
Basics Technicalities

Contract Programming For C++0x
WG21/N1800 and J16/05-0060

Lawrence Crowl and Thorsten Ottosen
lawrence.crowl@sun.com and nesotto@cs.aau.dk

2005-04-27

Basics Technicalities

Overview

This is an annotated version of the presentation given before the
EWG in Lillehammer. All comments are specified with italics. In
general comments to a page are put on the following page. The
details of the proposal may be found in N1773.

Basics Technicalities

Essentials

The idea is to extend

• function declarations with pre- and post-conditions

• class declarations with class invariants

• namespace declarations with namespace invariants

• Notice that contracts are put on declarations and not on
definitions. This is essential if the compiler is to take optimal
advantage of the contracts.

• Postcondition and invariants are only meant to be executed in
debug-builds whereas it might be feasible to include some or all
precondition checks.

• The precondition can be generated at the call-site so the error is
correctly reported in the caller and not in the callee.

Basics Technicalities

Pre- and postconditions

Example: vector<T>::push_back()/begin()

void push_back(const T& val)
precondition {

size() < max_size();
}
postcondition {

back() == val;
size() == __old size() + 1;
capacity() >= __old capacity();

}

iterator begin()
postcondition(result) {

if (empty())
result == end();

}

Basics Technicalities

Pre- and postconditions (comments)

• So this is how pre- and postconditions look like. In the
postcondition of push_back() , the keyword __old is applied
to an expression; the meaning is to take a copy of the
expression before entering the function body and then compare
it with something in the postcondition.

• Obviously a better keyword than __old must be found.

• In the postcondition of begin() we see how we can get a const
reference to the return value of the function, here we name it
result . This construct makes it easier to specify postconditions
for function with multiple exists.

• Also note how we may embed if-statements in the contracts.

• Postconditions will disable contracts when calling other functions
to avoid problems with infinite recursion.

Basics Technicalities

Class invariants
Example: vector<T> invariant

static invariant
{

is_assignable<T>::value
: "value_type must be Assignable" ;

is_copy_constructible<T>::value
: "value_type must be CopyConstructible" ;

}

invariant
{

(size() == 0) == empty();
size() == std::distance(begin(), end());
size() == std::distance(rbegin(), rend());
size() <= capacity();
capacity() <= max_size();

}

Basics Technicalities

Class invariants (comments)

• The first invariant is evaluated at compile-time like the proposed
static_assert() . The intend is that the comment is printed
by the compiler on failure.

• The second invariant is evaluated at runtime in debug builds.
Calls to the invariant will be generated at the end of the
constructor body and before calls to pre- and postconditions on
public functions. This order is necessary since pre- and
postconditions might rely on a valid object.

Basics Technicalities

Namespace invariants
Example: namespace invariant

namespace foo
{

int buffer_size;
int* buffer;

invariant
{

buffer_size > 0;
buffer != 0;

}

static invariant
{

sizeof(int) >= 4 : "int must be 32 bit";
}

}

Basics Technicalities

Motivation (1)

Minimize the need for separate documentation and implementation

• Any kind of redundancy eventually leads to code and
documentation being out of sync

• Natural language is remarkably bad for precise statements

• So remove redundancy by turning comments into code

/**
* Removes the last element of the container.
* It is required that such an element exists.
*/
void pop_back();

void pop_back()
precondition { not empty(); }
postcondition { size() == __old size() - 1; }

Basics Technicalities

Motivation (2)
It can enable the compiler to generate faster code

• If the compiler can determine the precondition is fulfilled, the call
to the precondition can be removed

• The compiler can assume all contracts are true in the body of
functions

void foo(int i)
precondition { i % 2 == 0; }

{ ...
i /= 2; // safe to do ’i »= 1’

inline void foo_bar(int* p)
{ ...

if(p) { ... }

void bar(int* p)
precondition { p != NULL; }

{ ...
foo_bar(p);

Basics Technicalities

Motivation (2) (comments)

• The compiler can always assume preconditions and invariants to
be true before compiling the body of a function; and similar, it
can always assume postconditions and invariants to be true after
a function call.

• In the function foo() the precondition enables the compiler to
optimize a division; this optimization would not have been
possible without the precondition because i might be a negative
number.

• When inlining foo_bar() inside bar() the compiler can
propagate the precondition of bar() to perform dead-code
elimination.

Basics Technicalities

Motivation (3)

• Improves communication between designers and programmers
in large projects (Jack Reeves argued that was a major reason
for C++’s success in the 90’s)

• Inheritance is easier to use correctly (pre- and postconditions
inherited)

• Improve C++’s role in programming courses (teachers will love
this)

• It might make static analysis tools more powerful

• It will benefit C++’s image as a secure language

• It gives us a safer library for use in teaching C++

T operator[](size_type off)
precondition { off < size(); }

Basics Technicalities

Motivation (3) (comments)

• Sometimes it is OK to make virtual functions public or
protected ; pre- and postconditions will be "inherited" so when
the programmer override the virtual function, he does not need
to repeat these.

• Security is becoming a bigger and bigger issue. The C
committee are working on a new version of the C library which is
less prone to buffer overruns. In C++ we should strive for more
general approaches to security instead of just fixing a particular
library function.

• Teachers and C++ committee members often ask for a more
secure version of the standard library for use in programming
courses. If we apply contracts to the standard library, we can
check many common errors like out-of-range in the subscript
operator.

Basics Technicalities

Motivation (4)
Complements concepts well

template< class T >
concept EqualityComparable
{

bool operator==(T l, T r)
postcondition(result)
{

result == !(l != r);
}

bool operator!=(T l, T r)
postcondition(result)
{

result == !(l == r);
}

};

Benefit: you only specify the contracts once

Basics Technicalities

Motivation (4) (comments)

• The concepts proposals deal exclusively with structure and
types.

• A concept in the real world has both syntax and semantics—
using Contract Programming we can attach semantics to our
concept.

• Remark: recall that the postcondition will disable all contracts to
avoid infinite recursion.

• As an example, imagine we could put contracts on a Container
concept. Then we did not have to specify the contracts on the N
implementations of this concept, but only once in the concept
definition itself.

Basics Technicalities

Observations

• The suggested syntax should allow minimal changes to existing
parsers

• We have some implementation experience (Digital Mars C++, D)
=⇒ fairly easy to implement (3 man-months)

• Will require ways to disable run-time checks

void critical_for_performance()
{

...
!precondition
{

// preconditions disabled here
}

}

• (remark: not part of proposal yet)

Basics Technicalities

Elements of runtime assertions

• If an assertion is violated at runtime, terminate() is called,
but behavior may be customized

typedef void (*broken_contract_handler)();

broken_contract_handler
set_precondition_broken_handler(

broken_contract_handler r) throw();

• Calling a function inside contract scope is subject to the same
requirements as a call inside a const member function =⇒
prohibits accidental side-effects

Basics Technicalities

Elements of runtime assertions (comments)

• The fact that you cannot call non-const member functions within
contracts in member functions will prevent some accidental
side-effects.

• Moreover, because the compiler knows that contract scope is
special, it can utter warnings when it detects a side-effect inside
a contract. This is a major benefit compared a library solution,
because inside the function body, the compiler cannot say
side-effects should not happen.

Basics Technicalities

Function pointers

• Indirect calls via function pointers will check pre- and
post-conditions

• How?

• step 1:
• generate function with two entry points
• entry 1: at the beginning of the precondition
• entry 2: after the precondition and before function body

• step 2:
• a function pointer would point to entry 1
• a normal function call might dispatch to entry 1 or 2 (it

depends)

Basics Technicalities

Subcontracting
Pre- and postconditions are inherited on virtual functions

struct Computation
{ virtual int compute(int r) const = 0

precondition
{

r > 0;
}
postcondition(result)
{

result > 0;
}

};
struct MyComputation : public Computation
{

virtual int compute(int r) const {
return (int)std::sqrt(float(r));

}
};

Basics Technicalities

Subcontracting (comments)

• In this example, the programmer does not need to repeat the
pre- and postconditions when he override the function. So there
is no way sub classes can escape the contract of the base class.

• The declaration in a sub class can add to the postcondition to
make it stronger; we could also allow weaker preconditions, but
good examples of that put to use are rare and the misuses many.

Basics Technicalities

Summary

• Fits many strategic goals of C++

• Performance
• Teaching programming
• Security

• Other benefits

• Makes comments into code and removes redundancy
• Complements Concepts
• Emphasize C++ as a language with design in interfaces

• Fairly easy to implement

Basics Technicalities

Summary (comments)

• It is worth noticing that something that makes C++ stand out
from other languages is that we can distinguish interfaces from
implementations; the interface goes in the header file and
documents the design of our classes.

• This is major benefit of C++. Nevertheless many people do not
like this aspect of C++; we need to give those people more
rewards for writing a separate declaration and Contract
Programming is a big step in that direction.

	Basics
	Technicalities

