
Toward a More Complete Taxonomy of Algebraic Properties for

Numeric Libraries in TR2

Document number: N2650 08-0160
Authors: Peter Gottschling, Technische Universität Dresden

Walter E. Brown, Fermi National Accelerator Laboratory
Date: 2008-05-16
Project: Programming Language C++, Library Working Group
Reply to: Peter.Gottschling@tu-dresden.de

wb@fnal.gov

1 Introduction

We propose in this document mathematical concepts that allow compilers to

• Verify the semantically correct usage of generic functions and

• Select optimal algorithms according to semantic properties of operations.

The concepts presented here extend the algebraic characterizations from N2645.
Although the concepts of this document are not used in the context of current standard libraries

they are fundamental for the definition of Every numeric generic library. All sophisticated math-
ematical domains and entities — like SobolevSpace, DifferentialOperator, or FiniteElement — are
defined upon these fundamental algebraic properties. Such concepts will allow for an entirely new
era of scientific programming with verified mathematical properties. For the sake of behavioral
consistency of advanced numeric software a careful design and immaculate consistency of these
fundamental concepts is paramount. Only if the essential mathematical properties are defined and
used consistently in different libraries, the integration of numeric software packages is semanti-
cally sound. The best way to establish consistency in the mathematical behavior is to standardize
semantic concepts.

2 Synopsis

namespace std {

// Basic mathematical concepts
auto concept AbelianGroup<typename Operation, typename Element>;

// Additive concepts
concept Additive<typename Element>;

1

2

auto concept AdditiveCommutative<typename Element>;
auto concept AdditiveSemiGroup<typename Element>;
concept AdditiveMonoid<typename Element>;
concept AdditivePIMonoid<typename Element>;
auto concept AdditiveGroup<typename Element>;
auto concept AdditiveAbelianGroup<typename Element>;

// Multiplicative concepts
concept Multiplicative<typename Element>;
auto concept MultiplicativeCommutative<typename Element>;
auto concept MultiplicativeSemiGroup<typename Element>;
concept MultiplicativeMonoid<typename Element>;
concept MultiplicativePIMonoid<typename Element>;
auto concept MultiplicativeGroup<typename Element>;
auto concept MultiplicativeAbelianGroup<typename Element>;

// Generic two operation concepts
concept Distributive<typename AddOp, typename MultOp, typename Element>;
auto concept Ring<typename AddOp, typename MultOp, typename Element>;
auto concept RingWithIdentity<typename AddOp, typename MultOp, typename Element>;
concept DivisionRing<typename AddOp, typename MultOp, typename Element>;
auto concept Field<typename AddOp, typename MultOp, typename Element>;

// Concepts for two operators
auto concept OperatorRing<typename Element>;
auto concept OperatorRingWithIdentity<typename Element>;
auto concept OperatorDivisionRing<typename Element>;
auto concept OperatorField<typename Element>;
}

3 Concepts [concept.math]

We begin this section with the remaining concept definition for arbitrary binary operations. Then
we specialize it together with the concepts of N2645 to addition and multiplication. Subsequently
we will introduce concepts for two binary operation and again specialize them to addition and
multiplication.

3.1 Basic Concepts for Binary Operations [concept.math.basic]

3.1.1 Abelian Group [concept.math.abel]

To complete the definitions from Nxxx, an AbelianGroup combines commutativity with the group
requirements:

auto concept AbelianGroup<typename Operation, typename Element>
: Group<Operation, Element>, Commutative<Operation, Element>
{};

3.2 Additive Concepts [concept.add]

In the following section we specialize the functor-based concepts to addition. The operator-based
concepts are more convenient to use and more appropriate for numerical software. This specializa-

3

tion can be expressed as concept refinement by involving an add functor. The incorporation of a
default functor allows for the refinement of a two-argument concept by a one-argument concept.

3.2.1 Consistency of the Additive Concepts [concept.add.additive]

The concept Additive specifies the consistency between the functor and operator-based computa-
tions:

concept Additive<typename Element>
: HasPlus<Element>
{

typename plus assign result type;
plus assign result type operator+=(Element& x, Element y) {

x= x + y; return x;
}
requires std::Convertible<plus assign result type, Element&>;

axiom Consistency(add<Element> op, Element x, Element y) {
op(x, y) == x + y;
op(x, y) == (x += y, x);

}
}

3.2.2 Additive Commutativity [concept.add.commutative]

The commutativity of the + operator is implied by the consistency ([concept.add.additive]) of the
operator and the commutativity of the functor ([concept.math.commutative]):

auto concept AdditiveCommutative<typename Element>
: Additive<Element>,

Commutative< math::add<Element>, Element >
{}

3.2.3 Additive Semi-group [concept.add.semigroup]

The concept:

auto concept AdditiveSemiGroup<typename Element>
: Additive<Element>,

SemiGroup< math::add<Element>, Element >
{}

defines the associativity for operator+. It is implied by the associativity of the functor add.

3.2.4 Additive Monoid [concept.add.monoid]

The AdditiveMonoid introduces the shortcut zero for the identity element:

concept AdditiveMonoid<typename Element>
: AdditiveSemiGroup<Element>, Monoid< math::add<Element>, Element >
{

Element zero(Element x) {
return identity(math::add<Element>(), x);

}

4

axiom IdentityConsistency (math::add<Element> op, Element x) {
zero(x) == identity(op, x);

}
};

If the function zero is not provided for the type, the default implementation uses the identity
element from the add functor. Otherwise the axiom demands that this consistency is given.

Please note that zero can be different from Element(0). This definition can cause crashes when
concatenation of std::string is treated as AdditiveMonoid).

3.2.5 Additive Partially Invertible Monoid [concept.add.pimonoid]

Inversion is for addition given by the unary -. Mathematically spoken, the binary - is only
an abbreviation for x + -y. These operators and their consistency rules are defined in concept
AdditivePIMonoid:

concept AdditivePIMonoid<typename Element>
: std::HasMinus<Element>, AdditiveMonoid<Element>,

PIMonoid< math::add<Element>, Element >
{

typename minus assign result type;
minus assign result type operator-=(Element& x, Element y) {

x= x -y; return x;
}
requires std::Convertible<minus assign result type, Element&>;

typename unary result type;
unary result type operator-(Element x) {

return zero(x) -x;
}

axiom InverseConsistency(math::add<Element> op, Element x, Element y) {
if (is invertible(op, y))

op(x, inverse(op, y)) == x -y;
if (is invertible(op, y))

op(x, y) == (x -= y, x);
if (is invertible(op, y))

inverse(op, y) == -y;
if (is invertible(op, x))

identity(op, x) -x == -x;
}

}

Discussion: Under normal circumstances, the addition is always invertible. A pathological counter-
example could be the declaration of unsigned integers as AdditivePIMonoid where only the 0 is
invertible (we rather consider unsigned as non-invertible). For signed integers we can exclude the
smallest integers whos inverse is computed incorrectly in the two-complement.

More important reasons for this concept are the symmetry with other concept categories and
the fact that it lies entirely in the hand of the users how operator+ behaves.

3.2.6 Additive Group [concept.add.group]

The concept AdditiveGroup applies the group properties to the + operator:

5

auto concept AdditiveGroup<typename Element>
: AdditivePIMonoid<Element>, Group< math::add<Element>, Element > {}

3.2.7 Additive Abelian Group [concept.add.abel]

The concept AdditiveAbelianGroup characterizes a commutative AdditiveGroup:

auto concept AdditiveAbelianGroup<typename Element>
: AdditiveGroup<Element>, AdditiveCommutative<Element> {}

3.3 Multiplicative Concepts [concept.mult]

Analogously to the additive concepts, we define multiplicative concepts for the operators ∗ and /.

3.3.1 Consistency of the Multiplicative Concepts [concept.mult.multiplicative]

The following concept specifies the consistency between the functor and operator-based computa-
tions:

concept Multiplicative<typename Element>
: std::HasMultiply<Element>
{

typename times assign result type;
times assign result type operator∗=(Element& x, Element y) {

x= x ∗ y; return x;
}
requires std::Convertible<times assign result type, Element&>;

axiom Consistency(math::mult<Element> op, Element x, Element y) {
op(x, y) == x ∗ y;
op(x, y) == (x ∗= y, x);

}
}

3.3.2 Multiplicative Commutativity [concept.mult.commutative]

The commutativity of the + operator is implied by the consistency ([concept.mult.multiplicative])
of the operator and the commutativity of the functor ([concept.math.commutative]):

auto concept MultiplicativeCommutative<typename Element>
: Multiplicative<Element>,

Commutative< math::mult<Element>, Element >
{}

3.3.3 Multiplictive Semi-group [concept.mult.semigroup]

The concept:

auto concept MultiplicativeSemiGroup<typename Element>
: Multiplicative<Element>,

SemiGroup< math::mult<Element>, Element >
{}

defines the associativity for operator∗. It is implied by the associativity of the functor mult.

6

3.3.4 Multiplicative Monoid [concept.mult.monoid]

The MultiplicativeMonoid introduces the shortcut one for the identity element:

concept MultiplicativeMonoid<typename Element>
: MultiplicativeSemiGroup<Element>, Monoid< math::mult<Element>, Element >
{

Element one(Element x) {
return identity(math::mult<Element>(), x);

}
axiom IdentityConsistency (math::math::mult<Element> op, Element x) {

one(x) == identity(op, x);
}

};

3.3.5 Multiplicative Partially Invertible Monoid [concept.mult.pimonoid]

This concept introduces the inversion in terms of an operator. In contrast to the addition, there
exist no operator to represent the inversion itself. The binary / operator defines (analogously to
the binary -) the combination of multiplication with the reciprocal.

concept MultiplicativePIMonoid<typename Element>
: std::HasDivide<Element>, MultiplicativeMonoid<Element>,

PIMonoid< math::mult<Element>, Element >
{

typename divide assign result type;
divide assign result type operator/=(Element& x, Element y) {

x= x / y; return x;
}
requires std::Convertible<divide assign result type, Element&>;

axiom InverseConsistency(math::mult<Element> op, Element x, Element y) {
if (is invertible(op, y))

op(x, inverse(op, y)) == x / y;
if (is invertible(op, y))

op(x, y) == (x /= y, x);
}

}

Typically one element at least is not invertible: 0 (or more generaly speaking the identity element of
the addition). Examples with multiple non-invertible elements are given in [concept.math.pimonoid]
(N2645).

Remark: for some types the test for invertibility is as expensive as the inversion itself, e.g. square
matrices. Once we know that a matrix is invertible we already know its inverse. We recommand
specialized implementations for such types in high-performance applications. A potential solution
can be a function called maybe inverse that returns a std::pair of bool and Element. If the boolean is
false the value is undefined (and does not matter), otherwise it contains the inverse. (Unfortunately,
it will be more difficult with this approach to handle the pair as r-value and to avoid expensively
copying the inverse element.)

3.3.6 Multiplicative Group [concept.mult.group]

The concept MultiplicativeGroup applies the group properties to the ∗ operator:

7

auto concept MultiplicativeGroup<typename Element>
: MultiplicativePIMonoid<Element>, Group<math::mult<Element>, Element> {}

As mentioned before, at least one element typically has no reciprocal. Thus, this concept is usually
not modeled under rigorous criteria. Two reasons nevertheless suggest the presence of this concepts:

• Symmetry to the other concept categories and

• User-defined multiplications that are invertible for every element.

3.3.7 Multiplicative Abelian Group [concept.mult.abel]

A commutative MultiplicativeGroup is called multiplicative Abelian Group:

auto concept MultiplicativeAbelianGroup<typename Element>
: MultiplicativeGroup<Element>, Commutative<math::mult<Element>, Element> {}

3.4 Generic Concepts with Two Operations [concept.math.two.functors]

These concepts specify algebraic structures with two operations. One is called “additive” and the
other one “multiplicative”. However, this is only a naming convention. The actual operations do
not need to be addition and multiplication, they only must hold the same algebraic properties as
addition and multiplication in the algebraic definitions.

In mathematical literature exist different definitions for these concepts. There is a general
agreement that the additive structure is always an Abelian group; different opinions exist regarding
the multiplication.

We oriented on definitions from text books, like the one from van der Waerden [2], and also
on the formal definitions in Tecton [1]. In these documents, rings are defined as semi-groups w.r.t.
multiplication. Other authors like Bourbaki define rings as multiplicative monoids. We call such
structures ‘ring with identity’.

3.4.1 Distributivity [concept.gen.distributive]

Two operations ⊕ and ⊗ are distributive if they hold:

x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z)
(x⊕ y)⊗ z = (x⊗ z)⊕ (y ⊗ z)

The generic representation with concepts reads:

concept Distributive<typename AddOp, typename MultOp, typename Element>
{

axiom Distributivity(AddOp add, MultOp mult, Element x, Element y, Element z) {
mult(x, add(y, z)) == add(mult(x, y), mult(x, z));
mult(add(x, y), z) == add(mult(x, z), mult(y, z));

}
};

Please note that the naming AddOp and MultOp does not impose any semantic implication. The
AddOp can be a logical or and the MultOp a logical and.

8

3.4.2 Ring [concept.gen.ring]

A ring is a mathematical structure with two operations that are distributive. One operation is an
Abelian group and the other a semi-group.

auto concept Ring<typename AddOp, typename MultOp, typename Element>
: AbelianGroup<AddOp, Element>, SemiGroup<MultOp, Element>,

Distributive<AddOp, MultOp, Element>
{}

The distributivity and the properties of one-operator concepts imply the behavior the Ring.

3.4.3 Ring with Identity [concept.gen.ring.identity]

Adding the identity to the multiplicative operation leads to a ring with identity:

auto concept RingWithIdentity<typename AddOp, typename MultOp, typename Element>
: Ring<AddOp, MultOp, Element>, Monoid<MultOp, Element>
{}

Again, the requirements of this concepts are implied by the refined concepts.

3.4.4 Division Ring [concept.gen.division.ring]

A division ring is a ring with identity where in principle all elements except 0 have a reciprocal.

concept DivisionRing<typename AddOp, typename MultOp, typename Element>
: RingWithIdentity<AddOp, MultOp, Element>, Inversion<MultOp, Element>
{

axiom ZeroIsDifferentFromOne(AddOp add, MultOp mult, Element x) {
identity(add, x) != identity(mult, x);

}
axiom NonZeroDivisibility(AddOp add, MultOp mult, Element x) {

if (x != identity(add, x))
mult(inverse(mult, x), x) == identity(mult, x);

if (x != identity(add, x))
mult(x, inverse(mult, x)) == identity(mult, x);

}
}

In addition to the requirements of the refined concepts, we added the condition that the identity
elements of the two operations are different. Their equality is mathematically not inconsistent but
the set of elements would be reduced to one single element. The applicability of this set in practice
would be thus rather limited.

3.4.5 Field [concept.gen.field]

A field is a commutative ring with division:

auto concept Field<typename AddOp, typename MultOp, typename Element>
: DivisionRing<AddOp, MultOp, Element>, Commutative<MultOp, Element>
{}

9

3.5 Concepts with Two Operators [concept.math.two.operators]

The concepts in this section refine the generic concepts with two operations (from this document
and from N2645) to concepts with respect to the arithmetic operators.

3.5.1 Operator-based Ring [concept.op.ring]

A ring with respect to the operators +, -, and ∗ is called (by us) OperatorRing:

auto concept OperatorRing<typename Element>
: AdditiveAbelianGroup<Element>,

MultiplicativeSemiGroup<Element>,
Ring<math::add<Element>, math::mult<Element>, Element>

{}

As with many concepts above, the requirements are entirely implied by the refined concepts.

3.5.2 Operator-based Ring with Identity [concept.op.ring.identity]

The concept ring with identity can be specialized to operators by:

auto concept OperatorRingWithIdentity<typename Element>
: OperatorRing<Element>,

MultiplicativeMonoid<Element>,
RingWithIdentity<math::add<Element>, math::mult<Element>, Element>

{}

3.5.3 Operator-based Division Ring [concept.op.division.ring]

The concept division ring can be specialized to operators by:

auto concept OperatorDivisionRing<typename Element>
: OperatorRingWithIdentity<Element>,

MultiplicativePIMonoid<Element>,
DivisionRing<math::add<Element>, math::mult<Element>, Element>

{}

3.5.4 Operator-based Field [concept.op.field]

The concept field can be specialized to operators by:

auto concept OperatorField<typename Element>
: OperatorDivisionRing<Element>,

Field<math::add<Element>, math::math::mult<Element>, Element>
{}

4 Concept Maps [concept.map.math.operators]

The declarations of modeling arithmatic concepts uses the intrinsic concepts from N2645.
Signed integrals form Abelian groups for addition (as long as no overflow occurs and the

smallest representable value is not inverted). The multiplication has an identity element but we
cannot define an inverse function (except for 1 and -1). The two operations are distributive so that
signed integrals form a commutative ring with identity:

10

template <typename T>
requires IntrinsicSignedIntegral<T>

concept map OperatorRingWithIdentity<T> {}

template <typename T>
requires IntrinsicSignedIntegral<T>

concept map MultiplicativeCommutative<T> {}

All other models are implied.
Unsigned integrals have no inverse for addition. As a consequence they do not model the ring

concepts but are only commutative monoids for the two operations:

template <typename T>
requires IntrinsicUnsignedIntegral<T>

concept map AdditiveCommutative<T> {}

template <typename T>
requires IntrinsicUnsignedIntegral<T>

concept map AdditiveMonoid<T> {}

template <typename T>
requires IntrinsicUnsignedIntegral<T>

concept map MultiplicativeCommutative<T> {}

template <typename T>
requires IntrinsicUnsignedIntegral<T>

concept map MultiplicativeMonoid<T> {}

Intrinsic floating point types model Field and implicitly all other concepts:

template <typename T>
requires IntrinsicFloatingPoint<T>

concept map Field<T> {}

The same is true for complex types of intrinsics:

template <typename T>
requires IntrinsicFloatingPoint<T>

concept map Field< std::complex<T> > {}

Remark: The concept maps in this document imply the arithmetic concept maps in N2645.

5 Conclusion

Numeric libraries will benefit tremendously from defining and verifying mathematical characteris-
tics. The concepts in this document might not be required very often directly in generic functions
but will be very often refined in other concepts. They are the fundament of all algebraic concepts.
The semantic definitions that can be build on top of these concepts will consilidate generic numeric
libraries essentially. We expect a whole new era of scientific software with embedded semantic
raising radically the confidence in the computed results by numeric software.

11

6 Acknowledgments

We thank Andrew Lumsdaine from Indiana University and Axel Voigt from Technische Universtität
Dresden for supporting this work on mathematical concepts for the sake of the scientific computing
community. We are also grateful to Karl Meerbergen for his discussions. Finally, we thank the
Fermi National Accelerator Laboratory’s Computing Division for its past and continuing support
of our efforts to improve C++ for all our user communities.

References

[1] D. R. Musser, S. Schupp, C. Schwarzweller, and R. Loos. The Tecton concept library. Technical
report, Fakultät für Informatik, Universität Tübingen, 1999.

[2] B. L. van der Waerden. Algebra, Volume I and II. Springer, 1990.

