires HasConstructor<value type, Args&é&...>
void X::construct (value type* p, Argsé&&... args)

::new ((void*) p) value type (forward<Args>(args)...

void X::destroy(value type* p) {
addressof (*p) ->~value type () ;
}

pointer X::address(reference r) const {
return addressof (r); /I see below

const pointer X::address(const reference r) const {
return addressof (r); //see below
}

ObjectType value type;

Type: The type of object allocated by X.

N2768: N2768 Allocator Concepts, part 1 (revision 2)

Page 7 of 19

Dereferenceable pointer;
Dereferenceable const pointer;

Type: A pointer-like (const pointer-like) type used to refer to memory allocated by objects of type x. The
default pointer type is X: :pointer if such a type is declared and value type* otherwise. The
default const pointertypeis X::const pointer if suchatype is declared and const
value* otherwise. The behavior is undefined if an exception is propagated when applying any
operation from the Regular conceptto a pointer, const pointer, generic pointer,
Or const generic pointer.

Defining the default type this way allows the programmer to define an allocator without
specifying the pointer type, in the common case where the pointer type is simply
value type*. A conditional-default type within a concept can be implemented by refining
special “base concepts” with appropriate constraints. The names and contents of these base
concepts is an implementation detail and is not part of the standard.

SignedIntegrallike difference type;

Type: a type that can represent the difference between any two pointers in the allocation model.

typename generic pointer;
typename const generic pointer;

A type that can store value of a pointer (const_pointer) from any allocator in the same family as X and
which will produce the same value when explicitly converted back to that pointer type. For any two
allocators X, and Y of the same family, the implementation of a library facility using Allocator<X> and
Allocator<Y>, is permitted to add additional requirements, SameType<Allocator<X>::generic_pointer,
Allocator<Y>::generic_pointer> and SameType<Allocator<X>::const_generic_pointer,
Allocator<Y>::const_generic_pointer> [Example:

template<ObjectType T, Allocator Alloc = allocator<T> >
requires Destructible<T> &&
SameType<Alloc::generic pointer,
Alloc::Rebind<list node<T>>::generic pointer> &&
SameType<Alloc::const generic pointer,
Alloc::Rebind<list node<T>>::const generic pointer>
class list;

end example]

The addition of generic pointer eliminates the common trick of using
rebind<void>::other: :pointer asa way to represent a pointer of unknown type. The
trick was never actually sufficient, as there was never a requirement that pointer be
convertible to/from a rebind<void>: :pointer or vice-versa. In addition,
rebind<void>::other requires that the allocator be specialized for void. By introducing
generic_ pointer and formalizing the convertibility requirements, we eliminate the need
for void specializations and for the AllocatorGenerator concept proposed in an earlier
version of the core library concepts proposal.

N2768: N2768 Allocator Concepts, part 1 (revision 2) Page 8 of 19

There is no way, using concepts, to indicate that that all of the rebound allocator's
generic pointer types mustbe the same. We must, therefore, allow a library facility to
require that a specific set of rebound allocator’s generic pointer types must be the same.

typename reference;
typename const reference;

A reference (const reference) to a value type object.

We make no attempt to allow for “smart references” in allocators.
UnsignedIntegrallike size type;

Type: a type that can represent the size of the largest object in the allocation model. The default size_type
is X::size_type if such a type is declared and std::size_t otherwise.

template<ObjectType T> class rebind;

Class Template: The associated template rebind is a template that produces allocators in the same
family as X: if the name X is bound to SomeAllocator<value type>,then rebind<U> isthe
same type as SomeAllocator<U>. The resulting type SameAllocator<U> shall meet the
requirements of the A11ocator concept. The default value for rebind is a template R for which R<U>
iSX::template rebind<U>::other.

The aforementioned default value for rebind can be implemented as follows:

template<typename Alloc> struct rebind allocator ({
template<typename U>
using rebind = typename Alloc::template rebind<U>::other;

I g

The default value for rebind in the Allocator concept is, therefore,
rebind allocator<X>::template rebind.

pointer X::allocate(size type n);
pointer X::allocate(size type n, const generic pointer hint);

Effects: Memory is allocated for n objects of type value type but the objects are not constructed.
[Footnote: It is intended that a.allocate be an efficient means of allocating a single object of type T, even
when sizeof(T) is small. That is, there is no need for a container to maintain its own “free list”. — end
footnote] The optional argument, p, may

Returns: A pointer to the allocated memory. [Note: If n == 0, the return value is unspecified — end note]
Throws: allocate may raise an appropriate exception.

Remark: The use of hint is unspecified, but intended as an aid to locality if an implementation so

desires. [Note: In a container member function, a pointer to an adjacent element is often a good choice to
pass for the hint argument. — end note]

N2768: N2768 Allocator Concepts, part 1 (revision 2) Page 9 of 19

void X::deallocate (pointer p, size type n);

Preconditions: All n value type objects in the area pointed to by p shall be destroyed prior to this
call. n shall match the value passed to allocate to obtain this memory. [Note: p shall not be singular.
— end note]

Throws: Does not throw exceptions.
size type X::max size();

Returns: the largest value that can meaningfully be passed to X: :allocate ()

template<typename... Args>
requires HasConstructor<value type, Args&é&...>
void X::construct (value type* p, Args&&... args);

Effects: Calls the constructor for the object at p, using the args constructor arguments.
Default: ::new ((void*) p) value_type(forward<Args>(args)...);
void X::destroy(value type* p);
Effects: Calls the destructor on the object at p but does not deallocate it.
Default: p->~value type () ;

pointer X::address (reference r) const;
const pointer X::address(const reference r) const;

Precondition: r is a reference to an object that was allocated from a copy of this allocator.

Returns: a pointer to the object referred-to by r. This concept defines a default implementation of
address only if pointer is the same as value type*.

Allocator-related Element Concepts
Replace section 20.6.2 (Allocator-related Traits) with the following section:
20.6.3 Allocator-related Element Concepts [allocator.element.concepts]

Replace the uses allocator trait with the HasAllocatorType and UsesAllocator
concepts:

auto concept HasAllocatorType<typename T>

{

typename allocator type = T::allocator type;
requires Allocator<allocator type>;

N2768: N2768 Allocator Concepts, part 1 (revision 2) Page 10 of 19

Remark: Automatically detects if T has anested allocator type that meets the requirements of an
allocator.

auto concept UsesAllocator<typename T, typename Alloc> {
requires Allocator<Alloc>;
typename allocator type = T::allocator type;
requires Allocator<allocator type> &&
Convertible<Alloc, allocator type>;

Remark: Automatically detects if T has anested allocator type thatisconvertible from Alloc.

Meets-the BinarnyTypeTrait-reguirements{fmetargmis}-20:.4-1: A program may speerah%e%hwiype%e
derive-from-true—type define a concept_map UsesAllocator<T,Alloc> for a 7of user-defined type, T,

for example, T does not have a nested allocator type but is nonetheless constructible using the
specified 211o0c. [Note: Although the default concept maps for these concepts concepts often causes
them to appear in pairs, UsesAllocator does not imply HasAllocatorType, NOr Vice versa.
Similarly, the lUsesAllocator does not imply 'HasAllocatorType, NOr vice versa.]

N2768: N2768 Allocator Concepts, part 1 (revision 2) Page 11 of 19

PECE N N I P
oo

Y P

Noadat N 1 £

+
cy Tt

T T

[e e

79 ()) .
Y=\

— PP
% S S A2 & iy ey B

-
(=3

k__{p_,lx

Aot o et o
[S e A2 & e B

[~
oSt

ZZTr

not
IO C

=

[apes

\

1 o r vz o
Cor (=

-
[g g

ot
TTo T

_ =¥

(=

3 e ey Iy

\

s P - -1 PPN

ol aaa
CTrasSS

tomen] o+

(& g e 5y s W & S e

TCTho o 1%

L7

cCmoTact

N

ISEE = =)
[S v = o g

PPN

PN
[N S W Wy & R WS W

WL CIL

7

Nat i~ 2N
A5 TS S 5 S g &

=

ISE L W

AV
T 7ty

o CLUuCC

ESREIN

oo

-y

cTLT o

PN o NE S LY

1

1

o OCToTOT

+1
WL CTIt

T3

2N

N

ot apaa SN o g A
TS TcroCTtcTioT

o C L O

T
T

ol ooa

mi

o

IS

T

TTHS O

o T C

+ 5z

£ o

7

_ Y=t

T Lo

N i IS
& i e my w4 L& S Sy e

ol oo M alaoao N —

TS o

ma] o+
cCitp TS

+

T
T

TThoO O 1%

7

ol oo
CTrass

Xt
1.

i1

PO

ot~y g e

11

EER T TAPANA PENE S

cYPEST

T orr-otCToTcoOT

CypTocCT

r iz

P
T TOCaESE

-

n
O oT

o

=

V(17

cypPCT /7

a9

T

S S W & g e g

PANPSIE SH VK I 32 2 WY

o
TTCOTsST

YYTr

T

oot V¢ c7i7) .
CUTT o T L CC _Y_Y[,

-

nat o 1 ot~ g C
OIToc aorrtoCcaocor

=

ey 4

oot

NV (=17

EyPew—7

g —Ccy

T oot TOT

ror o
[SF=aS Ry

N AN vera ¢ C

DN ey o
OER==aS po)

o oo
TThS O

mi
cCmo T cT

I TS ST

AN
OER==aS po)

o oo
TTho O

mi
cCmo T cT

NV (11

-

nNat o 1 ot~y g C
OIToc aorrtocCcaocor

ENEVY- I =

~

oot

EyPew—7

g —Ccy

T oot TtOT

Page 12 of 19

2)

1S10Nn

N2768 Allocator Concepts, part 1 (rev

N2768

Fomerl o+ ol oo M alaca N — 11 ot~ M
cCmoTracT oo o —<T7 TCTho o 1Y (& e e O ST
ISE S E AT Ao VS E D i I 2N ESCE I SN | PN S NE S SNE N S Vem N
o CL oOCT TscroCcrroTrC—wrIrcit aorroCaoacoT PoTrTTT <77
e + 3g + 11 [1 .
croC—CcypP T T7

Add new concepts and concept maps for ConstructibleWithAllocator and
AllocatableElement:

The ConstructibleWithAllocator concept provides a uniform interface for passing an allocator to
an object’s constructor.

concept ConstructibleWithAllocator<class T, class Alloc,
class... Args> {
T::T(allocator arg t, Alloc, Args&é&...);

The library defines concept map templates to adapt ConstructibleWithAllocator for each pattern of
constraints described in table xyz. Each concept map adapts T’s constructor, mapping the variadic argument
pack from its position in the ConstructibleWithAllocator concept into its corresponding position in
the actual constructor for T, and mapping the Alloc and allocator arg t arguments to their
appropriate positions (if any) in the argument list for T’s constructor. The concept maps shall be constrained
such that, in situations where a set of types matches more than one pattern, the partial ordering of concept
maps gives precedence to those patterns described earlier in the table. [Note: There are concept maps to
encompass almost all types, including those that don’t use allocators at all. However, there is no concept map
in this library for a type that uses an allocator, but that doesn’t support passing the specified allocator to the
specified constructor. The last restriction is to prevent the allocator being quietly ignored in a context where
the user is likely to expect it to be used. — end note]

Table xyz: ConstructibleWithAllocator concept map constraint patterns

Concept requirements Constructor requirement
UsesAllocator<T, Alloc> T::T(allocator arg t, Alloc, Argsé&&...);
UsesAllocator<T, Alloc> T::T(Argsé&&..., Alloc);
!HasAllocatorType<T> && T::T(Argsé&&...);

!UsesAllocator<T,Alloc>

The AllocatableElement concept provides a uniform interface (construct element —see
section [construct.element]) for constructing an object obtained from an allocator. A concept map provides a
default implementation that is suitable for most allocators. Specific allocator templates may provide more
specialized concept maps (see [allocator.adaptor]) for an example). [Note:
ConstructibleWithAllocator differs from AllocatableElement in that the former describes
how to construct an item that uses an allocator whereas the latter describes how to construct an item that was
allocated from an allocator — end note]

concept AllocatableElement<class Alloc, class T, class... Args>

N2768: N2768 Allocator Concepts, part 1 (revision 2) Page 13 of 19

requires Allocator<Alloc>;

void construct element (Allocé&, T*, Args&é&...);
}
template <Allocator Alloc, class T, class... Args>
requires HasConstructor<T, Args...>

concept map AllocatableElement<Alloc, T, Args&é&...>
{

void construct element (Alloc& a, T* t, Args&&... args)
{ Alloc::rebind<T>(a) .construct(t, forward(args)...); }

Scoped Allocator Adaptor

In section 20.6.6 [allocator.adaptor], constraint the scoped allocator adaptor template
so that its arguments model the Allocator concept. Also, add definitions and use of
generic pointer:

namespace std {

template<—typerameAllocator OuterA, +EyperameAllocator InnerA =

sretdunspecified allocator type>
class scoped allocator adaptor ;

template<—typerameAllocator OuterA>
class scoped allocator adaptor<Outerh, seid unspecified allocator type>
public OuterA

{
public:
typedef OuterA outer allocator type;
typedef OuterA inner allocator type;
// outer and inner allocator types are the same.

typedef typename outer allocator type::size type size type;
typedef typename outer allocator type::difference type difference type;
typedef typename outer allocator type::pointer pointer;

typedef typename outer allocator type::const pointer const pointer;

typedef typename outer allocator type::generic pointer generic pointer;
typedef typename outer allocator type::const generic pointer
const generic pointer;

typedef typename outer allocator type::reference reference;
typedef typename outer allocator type::const reference const reference;
typedef typename outer allocator type::value type value type;

template <EyperameObjectType Tp>
struct rebind

{

typedef scoped allocator adaptor<cuterhA:i:template—rebind<Tp>iiothery
Allocator<QuterA>::rebind< Tp>,
void> other;

i

scoped allocator adaptor();

N2768: N2768 Allocator Concepts, part 1 (revision 2) Page 14 of 19

scoped allocator adaptor
scoped allocator adaptor
scoped allocator adaptor
scoped allocator adaptor

—~ o~~~

template <&ypermameAllocator OuterA2>
requires Convertible<OuterA2&&, OuterA>

scoped allocator adaptor (
scoped allocator adaptor<OuterA2, void>&&);
template <—&yperamelllocator OuterA2>

requires Convertible<const OuterA2g,

scoped allocator adaptoré&s);
const scoped allocator adaptoré&);
OuterA&& outerAlloc);

const OuterA& outerAlloc):;

OuterA>

scoped allocator adaptor (
const scoped allocator adaptor<OuterA2, void>&);

~scoped allocator adaptor();

pointer

pointer allocate(size
m I

+

address (reference x)
const pointer address(const reference x)

t

+omin] o+
cCtoTractc

ZEeno =l
cy pTTarttc TrCIt

ype n);
=

const;
const;

pointer allocate(sige_type n, —HimEPconst generic pointer u);

void deallocate (pointer p,

size type max size() const;

template <class... Args>
requires HasConstructor<value type, Argsé&s.

size type n);

..

void construct (pointer p,

void destroy(pointer p);

Argsé&&... args);

const outer allocator typeé& outer allocator();
const inner allocator type& inner allocator();

b

template<typename OuterA, typename InnerA>
public OuterA

class scoped allocator adaptor

{
public:

typedef OuterA outer allocator type;
typedef InnerA inner allocator type;

typedef typename outer allocator type::size type size type;
typedef typename outer allocator type::difference type difference type;
typedef typename outer allocator type::pointer pointer;
typedef typename outer allocator type::const pointer const pointer;
typedef typename outer allocator type::generic pointer generic pointer;
typedef typename outer allocator type::const generic pointer

const generic pointer;
typedef typename outer allocator type::reference reference;
typedef typename outer allocator type::const reference const reference;
typedef typename outer allocator type::value type value type;

template <typerameObjectType Tp>

struct rebind

N2768: N2768 Allocator Concepts, part 1 (revision 2)

Page 15 of 19

typedef scoped allocator adaptor<tuterhA:i:template rebind< Tp>iiothers
Allocator<QuterA>::rebind< Tp>,
InnerA> other;

}i

scoped allocator adaptor();
scoped allocator adaptor (outer allocator type&& outerAlloc,
inner allocator typeé&& innerAlloc);
scoped allocator adaptor(const outer allocator type& outerAlloc,
const inner allocator typeé& innerAlloc);
scoped allocator adaptor (scoped allocator adaptoré&& other);
scoped allocator adaptor (const scoped allocator adaptoré& other);

template <&ypermameAllocator OuterAttee?2>
requires Convertible<OuterA2&&, OuterA>
scoped allocator adaptor (
scoped allocator adaptor<OuterAidee2&, InnerA>&&) ;
template <typerameAllocator OuterAtiee?2>
requires Convertible<const OuterA2&, OuterA>
scoped allocator adaptor (
const scoped allocator adaptor<OuterAditee2&, InnerA>&);

~scoped allocator adaptor();

pointer address (reference x) const;
const pointer address(const reference x) const;

pointer allocate(size type n);

+omae] o+ sz S a1 n+D
cCpPTatc Yy PChamc TTircr

pointer allocate(gize_type n, —HimtPconst generic pointer u);

void deallocate (pointer p, size type n);

size type max size() const;
template <class... Args>
requires HasConstructor<value type, Argsé&&...>
void construct (peirntervalue type* p, Argsé&é&... args);

void destroy (peintervalue type* p);

const outer allocator typeé& outer allocator () const;
const inner allocator typeé& inner allocator() const;

b

template<typermameAllocator OuterAl, +ypermameAllocator OuterA2,
£yperpameAllocator InnerA>
bool operator==(const scoped allocator adaptor<OuterAl,InnerA>& a,
const scoped allocator adaptor<OuterA2, InnerA>& Db);

template<&yperameAllocator OuterAl, +£ypermamelAllocator OuterA2,

£yperpameAllocator InnerA>
bool operator!=(const scoped allocator adaptor<OuterAl, InnerA>& a,

N2768: N2768 Allocator Concepts, part 1 (revision 2) Page 16 of 19

const scoped allocator adaptor<OuterAZ, InnerA>& Db);

template <Allocator OuterA, Allocator InnerA,
typename T, typename... Args>
concept map AllocatableElement<
scoped allocator adaptor<OuterA,InnerA>, T, Args&&...>
ConstructibleWithAllocator<T, InnerA, Argsé&&...>

void construct element (
scoped allocator adaptor<OuterA,InnerA>& alloc,
T* p, Argsé&&... args)

OuterA::rebind<T> outer = alloc.outer allocator();
InnerA& inner = alloc.inner allocator();
outer.construct (allocator arg t(), inner, forward(args)...);

}
Repeat the above changes for the individual function descriptions:

template <—typerameAllocator OuterA2>
requires Convertible<QOuterA2&&, OuterA>
scoped allocator adaptor (
scoped allocator adaptor<OuterA2, InnerA>&& other);
template <&ypermameAllocator OuterA2>
requires Convertible<OuterA2&&, OuterA>
scoped allocator adaptor (
const scoped allocator adaptor<OuterA2, InnerA>& other);

template <class... Args>
requires HasConstructor<value type, Argsé&&...>
void construct (peirntervalue type* p, Argsé&é&... args);
effects: outer allocator () .construct(p, forward<Args>(args)...);

template<-typenameAllocator OuterAl, typenameAllocator OuterA2, typenameAllocator
InnerA>

bool operator==(const scoped allocator adaptor<OuterAl, InnerA>& a,
const scoped allocator adaptor<OuterA2, InnerA>& b);

template<-typenameAllocator OuterAl, typenameAllocator OuterA2, typenameAllocator

InnerA>

bool operator!=(const scoped allocator adaptor<OuterAl, InnerA>& a,
const scoped allocator adaptor<OuterA2, InnerA>& b);

Element construction

Replace most of 20.6.9 [construct.element], as follows:

20.6.9 construct element [construct.element]

iz T ol aaa N yer o
cy TITHtT Ty CTIao o+ + It 9o

t

mr]l ot i ran v AN | =
oo ctTS<Ccy TITHItT T—rOCy

N2768: N2768 Allocator Concepts, part 1 (revision 2) Page 17 of 19

x 2 d oo ot et lemant+ (N1 ac 211 A~ mc Nrero ¢ C Sreco) .
VOO UTITo C T OCT T - TIT LIRS [g e mpn m o CJ-—LJ—\JK/, XX J—, nJ_\jOlXU(- . o (./lJ—\jO[12

[Note: Fhis The appropriate overload of the construct element function is called from within

containers in order to construct elements during insertion operations as well as to move elements during
reallocation operations. It automates the process of determining if the scoped allocator model is in use and
transmitting the inner allocator for scoped allocators. — end note]

And add the following:

template <Allocator Alloc, class T, class... Args>
requires AllocatableElement<Alloc, T, Argsé&&...>
void construct element (Allocé& a, T& r, Argsé&&... args);

Effects: AllocatableElement<Alloc, T, Args&&...>::construct element (a,
addressof (r), forward<Args>(args)...)

The global construct_element will almost certainly disappear as we finish conceptifying the
scoped allocator model.

Acknowledgements

Thank you to Doug Gregor for his invaluable assistance with concepts. Thank you to John
Lakos for his support, guidance, and encouragement. Thank you to Lance Diduck for
suggesting, among other things, that not all allocators need to provide random access to
allocated memory. Last but not least, thanks to David Abrahams for his help in simplifying
this proposal during the course of the San Francisco meeting and helping me lay the
foundation for part 2 (for the next meeting).

References

All documents referenced here can be found at
http://www.open-std.org/[TC1/SC22/WG21/docs/papers/2008/.

N2654: Allocator Concepts (Rev 1)

N2768: N2768 Allocator Concepts, part 1 (revision 2) Page 18 of 19

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2654.pdf

N2554: The scoped allocator model (Rev 2)

N2525: Allocator-specific move and swap

N2621: Core Concepts for the C++0x Standard Library
N2623: Concepts for the C++0x Standard Library: Containers

N2768: N2768 Allocator Concepts, part 1 (revision 2) Page 19 of 19

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2554.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2525.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2621.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2623.pdf

