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Abstract

Multiple dispatch — the selection of a function to be invokeded
on the dynamic type of two or more arguments — is a solution
to several classical problems in object-oriented progrargmie
present the rationale, design, and implementation of alageg fea-
ture, called open multi-methods, for& Open multi-methods sup-
port both repeated and virtual inheritance and our calllotien
rules generalize both virtual function dispatch and owatloeso-
lution semantics. After using all information from argurhé&ypes,
these rules can resolve further ambiguities by using cawgurie-
turn types. We describe a model implementation and compsre i
performance and space requirements to existing open meltiod
extensions and workaround techniques ferGCompared to these
techniques, our approach is simpler to use, catches morenise
takes (such as ambiguities), performs significantly beted re-
quires less memory. For example, our implementation of dimul
method call is constant-time and more than twice as fast alslelo
dispatch - only 4% slower than a+€ virtual function call. Finally,
we provide a sketch of a design for open multi-methods in tee-p
ence of dynamic loading and linking of libraries.
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the method to be invoked (“single dispatch”). This is a welbwn
problem for operations where the choice of a method depends o
the types of two or more arguments (“multiple dispatch”tsas

an intersect() function. A well-studied subset of this peob is

the binary method problem [7]. Another problem is that dyiRam
cally dispatched functions have to be declared within ctiesii-
tions. This often requires more foresight than class desgpos-
sess, complicating maintenance and limiting the extelitgiloif |i-
braries.

Workarounds for both of these problems exist for single-
dispatch languages. In particular, the visitor patterrufdie dis-
patch) [16] circumvents the first problem without comprangs
type safety. Using the visitor pattern, the class-desigmevides
an accept method in each class and defines the interface athe
itor. This interface definition, however, limits the abjlito intro-
duce new subclasses and hence curtails program extetydibilj.

In [33] Visser presents a possible solution to the extelitsilpirob-
lem in the context of visitor combinators, which make use TR

Providing dynamic dispatch for multiple arguments liftesk
restrictions. If declared within classes, such functions aften
referred to as “multi-methods”. If declared independemfythe

Keywords multi-methods, open-methods, multiple dispatch, object-type on which they dispatch, such functions are often reteto

oriented programming, generic programming;+C

1. Introduction

This technical report presents work in progress prompteckebit
world problems, academic research, and discussions in #ie C
standards committee (SC22/WG21). In particular, N1529 [28
a specific proposal for adding a form of multimethods to the up
coming revision of the ISO € standard, @+0x. The aim of this
TR is to provide a thorough (if still incomplete) discussioithe
design alternatives, present a current best effort deaighpresent
performance data from the current implementation dematisty
significant advantages over current workarounds.

Runtime polymorphism is a fundamental concept of object-
oriented programming (OOP), typically achieved by latedbig
of method invocations. “Method” is a common term for a func-
tion chosen through runtime polymorphic dispatch. Most OOP
languages (e.g.: & [31], Eiffel [24], Java [3], Simula [6], and
Smalltalk [18]) use only a single parameter at runtime tedeine
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as open class extensions, accessory functions [35], anpitmulti-
methods [26], or “open-methods”. Languages supportingipiel
dispatch include CLOS [29], MultiJava [11, 25], Dylan [23&hd
Cecil [9]). We implemented and measured both multi-mettaoub
open-methods. Since open-methods address a larger clasigh
problems than multi-methods, our discussion concentmatepen-
methods.

Generalizing from single dispatch to open-methods raises t
guestion how to resolve function invocations in cases wimere
overrider provides an exact type match for the runtime-gygfehe
arguments. Symmetric dispatch treats each argument alikesb
subject to ambiguity conflicts. Asymmetric dispatch resslzon-
flicts by ordering the argument based on some criteria — &jlpic
an argument list is considered left-to-right). Asymmettispatch
semantics is simple and ambiguity free (if not necessarilsug-
prising to the programmer), but it is not without criticisi@].[ In
addition, asymmetric dispatch differs radically from+ sym-
metric function overload resolution rules.

We derive our design goals for the open-method extension fro
the G++ design principles outlined in [30]:

¢ Alanguage extension should address several specific pnsble

e A new mechanism should not impose costs on code that does
not use it. In this case, open-methods should neither preven
separate compilation of translation units nor increasectist
of ordinary virtual function calls.

e Code using a new language feature should benefit compared
to code that uses workaround techniques. In this case, open-



methods should be more convenient to use than all workasound
(e.g. the visitor pattern) as well as outperforming themathb
time and space.

e Semantics introduced by a new mechanism should fit well with
existing features. In particular, open-methods shouldrizei
prising when compared to virtual and overloaded functions.

e The mechanism should be general and useful for a wide variety

of systems. In particular, exception handling is not cuiyen
considered suitable for hard real-time system (e.g. [28]) s
throwing exceptions to indicate an ambiguity conflict istbes
avoided.

Section 2 presents application domains for both open-ndstho
and multi-methods. Section 3 describes our function callanbi-
guity resolution mechanisms. Section 4 shows the necessaay
ifications to the @+ compiler and linker strategy as well as exten-
sions of the 1A-64 object model [12] based on our model imple-
mentation. Section 6 discusses problems related to dynlaanic
ing and linking of libraries. Section 7 gives an overview@fearch
in the area of multi-methods for+@ and other languages. Section
8 compares the performance of our approach to other methatls t
add support for multi-methods to+&. Section 9 summarizes our
contributions and sketches remaining open problems.

2. Application Domains

The question whether open-methods address a sufficient i@ing
problems to be a worthwhile language extension is a popuies-q
tion. We think they do, but do not consider the problem oné tha
can in general be settled objectively, so we just presennples
that would benefit significantly. We consider these exampihes-
acteristic for larger classes of problems.

2.1 Shape Intersection

An intersect operation is a classical example of multi-rodthus-
age [30]. For a hierarchy of shapdstersect() decides if two
shapes intersect. Handling all different combinationshafoes (in-
cluding those added later by library users) can be quite kectuge.
Worse, a programmer needs specific knowledge of a pair oeshap
to use the most specific and efficient algorithm.

Using the multi-method syntax from [30], witlirtual indicat-
ing runtime dispatch, we can write:

bool intersect(virtual Shape&, virtual Shape&); // open—method
bool intersect(virtual Rectangle&, virtual Circle&); // overrider

We note that for some shapes, such as rectangles and lines,

the cost of double dispatch can exceed the cost of the icterse
algorithm itself.

2.2 Data Format Conversion

Rasterimage Vectorimage

‘ RandomAccessimage ‘

T
‘ Lossylmage ‘ ‘ Loslessimage ‘ yuv || reB || cmyk

‘ PlanarYUV ‘ ‘ PackedYUV ‘ ‘TrueCoIorRGB H PalletizedRGB ‘

Compressedimage

A host of concrete image formats such as RGB24, JPEG, and
planar YUY2 will be represented by further derivations. Tipi-
mal conversion algorithm must be chosen based on a souget-ta
pair of formats [20] [36]. That is, we again need a lookup dase
two runtime types from a large and extensible hierarchy.

2.3 Binary operations

Most forms of computation involve many types and binary aper
tions. Matrix algebra is an obvious example. For example:

void computation(const Matrix& a, const Matrix& b)

Matrix tmp = a+b; // binary operation
/) -
}

Often, operations are selected based on static typesr thdre
relying on a base class as in the example. The reason forsthat i
improve performance, to eliminate the complexity of doudie-
patch, and to gain the benefits of predictable ambiguityluéso.
Open-methods address those concerns.

The implementation of a scripting language would be an appli
cation where the solution to the binary operation probleraldde
performance sensitive.

3. Definition of open-methods

Open-methods are dynamically dispatched functions, wkieze
callee depends on the dynamic type of one or more arguments.
ISO G++ supports compile-time (static) function overloading and
runtime (dynamic) dispatch on a single argument. The twohaec
nisms are orthogonal and complementary. We define openedieth
to generalize both, so our language extension must unify skee
mantics. Our dynamic call resolution mechanism is modeftst a
the overload resolution rules of#. The ideal is to give the same
result as static resolution would have given had we knowtyp#s

at compile time. To achieve this, we treat the set of oversids a
viable set of functions and choose the single most speciftbade
for the actual combination of types.

We derive our terminology from virtual functions: a functio
declared virtual in a base class (super class) can be ogerriith a
derived class (sub class):

e an open-method is a non-member function with one or more
parameters declared virtual

Consider an application, such as an image processor or a web e an overrider is an open-method that refines another open-

browser that deals with many image formats and must freguent
convert between them. Generic handling of formats by cdimger

them to and from a common representation in general gives un-

acceptable performance, degradation in image qualitg, ddsn-
formation, etc. For example, conversions between an RGBaand
YUV format are computation intensive. However, conversibe-
tween different RGB formats and between different YUV fotsna
can be done simply and efficiently. Here is the top of a realist
image format hierarchy:

method according to the rules definedh1

e an open-method that does not override another open-meshod i
called a base-method.

For example:

struct A { virtual "A(); };
struct B : A {};

void print(virtual A&, virtual A&); // (1)



void print(virtual B&, virtual A&); // (2)
void print(virtual B&, virtual B&); // (3)

Here, both (2) and (3) are overriders of (1), allowing us to re
solve calls involving every combination of A's and B’s. Foaen-
ple, a callprint(a,b) will involve a conversion of the B to an A and
invoke (1). This is exactly what both static overload resoluand
double dispatch would have done.

To introduce the role of multiple inheritance, we can addha t
example:

struct X { virtual “X(); };
struct Y : X, A {};

void print(virtual X&, virtual X&); // (4)
void print(virtual Y&, virtual Y&); // (5)

Here (4) defines a new open-methwiht on the class hierarchy
rooted in X. Y inherits from both A and X, and since baitint
open-methods have the same signature, — (5) is an overader f
both (4) and (1).

3.1 Overriding

DEFINITION 1. An open-method is considered an overrider)(
for an open-methodv{n) in the same translation unit if it has:

e the same name

¢ the same number of parameters

e possibly covariant virtual parameter types
e invariant non-virtual parameter types

A base-method must be declared before any of its overriders.
This restriction parallels other 43 rules and greatly simplifies
compilation. As shown in the previous example, an overrier
be associated with more than one base-method.

For every overrider and base-method pair, the compilerkehec
if the exception specifications comply with the rules usedriidual
functions and if the overriders comply with covariant rettype
semantics.

DEFINITION 2. An open-method that is not an overrider and an
overrider that introduces a covariant return type are calesed a
base-methodbr a translation unit.

DEFINITION 3. A Dispatch table (DTmaps the type-tuple of the
base-method’s virtual parameters to actual overriderd thdl be
called for that type-tuple.

Millstein and Chambers show in [26] that open-methods can-
not be modularly type checked if the language supports plelti
implementation inheritance. Therefore, we split our cedlalution
mechanism into three distinct stages:

e Overload resolution
e Ambiguity resolution
¢ Run-time dispatch

The goal of overload resolution is to find at compile time a
unique base-method, through which the call can be dispatahe
note, that this base-method will not be used for the actisqladch
at run-time, but rather to determine a dispatch table thraulgich
the call will be made, the necessary casts of the argumedtthan
expected return type. The actual overrider to handle thenskl
only be determined at run-time.

The G++ overload resolution rules [21] are unchanged: the vi-
able set includes both open-methods and regular functiods a
treats open-methods like any other free-standing funsti@y-
namic dispatch is used only if an open-method is the besthmatc

We relax this rule slightly: if a set of best matches consi§tspen-
methods only and the intersection of their base-methods Isas
gle element - overload resolution does not report an amtyidive
demonstrate with an example:

struct X;
struct Y
struct Z;

void foo(virtual X&, virtual Y&); // (1)
void foo(virtual Y&, virtual Y&); // (2)
void foo(virtual Y&, virtual Z&); // (3)

struct XY : X, Y {}
struct YZ : Y, Z {}

void foo(virtual XY&;, virtual Y&); // (4)
void foo(virtual Y&, virtual YZ&); // (5)

Open-methods 1,2 and 3 are three independent base-methods
defined on different class hierarchies. Because XY and YZ are
parts of several hierarchies, overriders 4 and 5 refine akbese-
methods. In particular 4 is an overrider for 1 and 2 and 5 is an
overrider for 2 and 3.

A call foo(xy,yz); with arguments of types XY and YZ respec-
tively is now ambiguous according to the standard overl@esod+
lution rules as both 4 and 5 are equally good matches. Ouraela
rule, however, does not reject this call as ambiguous at demp
time, because these overriders have a unique base-metioodh
which the call can be dispatched — 2.

At link time, when all the overriders have been seen, we check
the overriders for return type consistency, perform ambjges-
olution and build the dispatch tables. We describe thisestagre
in3.2.

Run-time dispatch simply looks up the entry in the dispatch
table that corresponds to the dynamic types of the argunaemnts
dispatches to that function.

This three-stage approach parallels the resolution todhere
alent modular-checking problem for template calls usingcepts
in C++0x [19]. Further, the use of open-methods (as opposed to or-
dinary virtual functions and multi-methods) can be seendatng
a runtime dimension to generic programming [4].

3.2 Ambiguity resolution
C++ supports single-, repeated-, and virtual inheritance:

Note that to distinguish repeated and virtual inheritaribis
diagram represents sub-object relationships, not justkags rela-
tionships. We must handle all ambiguities that can arisdl these
cases. By “handle” we mean resolve or detect as errors.

Our ideal for resolving open-method calls is the union of the
ideals for virtual functions and overloading:

e virtual functions: the same function is called indepeniyeot
which sub-type in an inheritance hierarchy is used in the cal

e overloading: a call is considered unambiguous if (and only
if) every parameter is at least as good a match for the actual
argument as the equivalent parameter of every other caedida
function and that it has at least one parameter that is arbette
match than the equivalent parameter of every other caradidat
function.



This implies that a call of a single-argument open-methotkis
solved equivalently to a virtual function call. The rulesdebed
below closely approximate this ideal. As mentioned, thécstas-
olution is done exactly according to the usualQules. The dy-
namic resolution is presented as the algorithm for geneyatis-
patch tables ir§3.4. Before looking at that algorithm, we present
some key motivating examples.

3.2.1 Single Inheritance

In object models supporting single inheritan¢8.2) ambiguities
can only occur with open-methods taking at least two virfue
rameters. Ambiguities in this case have to be resolved bp-int
ducing a new overrider. The resolution of an open-methodh wit
one argument is identical to that of a virtual function. Thogen-
methods provide an unsurprising mechanism for expressing n
intrusive (“external”) polymorphism.

3.2.2 Repeated Inheritance

Consider the repeated inheritance c&8e2) together with this set
of open-methods visible at a call siteftn(d1,d2):

void foo(virtual A&, virtual A&)
void foo(virtual B&, virtual B&);
void foo(virtual B&, virtual C&);
).
)

void foo(virtual C&, virtual B&
void foo(virtual C&, virtual C&

Everyfoo() is a match, but is one a best match? No, the usual
overload resolution rules reject that call, and the comp#ports
the ambiguity immediately. The result of overload resaolutileter-
mines the base-method through which the call will be didpadc
The choice of this method will affect casting of argumentetyat
the call site and determine the expected return type (inrtsemce
of covariant return). To resolve that ambiguity, a user ¢dreeadd
an overriderfoo(D&,D&) visible at the call site or explicitly cast
arguments to either the B or C sub-object.

When the above ambiguity is resolved by casting, a question
still remains on how the pre-linker should resolve a calhwito
arguments of type D? We know at runtime (by looking into the
virtual function table’s open-method table ($&@ which “branch”
of a D object (either B or C) is on. Thus, we can fill our dispatch
table appropriately; that is, for each combination of tyfhese is a
unique “best match” according to the usuakQules:

A B ¢} D/B | DIC
A AA | AA | AA | AA | AA
B AA | BB | BC | BB | BC
C AA | CB |CC | CB | CC
DB | AA | BB | BC | BB | BC
DIC|AA|CB | CC|CB | CC

This depicts the dispatch table for the repeated-inheréduer-

foo(b,rc);
B& rb = d;
foo(b,rb);

Using static type information to resolve either call wouidlate
the fundamental rule for virtual function calls: thus, usatime
type information to ensure that the same overrider is cdleah
every point of a class hierarchy. At runtime, the dispatcicimae
nism will (only) know that we are callinfoo with a B and a D.
It is not known whether (or when) to consider that D a B or a C.
Based on this reasoning (embodied in the algorithn§3rt) we
must generate this dispatch table:

A B C D/A
A AA | AA | AA | AA
B AA | BB | BC | ??
C AA | CB | CC | ??
DA |AA |22 [ ?2 | ??

We cannot detect the ambiguities marked withat compile
time, but we can catch them at link time when the full set of
overriders are known.

3.3 Covariant return types

Covariant return types are a useful element ef Gf anything they
appear to be more useful for operations with multiple argutsie
than for single argument functions. For example, consideass
Symmetric derived fromMatrix:

Matrix& operator+(Martix&, Matrix&);
Symmetric& operator+(Symmetric&, Symmertic&);

It follows that we must generalize the covariant return sule
for open-methods. Doing so turned out to be unexpectedlfuluse
because covariant return types help resolve ambiguities.

In single dispatch, covariance of a return type implies deva
ance of the receiver object. Consequently, covariance tofre
types for open-methods imply an overrider) - base-method
(bm) relationship between two open-methods. Liskov's substit
tion principle [22] guarantees that any call type-checkaséll on
bm can user’s covariant result without compromising type safety.

This can be used to eliminate what would otherwise have been
ambiguities. Consider the class hierarchiés— B « C and
R1 «— R2 «— R3 « R4 and this set of open-methods:

R1x foo(virtual A&, virtual A&);
R2x foo(virtual A&, virtual B&);
R3x foo(virtual B&, virtual A&);
R4x foo(virtual B&, virtual C&);

A call foo(b,b) appears to be ambiguous and the rules out-
lined so far would indeed make it an error. However, choosing
R2x foo(A&,B&) would throw away information compared to us-

archy in§3.2 and the set of overriders above. Since the base methoding R3x foo(B&,A&): An R3 can be used wherever an R2 can,

is foo(A&,A&) and A occurs twice in D, each dimension has two
entries for D: D/B meaning "D along the B branch”. This reso
exactly matches our ideals.

3.2.3 Virtual Inheritance

Consider the virtual inheritance class hierarchy fig82 together
with the set of open-methods frof3.2.2: In contrast to repeated
inheritance, a D has only one A part, shared by B, C, and D.
This causes a problem for calls requiring conversions, agh
foo(b,d); is that D to be considered a B or a C? There is not enough
information to resolve such a call. Note that the problem axése

is such a way that we cannot catch it at compile time:

C& rc =d;

but R2 cannot be used wherever an R3 can. So we prefer a func-
tion with a more derived return type and for this example et t
following dispatch table:

A B C
A | AA | AB | AB
B | BA | BA | BC
C | BA | BA | BC

At first glance, this may look useful, but ad hoc. However, an
open-method with a return type that differs from its basehoet
becomes a new base method and requires its own dispatct{dgable
equivalent implementation technique). The fundamen@$aa is
the need to adjust the return type in calls. Obviously, teeltgions



for this new base method must be consistent with the resaluti
for its base method (or we violate the fundamental rule foauwei
functions). However, sinc&2x foo(A&,B&) will not be part of
R3x foo(B&,A&)’s table, the only consistent resolution is the one
we chose.

If the return types of two overriders are siblings, then éhisr
an ambiguity in the type-tuple that is a meet of the parameter
type tuples. Consider for example th&8 derives directly from
R1 instead ofR2, then none of the existing overriders can be used
for (B,B) tuple as its return type on one hand has to be a selifp
R2 and on the other a subtype B8. To resolve this ambiguity, the
user will have to explicitly provide an overrider for (B,Byhose
return type must derive from botR2 and R3.

Using the covariant return type for ambiguity resolutioscal
allows the programmer to specify preference of one overoger
another when asymmetric dispatch semantics is desired.

To conclude: covariant return types do not only improveistat
type information, but also enhance our ambiguity resotuti@ch-
anism. We are unaware of any other multi-method proposabesi
similar technique.

3.4 Algorithm for dispatch table generation

Let us assume we have a multi-methefl(hq, hs, ..., hi) with
k virtual arguments. Clasa; is a base of hierarchy of thé"
argument.H; = {c : ¢ <: h;} is a set of all classes from the
hierarchy rooted att;. X = H1 x Ha X --- X Hy is the set of all
possible argument type-tuples ffSetY” = {(y1,y2, - ,yx)} C

[13] to create an efficient algorithm for generation of dispaable,
shown in Algorithm 1.

Algorithm 1 Dispatch Table Generation

S « topological _sort(X)
forall z € S do
if z € Y then
DT[z] «— F(x)
else
maz_set = {B1(z)}
for i «+ 2,k do
dominated — false
for all e € max_set do
if F=Y(DTle]) <p F~'(DT[B;(x)]) then
mazx_set «— mazx_set — {e
elseif F~1(DT[B;(z)]) <p F~'(DTle]) then
dominated «— true
break
if not dominated then
mazx_set «— maz_set U {F~(DT[B;i(x)])}
if |maz_set| = 1then
DT[z] — F(maz_set)
else
Report ambiguity for:

To analyze its performance, we first note that comparison of
two type-tuples fromX can be done in timeD(k). If n =

X is the set of argument type-tuples, on which the user defined max(|H;|,i = 1,k) andr = maz(r;,i = 1,k) (wherer; is

overriders f; for f. The setO; = {fo, -+, fm—1} Is the set
of those overridersfo = f). A mappingF : Y < Oy is a
bijection between type-tuples on which overriders are éefiand
the overriders themselves.

Because different derivation paths may get different estri
in the dispatch table, we assume thatin the type-tupler =
(z1,--- ,xx) identifies not only the concrete type, but also a
particular derivation path for it (see [34] for formal defions).
Under this assumption, we defing(z;) to be a direct ances-
tor (base-class) of:; in the derivation path represented hy.
For example, for the repeated inheritance hierarchy &2,
B(D/B) = B,B(D/C) = C,B(C) = A, while for the vir-
tual inheritance hierarchi3(D/A) = A, B(B) = A, B(C) = A.

For the sake of convenience we define:

Bi(z) = (w1, , B(x:), -+, xk)-

With it we extend the definition oB to type-tuples as follows:
B(z) = {B1(x), Bz2(z), -, Bu(z)}.

P(X,<): (z1,e,2k) <P Y1y yp) © Vit x; <ty; AJj e
y; £: x; defines a partial ordering that models ordering of viable
functions for overload resolution as defined in [2klax_set(S) =
{x € SC X :fyecS:x<y}isasetof maximal elements 6f
with respect to the partial ordering.

Dispatch tableDT is a mappingDT" : X — Oy that maps
various combinations of argument types to the overridees! us
handle that combination.

For any combination of argument typess X, we recursively
define entries of the dispatch table DT as following:

F(z),zeY
DT[maz_set(B(z))], |maz_set(B(x))|
Ambiguity, otherwise

DT[z] = =1

The above recursion exhibits optimal substructure and ¥x&s o
lapping sub-problems, which lets us use dynamic programmin

a maximum number of timés; is used as non-virtual base class in
any class of hierarchyl;) then|X| <= (n * r)* and the amount

of edges for topological sort is less thénx (n  r)*. Therefore
the complexity of topologically sorting X i©(k * n*). The second
loop has complexity) (k% +n*) so the overall complexity i©(n*)
sincek is a constant defining the amount of virtual arguments. This
means that the algorithm is linear in the size of the disptble.

3.5 Alternative dispatch semantics

Our open-method semantics strictly corresponds to virnexhber
function semantics in ISO 43 but does not entirely reflect over-
load resolution semantics. The reason is that less inféomas
available for compile-time resolution that for link-time mn-time
resolution. For example, consider the repeated inhegtalass hi-
erarchy from$3.2 with a virtual function added:

struct A { virtual void foo(); };
struct B : A {};

struct C : A { virtual void foo(); };
struct D : B, C {};

void bar(A&); // conventional overloading
void bar(C&);

void foobar(virtual A&); // open—method
void foobar(virtual C&); // open—method

D d;
B& db =d; // B part of D
C& dc =d; // C part of D

// (run—time) Virtual Member Function Semantics:
b.foo(); // calls A::foo

c.foo(); // calls C::foo

d.foo(); // error: ambiguous

// (compile—time) Overload Resolution Semantics:
bar(db); // calls bar(A&)
bar(dc); // calls bar(C&)



bar(d); // calls bar(C&) (why not ambiguous?)

// (runtime—time) open—method Semantics:
foobar(db); // calls foobar(A&)
foobar(dc); // calls foobar(C&)
foobar(d); // error: ambiguous

The difference between the ordinary virtual functideo] calls
and the ordinary overloaded resolution fbaf) is odd and depends
on pretty obscure rules that may be more historical thanemeh-
tal. The open-methoddobar calls follows the virtual function res-
olution.

Further differences emerge in cases where a differentuesol
tion become possible in cases where additional informé&ftiom
other translation units may become available to resolven-ope
methods (seg5 and §6.2). This parallels decisions for related
parts of the language. For example, the resolutiostatic_cast
and dynamic_cast can differ even given identical arguments:
dynamic_cast can use more information thamatic_cast.

4. Implementation

We implemented open-methods as described here by modifyeng
EDG compiler front-end [14].

4.1 Changes to Compiler & Linker

Our mechanism extends ideas presented in [15, 35] as to mmpi
and linker model. We adopted the multi-method syntax pregos
in [30], which in turn was inspired by an early idea by Doug Lea
One or more parameters of a non-static freestanding funcém
be specified to beirtual. A virtual argument must be a reference
or pointer to a polymorphic class (that is, a class contgirirleast
one virtual function). For example:

struct A { virtual "A(); };

void print(virtual A&); // ok
void print(int, virtual A&); // ok

void dump(virtual Shape); // compiler error
void dump(virtual int); // compiler error

Open-methods are generic free-standing functions, whach d
not have the access privileges of member functions. If am-ope
method needs access to non-public members of a class, dsat cl
must declare it to be a friend. An open-method must be defthad;
is, there are no abstract (pure virtual) open-methods. ¥ample,
we must define thntersect of shapes:

bool intersect(virtual Shape&, virtual Shape&) { }

We could allow multi-methods for abstract classes to be ab-
stract. The obvious implementation would be to call an iunc-
tion of some sort (like for a virtual function). Similarlys& obvious
syntax would be the=0 (like for a virtual function).

For each translation unit, the compiler generatesopen-
method descriptiofOMD) file that stores the data needed to gen-
erate the runtime data-structure discussegéi@. Essentially, this
includes the names of all classes, their inheritance oglsliips, as
well as the kind of inheritance. Open-methods are repredeny
name, return-type, and their parameter-list. Finally, @dD-file
also contains definitions of all user-defined types that apipesig-
natures of open-methods (both as virtual and regular paeas)e
These definitions are necessary to regenerate prototyjsrakmns
for the open-methods, which pass data through by value.

Information collected in OMD-files is assembled together by
the pre-linker, which is invoked last in the compilation thae-
fore the object code of all translation units is linked tdupet

The pre-linker will synthesize each base-method with itsrod-
ers into a dispatch table, issue link-errors for ambigsitigeter-
mine the indices necessary to access the open-method padidtiis
table, as well as define and interlink the om-tables of eath su
object type as described §#.2. When the call of an overrider re-
quires adjustments of the this-pointers (as is sometimedettin
multiple inheritance hierarchies), the pre-linker credteinks and
makes the dispatch table entries refer to them insteadnBulis-
patch table synthesis, the linker will report errors foraatjument-
combinations, which do not have a unique best overrider.otite
put of the pre-linking stage is a C-source file containingrttigsing
definitions. If the linker generates a library, the pre-nklso puts
out a merged OMD-file.

4.2 Changes to Object Model

We augment the 1A-64 & object model [12] by four elements
to support constant time dispatching of open-methodst,Fios
each base-method there will be a dispatch table contairiag t
function addresses. Second, the v-table of each sub-atgatdins
an additional pointer to thepen-method table (om-tabldjinally,
the indices used for the open-method-table offsets aredtas
global variables.

Figure 1 shows the layout of objects, v-tables, om-tables an
dispatch-tables for repeated (left) and virtual (righthentance.
Our extensions to the object-model are shown with grey back-
ground. From left to right the elements in each diagram e
the object, v-table, om-table, and dispatch table(s) ferdass hi-
erarchy in§3.2. From top to the bottom, the objects are of type A,
B, C, and D respectively.

An open-method can be declared after the declarations of the
classes used in its virtual parameters. Therefore, the ib®ngan-
not reserve v-table entries to store the data related to-nphod
dispatch immediately in a class’s virtual function tablende, we
always extend every v-table by one pointer referencing tine o
table, which can be laid down later by the pre-linker.

The om-table reserves one position for each virtual par@met
of each base-method, where objects of this type can be passed
as arguments. This position stores an index into correspgnd
dimension of the dispatch table. Since the size of the orlesab
is not known at compile-time, our technique relies on aditéor
each open-method and virtual parameter position (calledL,
foo_2nd in Figure 1) that determines the offset within the onmesb

Note that Figure 1 depicts our actual implementation, where
entries for first argument positions already resolves omedsion
of the table lookup. Entries for all other argument posgistore
the byte offset within the table.

In the presence of multiple-inheritance, a this-pointeift sh
might be required to pass the object correctly. In this case,
replace the address of the overrider by an address of a tiak t
takes care of correctly adjusting the this-pointer. As dbed in
§3.2.2 in case of repeated inheritance different bases can dif
ferent dispatch behavior depending on the sub-object tatwihie
this-pointer refers. As aresult, different bases may poidifferent
om-tables. In case of virtual inheritance, the open-mettispatch
entries are only stored through the types mentioned in tise-ba
method. Hence, in the virtual inheritance case, all opethate
calls are dispatched through the virtual base type.

4.3 Alternative Approaches

We considered a few other design alternatives to exploietthde-
offs in extensibility and performance.

4.3.1 Multi-Methods

Multi-methods differ from open-methods in that the basdhoe
has to be declared in the class definition of its virtual paaizms.
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Figure 1. Object Model for repeated (left) and virtual (right) inhtarice

This allows the offset within the v-table be known at compile
time, which saves two indirections per argument of a fumctall
(one for the om-table, and one to read the index within the om-
table). For a call withk virtual arguments, open-methods need
4k + 1, while multi-methods need onBk + 1 memory references

to dispatch a call. The downside of multi-methods is thastixg
classes cannot easily be extended with dynamically dibpdtc
functions. Consider:

class Matrix
{ // multi—method declaration
friend Matrix& operator+( virtual const Matrix& Ihs,
virtual const Matrix& rhs );

virtual Matrix& operatorx(virtual const Matrix&);

I

is reasonably fast (preferably constant time) and its rangenall
(preferably from 0 to maximum number of types that can be used
any argument position) then we can efficiently implementtipig
dispatch by properly arranging rows and columns accorditm|
the indices returned b¥;. As in [17] we use the Chinese reminder
theorem [13] to generate functidp.

Despite its elegance, this approach is rather theoretezdlse
it is hard to use for large class hierarchies. The reasonatsvike
need to assign different prime numbers to classes and perfor
computations on numbers that are bound by the product oéthes
primes. Such product can fit into 32-bit integers for only the
first primes and into 64-bit integers for only the 15 first pesn
Table compression techniques [2] or use of minimal perfashh
functions [13] instead, can help overcome the problem.

5. Discussion

We implemented only the non-member version of multi-method  Ampiguities can arise at various stages in the build procéfs
The member version can be implemented with exactly the same jegcribe here alternatives in their handling as well apuarissues

techniques. However, in many cases it is harder to write toale

uses the member version because an overrider must be a member

of (only) one class — and the main rationale for multi-methisdo
elegantly deal with combinations of classes. Even the nember
(friend) version is hard to use. By requiring a declaratiorbe
present in a class, we limit the polymorphic operations ehgt

the class designer thought of. That requires too much fgnesif

the class designer or leads to unstable classes (clasddeetn
having multi-methods added).

Such problems are well-known in languages relying on member

functions. Open-methods provide an abstraction mechatfisin
solves such problems by separating operations from classes

4.3.2 Chinese Remainders

In this section, we present an "ideal” scheme for implenmnti
open-methods, inspired by ideas presented in [17]. Theggexb
scheme circumvents the necessity for open-method tableslry
ing all the necessary information from the class to the didpta-
ble.

Suppose that for every multi-methgdthere is a functions :
T x N — N such that for any type € T (where T is a domain
of all types) and argument positione N it returns index of type
t in the n'™ dimension of thef’s dispatch table. If such function

that may arise during development.
During compilation of a translation unit the compiler makea
into consideration all the overriders seen in that traistatnit as
well as all the classes visible there, with which an openhoet
can potentially be called. The compiler then may report aarer
when the dispatch table cannot be built unambiguosly udieg t
overriders seen. Alternatively it may pospone ambiguisphation
to the next stage, where more overriders can be seen. We ropt fo
postponing ambiguity resolution to the linking stage towlbther
translation units to contribute in specializing. Resadvambiguity
at compile time seems inappropriate, because that sameofair
types may be resolved differently in another translatioih un

Ambiguities detected at link time are due to inability tokpe
unique best match for a particular combination of argumgpes.
Again, we can report an error here, forcing the user to eiiglic
resolve it by providing an unambiguous overrider for thguanent
tuple. Alternatively we can postpone it till load time, hogithat
some dynamic module will resolve the ambiguity. Further an w
show a case in which we may also want to resolve ambiguity at
link time due to user’s physical inability to resolve it.

Loading several dynamically linked modules at run-time may
again result in ambiguities even when each of the modulesatid
have any ambiguities at link time (s§6). This usually happens



because of the new classes introduced by modules as well as beso the question arises when should an open-method be cretside

cause of overriders that clash with overriders from otheduhes.
Taking this into account, we disliked termination of an aqggion
(error) as user will not be able to intercept such scenarie.dtl
not like throwing exceptions on ambiguities to allow for esdded
systems. Besides, introduction of a single overrider cailyean-
validate most of the dispatch table, which may be countgiting
to the user.
We summarize the possibilities (marked withand the choices

we've made (marked with) in the following table:

Stage Error | Postpone| Resolve| Throw
Compile time ) °

Link time ° o °

Load time o ° o

51

To resolve ambiguities at link time, the programmer needess
to the class definitions for which there is no unique bestrier
We call classes not available at link time "hidden” classtidden
classes can occur for two reasons. First, all local clagsssomsid-
ered to be hidden, because their name is local to the funstiope

"Hidden” classes

an overrider and when just a different open-method? Letk kat
the following example:

namespace X

class A {};
void bar(virtual A&); // base method

class B : A {};
void bar(virtual B&); // (1)

}

namespace Z

void bar(virtual B&); // (2)
}

namespace Y

class D : X:A {};
void bar(virtual D&); // (3)

in which they were defined. Second a programmer cannot access}

classes that are defined within a library or an implemenidile
and for which no definition is available in header files. We dam
strate with an example:

// Available common header
class A {};

void foo(virtual A&, virtual A&); // base method

class B : A {};
class C: A {};

// Bl.cpp
class B1 : B {}; // definition of Bl is not available to others

void foo(virtual B1&, virtual A&);

/ Cl.cpp
class C1 : C {}; // definition of C1 is not available to others
void foo(virtual A&, virtual C1&);

The linker will find an ambiguity when it decides which over-
rider to call for a pair (B1,C1); however the user might noalbée
to resolve it because definitions of B1 and C1 are not avail&bl
him.

Since in this case the programmer will not be able to write
code resolving ambiguities, we suggest to treat these eapes
to ambiguity resolution for dynamically linked librarie®m §6.2.
Only if the linker can determine, that ambiguities are resable,
it must report an error.

Following, we will briefly describe a possible mechanismttha
could sufficiently well distinguish available from hiddefasses.
Such a mechanism could for example record all ambiguitias th
occur within at compile time of a translation unit. Hencesgb am-
biguities would be constrained by the class hierarchiesaued-
riders seen at compile time. At link time, all these recordati-
guities need to be resolved, otherwise the linker would nteao
error. After checking all recorded ambiguities, the linkan use
rules described i1§6.2 to resolve remaining ambiguities. By defi-
nition, libraries have been seen by the prelinker, and areetore
ambiguity free.

5.1.1 Open-methods and namespaces

Virtual functions have a class scope and can only be overiithe
derived classes. Open-methods do not have such a scopedojtdef

class C : X:A {};
void bar(virtual C&); // (4)

One approach may be to require overrider be declared in the
same namespace as its base-method (1). In such scenanm, ope
methods with the same name and compatible parameter types, d
fined in different namespaces would not be considered alegi
Among advantages of this approach is easiness of undeirsgand
and implementation. Unfortunately such semantics is nistalohe
with regular virtual function calls, where derived classes be
declared in a different namespace. We note that using d@iclar
could potentially be used to work around these limitations.

Second alternative would be to let overriders be declarethyn
namespace (1,2,3,4). Itis easy to understand but defegtsithose
of namespaces that were introduced to better structureotiteeand
avoid name-clashes among indpendently developed modules.

Third approach may consider an open-method to be an over-
rider, if its base-method is defined in the same scope or indbpe
of their argument types and their base classes. In this sodia3,

4) would override; (2) would not. Among its pros is its resdanice
to argument dependent lookup. It would also work for virtiuaic-
tions. Its cons, however, is that it is not easily compreladiel

6. Dynamic linking

Outside embedded systems, dynamically linked librariesibmost
universally used with &. Thus, a design for open-methods that
does not allow for DLLs is largely theoretical. We do not eutty
have an implementation, but here we outline a design addgess
the major issues for open-methods in a dynamically linkiedaliy.

It guarantees that the most specialized overrider availabkrun-
time that preserves type-safety of a call will be used toatidpa
call.

Dynamic modules, compiled independently, may have differe
sets of overriders defined at the time of compilation. Furtizee,
there could be new classes added to a hierarchy in one of tde mo
ules and objects of those classes may be passed into codeeof ot
modules. This is not a problem for regular virtual functiasstheir
v-tables are found in the module where the class was defined. |
case of open-methods, the dispatch table generated wirtia-
ular module can be simply unaware of a class, defined somewher
else. That is, the dispatch table for an open-method maytteek
rows and columns needed to handle the class. To deal witlwthis



can either update each module’s dispatch table with neweta(&t
load time) or keep a shared global dispatch table (updatetidoy
loader).

one of the existing implementations, e.g. the one cominmfeo
module with a more recent date.

We first argue why the second option is not viable and why each 6.2  Late ambiguities

module that can be dynamically loaded into the process diave
its own dispatch table.
6.1 Consistency of covariant return types

Covariant return introduces subtleties when dynamic figkis
used. Consider a two-class hierarcly— B and another two-class

Let’s consider a plausible scenario involving three DLLSs:

// dii-1
struct GuiButton { virtual “GuiButton(); };
struct GuiEvent { virtual “GuiEvent(); };

hierarchyR1 « R2. The base-methoRll foo(virtual A&, virtual A&)void handleEvent(virtual GuiButton&, virtual GuiEvent&);

is defined in a header visible by two dynamically linked megul
D; and D- that do not know anything about each other. Mod-
ule D; introduces overrideR2 foo(A&, B&) and moduleD,
introduces overrideR1 foo(B&, B&). Each of the dynamically
linked modules perfectly type-checks and links wido() re-
solved through the dispatch table (a superscript in a celbts
type that is returned by appropriate overrider e4g3? denotes
R2 foo(A&, B&)):

D | A B Dy | A B
A AAT | ABT || A AAT ] AAT
B AAT | AB* || B AAT | BB!

When both modules are loaded together we get the dilemma o
how to resolve a call with both arguments of type B: on one side
foo(B&,B&) from D, is more specialized, but on the other hand
foo(A&,B&) from D, imposes additional requirement that return
type of whatever is called for (B,B) should be a subtype of R2,
which R1 is not. Keeping a unique shared dispatch table for al
the modules will force us to choose between suboptimal ape ty
unsafe alternatives. What's worth - is that there may notlrague
type-safe alternative.

Imagine for example that a modulP; introduces overrider
R3 foo(B&, A&) where R1 «— R3, so R2 and R3 are siblings.
When D, and D3 are loaded together, neithB2 foo(A&, B&)
nor R3 foo(B&, A&) can be used to resolve a call with both
arguments of type B - both alternatives are type unsafe @other
overrider.

Taking the above into account, we propose to keep a separate

dispatch table for each dynamically linked module (for ebake
method if necessary). The dynamic loader is then respansiil
filling them accordingly to the static requirements of eaddnoie
and the most specific overriders. This results in:

// dil—2
F#include<dll1>
struct MyButton : GuiButton { };

void handleEvent(virtual MyButton&, virtual GuiEvent&);

// dll—3
F#include<dll1>
struct SpecialEvent : GuiEvent {}

void handleEvent(virtual GuiElement&, virtual SpecialEvent&);

The first DLL defines a clas&uiButton, a classGuiEvent,
and a base-multi-methoeandleEvent. Internally, a second DLL
fderives a new typ@&lyButton from GuiButton and introduces a
new overrider forhandleEvent. Likewise, the third DLL derives
a new internal clasSpecialEvent from GuiEvent and introduces a
new overrider. The second and third DLL could stem from défe
vendors that do not know about each other.
Now a call ofhandleEvent with aMyButton and aSpecialEvent
is ambiguous. The writer of the total system (the “systeragra-
tor”) should in principle have considered that possibiéityd dealt
with it. So, one solution would be to terminate the program or
to throw an exception [28]. However, such problems are hard t
predict and design for. Relaxed Multi-Java [25] resolvesécon-
flicts by introducing glue methods (to glue DLL2 and DLL3) tha
the system-integrator provides. While this might be a \@atmlu-
tion for software developers integrating several librgrieis not a
feasible scenario for end-user applications, as dynalyittaked
modules can be loaded into the process without direct regfies
developer. This, for example, is the case with various carapb
object models when application may ask the system to create a
object with a particular name and operating system will iecand
load the module it is resided in.
In §3.2.2 we saw that when dynamic type of an object cannot
uniquely choose the best overrider we could use a static ¢jpe

an object to disambiguate. Similarly, when module does notk

anything about a particular dynamic type, because its diefinivas

D | A B Dy | A B D3 | A B
A AAT | AB* || A AAT | AB* || A AAT | AB?
B BA® | AB* || B BA® | BB' || B BA® | BA3

not available during compilation of the module, we may userin

It looks as if modules now violate covariant consistency,ibu
reality they do not because their return types are castddtbahe
types that were statically expected by the modules fromlafead
example inD- a call tofoo(A&,B&) is wrapped into a thunk, that
adjusts the result type fromR2 to R1, so R1 is actually returned,
which is what module expects and which is type-safe.

As can be seen, this logic may result in different functioeing
called for the same type tuple depending on where the calagem
from. We note, however, thalhe call is always made to the most
specialized overrider that is type-safe for the caller

It is also possible that different modules provide différever-
riders for the same combination of types. Some of such caselsec
resolved by considering covariance of the return ty[38s3). The
others can be resolved by letting each module call its owrdmp
mentation. In such scenario, a third module that does natigzo
its own implementation of that overrider willeterministicallyget

mation about its most specific static type, known at the naslul
compilation time. What is important, is that it must not restus
from selecting the most specific overrider when it is avadab

With this said, in the example above it seems reasonable to
have calls with arguments of typ&syButton& andSpecialEvent
be handled byhandleEvent(MyButton&, GuiEvent&) inside
DLL2 and by handleEvent(GuiElement&, SpecialEvent&) in-
side DLL3. Having different dispatch tables per modulevaiais
to do this. But what about calls in other modules that neikimemw
about MyButton nor about SpecialEvent? One option will be to
treat both classes as their base classes and dispatch aatlgp
but as we have just argued, static view of a module shouldnmst p
vent us from choosing a better overrider. This can be supgdry
the fact that some modules may have only seen the interfaee: t
base-multi-method and the roots of the hierarchies it imddfon.
Nevertheless they would expect more refined overriders nalba
calls on derived classes.



We note that in principleboth handleEvent functions should
correctly handle the event; that is, batimdleEvent functions must
assume that its arguments could be of a further derived thass
it does not know of. That is, the code of the bdtindleEvent
functions must be written in a way that is generic on its argnis
(probably using virtual functions on the individual arguits).
This implies that as long as an event handler’s code does aké m
more assumptions about its arguments than the interfaceedefi
in the base-class guarantees, it can be replaced by theestbier
handler. Even a non-deterministic selection of the overngould
produce a correct result! Furthermore, we expect that tfferdnt
DLLs may provide the same overrider.

With this said we propose to resolve ambiguities at loadtas
following:

e If there is a unique best match among all type-safe ovesioer
a module that can handle a particular combination of argimen
types — use it.

e If there is no such a unique best match, but an overrider pre-
ferred by a static view of a module is among best matches, — it
is preferred to other overriders.

o Finally, if there is no a unique best match, and the overrider
ferred by a static view of a module is not among best matches,
— an unspecified deterministic choice among best matches is
made.

7. Related work

Programming languages can support multi-methods eitheudgin

built-in facilities, pre-processors, or through librarxtensions.
Naturally, tighter language integration enjoys a much deoale-

sign space for type checking, ambiguity handling, and ogtim
tions compared to libraries. In this section, we will firstissv both

library and non-library approaches for€ and then give a brief
overview of multi-methods in other languages.

7.1 Cmm

Cmm [28] is a preprocessor based prototype implementaioar
open-method &+ extension. It takes a translation unit and gener-
ates G+ dispatch code from it. Cmm is available in two versions.
One of them uses RTTI to recover the dynamic type of objects to
identify the best overrider. The other approach achievestent
time dispatch by relying on a virtual function overriddengach
class. This virtual function returns a small integer thaigualy
identifies its class. Dispatch ambiguities are resolvedhbgviing
runtime exceptions. Cmm allows dynamically linked libearito
register and unregister their open-methods at load andachtime.

In addition to open-method dispatch, Cmm also providessitd|
virtual dispatch. Cmm does not provide special support faltigie
inheritance and therefore its dispatch technique doesointide
with virtual function semantics.

7.2 DoubleCpp

DoubleCpp [5] is another preprocessor based approach fti- mu
methods dispatching on two virtual parameters. It esdgntians-
lates these multi-methods into the visitor pattern. Fomdaso,
DoubleCpp requires access to the files containing the clefis d
nitions in order to add the appropriate accept and visit ouh
DoubleCpp, like any other visitor-based approach, doeseprt
but quietly resolve ambiguities.

7.3 Accessory Function

The accessory functions papers [15, 35] mention possibies wa
enhance the basic accessory function mechanism to allow-mul
ple virtual parameters. The compilation model they descubes,

like our approach, a compiler and linker cooperation to quenf
ambiguity resolution and dispatch table generation. Hanethe
accessory functions are integrated into the regular \e&bf their
receiver types, which requires the linker to not only geteethe
dispatch table but also to recompute and resolve the v-tabéx
of any other virtual member function. While [15] explicitigquires
an overrider to resolve ambiguities introduced by multipleeri-
tance, [35] adopts overload resolution rulg3.5). The authors do
not refer to a model or prototype implementation to which weld
compare our approach.

7.4 Loki

The Loki [1] approach is based on Alexandrescu’s template pr
gramming library with the same name. It provides severdéedif
ent dispatchers that balance between speed, flexibility,caale
verbosity. Currently, it supports multi-methods with twgaments
only, except for the constant-time dispatcher that allowsanargu-
ments. The static dispatcher provides call resolutiondasever-
load resolution rules, but requires manual linearizatibtihe class
hierarchy in order to uncover the most derived type of anaibje
first. All other dispatchers, including the constant timspditcher,
do not take hierarchical relations into account and effedtire-
quire explicit resolution of all possible cases.

7.5 Other languages

One of the first widely known languages to support multi-rodth
was CLOS [29]. CLOS linearizes the class hierarchy and uses
asymmetric dispatch semantics to avoid ambiguity conflibts
Cecil’s [8,9] class-less object-model multi-methods agarded as
an integral part of objects. Cecil views silent ambiguitgaieition
as a potential source for programming errors. Thereforasés
symmetric dispatch semantics and dispenses with objeciroley
linearization in order to expose these errors at runtimgef, the
authors discuss the trade-offs between multi-methods autlifar
type-checking in languages with neither a total order ofsts
nor asymmetric dispatch semantics. Ranging from globgihet
checked programs to modularly type-checked units, the faode
embrace or restrict the expressive power of the languagé¢oant
degrees. Based on these findings, Multidava [11] implemants
model that allows separate compilation and eliminates #exn
for a link-time type-checker but also curtails extenstpilRelaxed
MultiJava [25] re-introduces a link-time type checker aetles
on the system integrator to resolve ambiguities by progdiew
overriders (glue-methods). An example of a language addung-
methods through a library is Python [32]. Chambers and Chéh [
present an alternative implementation technique basedarkap
DAG. Their work generalizes multiple dispatch to be a sulodet
predicate based dispatch.

8. Results

In order to discuss time and space performance, we impledent
the Shape-intersection example for regulasQVisitor), our open-
methods, multi-methods, the two Cmm branches (default and e
perimental constant time), and the LOKI library.

We wrote 20 classes (representing shapes, etc.) which ean in
tersect each other. All in all, this results in 400 combiorasi for
binary dispatch functions. We implemented 40 specific sger
functions to which all of the 400 combinations are dispaticioe In
order to get a reliable timing of the function invocatioresle 40 in-
tersect functions only increment a counter. Since not elinéues
we use support multiple inheritance, these 20 classes @eal\sin-
gle inheritance. The actual test consists of a loop thataahyl
chooses two out of 32 objects and invokes the intersect rdethie
implemented a table-based random number generator thatpkes



and does not contain any unpredictable operation such dmflea
point calculations or integer-divisions. We ran the loojcewvith
the same random numbers: The first run allows implementgtion
which build the dispatch data structure on the fly to warm ug an

based on a brute force implementation. Each class implement
intersect methods for all 20 types of the hierarchy. A sonswh
smarter approach would be to remove redundant interseatidve
ers. However, removing specific overriders is tedious affetdit

load data/code into the cache. The second loop was timed. Theto maintain, since the dispatch would be based on the stgie t

clock-cycle based timer takes the time before and afterabe |
and we calculate the average number of clock-cycles per toop
compare the results.

8.1 Implementations

We used g++ 4.0 and compiled our test-code with optimization
03. We ran our test code on a dual-core (Pentium D, 2.8Gh®&rund
CentOS Linux from the login-shell. We used nice -20 to invoke
test-programs with the highest possible priority.

C++ Visitor The implementer of the visitor has to foresee all
possible shapes and provide interfaces for it. For example:

struct Shape {
virtual void intersect(Shape& shape);
virtual void intersect(Rectangle& shape);
virtual void intersect(Circle& shape);

virtual void accept(Shape& shape) { shape.intersect(xthis); }
b

The concrete first type is recovereddnyeept(); the second type
is recovered byntersect().

C++ Open-Methods/Multi-Methods This approach is based
on the object model described §4.

Chinese RemainderUsing the Chinese Remainder approach
(84.3.2), the number associated with the dispatch table geows
ponentially with the number of types, we could only implernan
simplified version that can handle eight types instead of2&hce,
we omit the size of the program executable.

Loki Only the static dispatcher was used in our tests with Loki
since other dispatchers require manual handling of all ipless
cases. Using other dispatchers would have been closer te-a sc
nario of manually allocated array of functions through vhialls
are made. However, as we indicated before, dual nature af-mul
methods require them to provide both dynamic dispatch atm au
matic resolution mechanism.

Other approachesThe Cmm versions and DoubleCpp are de-
scribed in§7.1 and 7.2, respectively.

8.2 Results & Interpretation

Our experimental results can be summarized in terms of ¢ecu
time and program size:

[ Approach | Program size| Cycles/Loop |
[ Virtual function [ n/a [ 75 |

C++ Multi-method 19 547 78

C++ Open-method 19725 82

Double Cpp 20859 120

C++ Visitor 35289 132

Chinese Remainders n/a 175

Cmm (constant time) 112 250 415

Cmm 111 305 1320

Loki Library 34908 3670

8.2.1 Executable size

The size of dispatch tables is mentioned as one of the magav-dr
backs of providing multi-methods as programming languasge f
ture [35]. However, our results reveal that the+Gmulti-method
based approach is 80% smaller than the visitor approachighat

information of the base class. Intrinsically, DoubleCpguees the
program size for visitor based implementations. Neveesgglthe
optimized result would be at best able to match the multihoet
implementation, simply because each type contains 2Gsiextéeen-
tries in the v-table. Multiplying this with the number of sfes, 20,
results in 400, exactly the number of entries found in theatish
table. We do not discuss the program size of the two Cmms and
Loki, since they use additional header files such<agpeinfo>
and<stdexcept> that distort a direct comparison.

8.2.2 Execution time

Both Multi-Methods and Open-Methods are (as expected)higug
comparable to a single virtual function dispatch, whichdseg&5
cycles per loop. Hence, the better performance comparebeto t
visitors is not surprising. However, the fact that multithmeds re-
duce the runtime to 62% of the reference implementationguisia
visitor is noteworthy. We conjecture this is an effect of #iee of
the class hierarchy and that double dispatch depends oruthe n
ber of overriders. Our conjecture is supported by two olserns:
firstly, the DoubleCpp-based visitor eliminates redundaverrid-
ers and runs slightly faster. Secondly, we also simulatezhatysis
pass dispatching over AST-objects of 20 different typesamaht-
ing the category to which they belong (type, declaratiomres-
sion, statement, other). In this case, the double dispaashohly
20 leaf-functions instead of 400 and our dispatch test r@ney?
cles instead of 132. The open-method approach (requirilycfior
overriders), is still faster and needs 68 cycles.

The difference between multi-methods and open-methodghéw
the expected range. Three more indirections require 4 mook c
cycles. Although significantly slower, Cmm (constant tinpe-
forms better than expected, since its author estimatesispatdh
cost as 10 times a regular virtual function call. As expedtiedtwo
non-constant time approaches perform worst.

8.2.3 Significance of performance

The performance numbers comes from experiments designed to
highlight the cost of multiple dispatch: the functions iked hardly
do anything. Depending on the application the improvedqgoerf
mance might or might not be significant. For the image cornwers
example, gains in execution speed are negligible compartgohée
spent in the actual conversion algorithm. In other casesh sis
the evaluation of expressions using user-defined aritlcntgies,
traversal of abstract syntax trees, and some of the mostdrgq
shape intersect examples, the speed differences amongubéd
dispatch approaches appear to be notable.

Contrary to much “popular wisdom”, our experiments revdale
that for many applications the use of dispatch tables fomepe
methods and multi-methods actually reduce the prograncsize
pared to brute-force and work-around techniques.

9. Conclusions and future work

We presented a novel approach to dispatching open multiodst
that is in line with the multiple inheritance semantics & turrent
C++ object model and the 6 overload resolution rules. This im-
plies compile-time or link-time detection of ambiguiti€®y con-
sidering covariant return type in the ambiguity resoluti@reduce
the number of potential conflicts. We have discussed an imghe
tation based on modifications to the EDG compiler front-end a
have described a mechanism that supports the integrat&evefal



translation units. Our evaluation of different approactesnple-

menting open-methods in+@ shows that our approach is signifi-

cantly better (in time and space) than current alternativeteed,

it is almost as efficient as single dispatch. Because theattibs

constant time and does not rely on exceptions to signal artlgg,

it is applicable in embedded and hard real-time systems.
Planned future work includes:

9.1 Virtual Function Templates
Virtual function templates are a powerful abstraction naedm.

However, G+ cannot do that because generating v-tables for vir-

tual function templates requires a whole-program view arg C
traditionally relies almost exclusively on separate cdatjmn of
translation units. The pre-linker technique describede hetould
be able to synthesize v-tables for virtual function temgdaas it
does for open-methods.

9.2 Function pointers to open-methods

Pointers to member functions in+€ preserve polymorphic behav-
ior when they point to a virtual member function. To be in line
with this semantics, pointers to open-methods should presdy-
namic dispatch too. This could be implemented by allocating
proxy function every time an address of an open-method isntak
and returning address of this proxy. Inside the function miten
simply generates call to appropriate open-method. Notiesiha-

lar to single dispatch in €+, it is not possible to take an address of
a particular open-method overrider, - returned pointel ahlays
have a polymorphic behavior.

9.3 Calling a base implementation

C++ provides a syntax to call a particular overrider of a virtual
member function directly, avoiding dynamic dispatch. Tikisften
used to call the function in the base class. To do this; quires
the user to use a fully qualified name of virtual member fuorcti
e.g.: p—>MyClass::foo(); It is likely that similar functionality
will be required for open-methods. We would have to invemhso
syntax for fixing the type of either individual or all argunten

9.4 Space Optimizations

With class hierarchies consisting of around 100 classessitte of
dispatch tables can become significant, especially whename ¢
sider support for covariant return types. Several teclesda com-
pressing and reusing of dispatch tables have been propog2t i
Proposed techniques should be directly applicable to guroagh
so we would like to implement them in the future.
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