Basics

Technicalities

Contract Programming For C++0x
WG21/N1800 and J16/05-0060

Lawrence Crowl and Thorsten Ottosen

lawrence.crowl@sun.com and nesotto@cs.aau.dk

2005-04-27



Overview

This is an annotated version of the presentation given before the
EWG in Lillehammer. All comments are specified with italics. In

general comments to a page are put on the following page. The

details of the proposal may be found in N1773.



Basics

Essentials

The idea is to extend

function declarations with pre- and post-conditions
class declarations with class invariants

namespace declarations with namespace invariants

Notice that contracts are put on declarations and not on
definitions. This is essential if the compiler is to take optimal
advantage of the contracts.

Postcondition and invariants are only meant to be executed in
debug-builds whereas it might be feasible to include some or all
precondition checks.

The precondition can be generated at the call-site so the error is
correctly reported in the caller and not in the callee.



Basics

Pre- and postconditions
Example: vector<T>::push_back()/begin()
void push_back( const T& val )

precondition {
size() < max_size();

}

postcondition {
back() == val;
size() == __old size() + 1;
capacity() >= __old capacity();

iterator begin()

postcondition( result ) {
it ( empty() )
result == end();

Technicalities



Basics

Pre- and postconditions (comments)

So this is how pre- and postconditions look like. In the
postcondition of push_back() , the keyword __old is applied
to an expression; the meaning is to take a copy of the
expression before entering the function body and then compare
it with something in the postcondition.

Obviously a better keyword than __old must be found.

In the postcondition of begin() we see how we can get a const
reference to the return value of the function, here we name it
result . This construct makes it easier to specify postconditions
for function with multiple exists.

Also note how we may embed if-statements in the contracts.

Postconditions will disable contracts when calling other functions
to avoid problems with infinite recursion.



Basics

Class invariants
Example: vector<T> invariant

static invariant

{
is_assignable<T>::value
: "value_type must be Assignable" ;
is_copy_constructible<T>::value
. "value_type must be CopyConstructible" ;
}
invariant
{

( size() == 0 ) == empty();

size() == std::distance( begin(), end() );
size() == std::distance( rbegin(), rend() );
size() <= capacity();

capacity() <= max_size();



Basics

Class invariants (comments)

e The first invariant is evaluated at compile-time like the proposed
static_assert() . The intend is that the comment is printed
by the compiler on failure.

e The second invariant is evaluated at runtime in debug builds.
Calls to the invariant will be generated at the end of the
constructor body and before calls to pre- and postconditions on
public functions. This order is necessary since pre- and
postconditions might rely on a valid object.



Basics

Namespace invariants

Example: namespace invariant

namespace foo

{

int buffer_size;
int* buffer;
invariant
{
buffer_size > 0;
buffer I= 0;
}
static invariant
{
sizeof( int ) >= 4 : "int must be 32 bit";
}

Technicalities



Motivation (1)

Minimize the need for separate documentation and implementation

e Any kind of redundancy eventually leads to code and
documentation being out of sync

e Natural language is remarkably bad for precise statements

e So remove redundancy by turning comments into code

/**

* Removes the last element of the container.
* |t is required that such an element exists.
*

void pop_back();

void pop_back()
precondition { not empty(); }
postcondition { size() == __old size() - 1; }



Basics

Motivation (2)
It can enable the compiler to generate faster code

o If the compiler can determine the precondition is fulfilled, the call
to the precondition can be removed

e The compiler can assume all contracts are true in the body of
functions

void foo( int i)
precondition { i % 2 ==0; }
{

.i“/: 2; /Il safe to do 'i »= 1
inline void foo_bar( int* p )

{ ...

if( p) { ..}

void bar( int* p )
precondition { p !'= NULL; }
{ ..

foo_bar(p);



Basics

Motivation (2) (comments)

e The compiler can always assume preconditions and invariants to

be true before compiling the body of a function; and similar, it
can always assume postconditions and invariants to be true after
a function call.

In the function foo() the precondition enables the compiler to
optimize a division; this optimization would not have been
possible without the precondition because i might be a negative
number.

e When inlining foo_bar()  inside bar() the compiler can

propagate the precondition of bar() to perform dead-code
elimination.



Basics

Motivation (3)

Improves communication between designers and programmers
in large projects (Jack Reeves argued that was a major reason
for C++’s success in the 90’s)

¢ Inheritance is easier to use correctly (pre- and postconditions
inherited)

e Improve C++'s role in programming courses (teachers will love
this)

e It might make static analysis tools more powerful
e |t will benefit C++’s image as a secure language
e |t gives us a safer library for use in teaching C++

T operator[]( size_type off )
precondition { off < size(); }



Basics

Motivation (3) (comments)

e Sometimes it is OK to make virtual functions public  or

protected ; pre- and postconditions will be "inherited" so when
the programmer override the virtual function, he does not need
to repeat these.

Security is becoming a bigger and bigger issue. The C
committee are working on a new version of the C library which is
less prone to buffer overruns. In C++ we should strive for more
general approaches to security instead of just fixing a particular
library function.

Teachers and C++ committee members often ask for a more
secure version of the standard library for use in programming
courses. If we apply contracts to the standard library, we can
check many common errors like out-of-range in the subscript
operator.



Basics Technicalities

Motivation (4)

Complements concepts well

template< class T >
concept EqualityComparable

{
bool operator==( T I, T r )
postcondition( result )
{
result == I( I I=r);
}
bool operator!'=( T I, T r )
postcondition( result )
{
result == I( | == r);
}
¥

Benefit: you only specify the contracts once



Basics

Motivation (4) (comments)

The concepts proposals deal exclusively with structure and
types.

A concept in the real world has both syntax and semantics—
using Contract Programming we can attach semantics to our
concept.

Remark: recall that the postcondition will disable all contracts to
avoid infinite recursion.

As an example, imagine we could put contracts on a Container
concept. Then we did not have to specify the contracts on the N
implementations of this concept, but only once in the concept
definition itself.



Technicalities

Observations

e The suggested syntax should allow minimal changes to existing
parsers

e We have some implementation experience (Digital Mars C++, D)
— fairly easy to implement (3 man-months)

e Will require ways to disable run-time checks

void critical_for_performance()

{

Iprecondition

{
}

/I preconditions disabled here

}

e (remark: not part of proposal yet)



Technicalities

Elements of runtime assertions

o |f an assertion is violated at runtime, terminate() is called,
but behavior may be customized

typedef void (*broken_contract_handler)();

broken_contract_handler
set_precondition_broken_handler(
broken_contract_handler r ) throw();

e Calling a function inside contract scope is subject to the same
requirements as a call inside a const member function —-
prohibits accidental side-effects



Technicalities

Elements of runtime assertions (comments)

e The fact that you cannot call non-const member functions within
contracts in member functions will prevent some accidental
side-effects.

e Moreover, because the compiler knows that contract scope is
special, it can utter warnings when it detects a side-effect inside
a contract. This is a major benefit compared a library solution,
because inside the function body, the compiler cannot say
side-effects should not happen.



Technicalities

Function pointers

e Indirect calls via function pointers will check pre- and
post-conditions

e How?

e step 1:

e generate function with two entry points

e entry 1: at the beginning of the precondition

e entry 2: after the precondition and before function body
e Step 2:

e a function pointer would point to entry 1

e anormal function call might dispatch to entry 1 or 2 (it

depends)



Subcontracting

Pre- and postconditions are inherited on virtual functions

struct Computation
{ virtual int compute( int r ) const = 0
precondition

{
r> 0
}
postcondition( result )
{
result > O;
}

h
struct MyComputation : public Computation
{
virtual int compute( int r ) const {
return (int)std::sqrt( float(r) );
}

Technicalities



Technicalities

Subcontracting (comments)

¢ |n this example, the programmer does not need to repeat the
pre- and postconditions when he override the function. So there
is no way sub classes can escape the contract of the base class.

e The declaration in a sub class can add to the postcondition to
make it stronger; we could also allow weaker preconditions, but
good examples of that put to use are rare and the misuses many.



Technicalities

Summary

e Fits many strategic goals of C++

e Performance
e Teaching programming
e Security

e Other benefits

¢ Makes comments into code and removes redundancy
e Complements Concepts
e Emphasize C++ as a language with design in interfaces

e Fairly easy to implement



Technicalities

Summary (comments)

e |t is worth noticing that something that makes C++ stand out
from other languages is that we can distinguish interfaces from
implementations; the interface goes in the header file and
documents the design of our classes.

e This is major benefit of C++. Nevertheless many people do not
like this aspect of C++; we need to give those people more
rewards for writing a separate declaration and Contract
Programming is a big step in that direction.



	Basics
	Technicalities

