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Abstract 
Assume that we have a basic notion of a concept. A concept is a specification of the 
properties a type must have to meet a template definition’s requirement on a template 
type parameter. In other words, concepts provide a type system for types. What syntax 
would be suitable for concepts in C++? What rules for composition of concepts are 
needed to express general requirements elegantly and to express common requirement 
simply? How do concepts integrate with other aspects of templates and generic 
programming techniques? This note answers such questions providing a perfect 
integration of concepts into the C++ syntax and type system, providing parameterized 
concepts, concept inheritance, overloading of templates based on concepts, and a 
simplified notation for template definitions and use. For ease of implementation, this 
system maps directly onto existing mechanisms. 
 

Basic concepts 
Fundamentally, a concept is the type of a type. How to express simple concepts is left to 
a companion paper [Stroustrup,2003b]. Here, we will simply assume that basic concepts 
can be expressed: 
 
 concept Value_type { 
  // can be copied 
 }; 
 
 concept Arithmetic { 
  // can be added, subtracted, multiplied, and divided 
 }; 
 
For example int and complex<float> match both Value_type and Arithmetic, whereas 
int* and std::string match Value_type but not Arithmetic. 
 

Template declaration syntax 
Given concepts, how can we use them in template declarations? 



 

Basic syntax 
Consider a traditional template: 
 
 template<class T> void f(T); 
 
Here, “class T” is read “for all types T”. If f() takes only arithmetic types, we need a 
specification “for all arithmetic types T” or “for all types T, such that T is arithmetic”. 
That is: 
 
 template<Arithmetic T> void f(T); 
 
We can then write 
 
 f(1);    // ok: int is Arithmetic 
 f(complex<int>(1,2)); // ok: complex is Arithmetic 
 f(“asdf”);   // error: char[] is not Arithmetic 
 
That’s the basic use and the syntax is obvious and fits smoothly with the traditional 
<class T> or <typename T> notation. How template arguments are checked for 
conformance to the requirements on their corresponding parameters is discussed in 
[Stroustrup,2003b]. As ever, each template parameter can name a distinct type. For 
example: 
 
 template<Random_access_iterator Ran> 
  void sort(Ran, Ran); 
 template<Forrward_iterator For1, Forward_iterator For2> 
  For1 merge(For1,For1,For2,For2); 
 
Here, sort() takes a pair of Random_access_iterators, each of the same type, whereas 
merge() takes two pairs of Forward_iterators where each pair must be of the same type 
and each pair can be of a different type from the other. That’s exactly as specified by the 
standard for sort() and merge(). The difference is that here the rules are expressed 
directly in the language, so that a compiler can use that information and a human reader 
has a better chance to understand the code. In other words, requirements that are not 
understood by C++98 compilers can now be expressed and systematically checked. 
 Of course, class can be used as ever with its meaning unchanged; that is, to 
indicate that a template argument must be a type, and not for example an int value. For 
example: 
 
 template<class T> void f(T); // T can be any type 
 template<Forward_iterator For, class T> For find(For, For, const T&); 
 
Clearly, this syntax does not introduce any new ambiguities. 
 



A simplified syntax 
The C++ template syntax is often criticized for being “clumsy” or verbose. The counter-
opinion is that it’s simple, clear, and unambiguous. With the introduction of concepts, it 
becomes possible to eliminate the prefix template< … > in many cases where it is not 
necessary to name the template argument type. We simply use a concept rather than a 
type to introduce an argument. For example: 
 
 void f(Arithmetic a);     // equivalent to template<Arithmetic A> void f(A a); 
 
That is, a concept used in place of a function argument type implicitly declares a function 
template with a template argument of a type that matches that concept. The old syntax is 
still needed where a return type is a template argument (because the return type appears 
lexically before function arguments) or when two template arguments must be of the 
same type, and for class templates. For example: 
 
 template<Arithmetic A> A f1(A a); 
 template<Arithmetic A> A f2(int); 
 void f3(Arithmetic a); 
  
For f1() we need to name the Arithmetic type A so that we can use it twice, for f2() we 
need to name the type to use it as a return type, whereas for f3() we can do without 
naming it. 
 
 template<Random_iterator RA> void g1(RA p, RA q);  
 void g2(Random_iterator p1, Random_iterator p2);  
 
For g1(), we name the Random_iterator type and use it twice. That implies that p and q 
are of the same type. For g2(), we did not name the Random_iterator types and 
(consequently) didn’t state that the type of p1 and p2 had to be the same. Therefore, p1 
and p2 can be of different types. 
 Finally consider class templates. For example: 
 
 template<Value_type V> class vector { /* … */  }; 
 
In analogy to the function template case, we could consider a simplification of this case: 
 
 class vector<Value_type> { /* … */ }; 
 
This looks like a specialization. If it was accepted, we’d have to except this usage from 
the rule that we can’t specialize without a general template. Furthermore, in most class 
templates, we’d like to refer to a template argument type within the template. For 
example: 
 
 template<Value_type V> class vector { 
  V* elements; 
  // … 



  }; 
 
For the “simplified” syntax, we don’t have a name to use, so we’d need yet-another new 
rule to allow us to refer to the argument type. Thus, that “simplification” is best avoided. 
 In function templates, we can use decltype as proposed in [Järvi,2003] to refer to 
an otherwise unnamed argument type. For example: 
 
 void f(Arithmetic a) // equivalent to template<Arithmetic A> void f(A a) 
 { 
  decltype(a) b;  // b is of the same type as the variable a 
  auto c = a;  // c is of the same type as the value a 
  // … 
 } 
 

Relation to the decltype/auto proposal 
With the simplified syntax, what would be the equivalent to the traditional 
template<class T>? That would be auto arguments as suggested in [Järvi,2003]. For 
example: 
 
 void f(auto a); // equivalent to template<class T> void f(T a) 
 
That is, auto in place of a function parameter type implicitly declares a template with a 
type template parameter that matches any type template argument. Looking at it that way, 
it becomes obvious how the syntax could be simplified for many return types: 
 
 auto f(auto a);   // equivalent to template<class T, class U> T f(U a) 
 Iterator f(Iterator p); // equivalent to template<Iterator T, Iterator U> T g(U) 
 
This is nice for consistency, but probably not particularly useful because there typically is 
a relationship between the argument type and the return type. However, the other half of 
the auto proposal, decltype(), could be used here. For example: 
 
 auto f(auto a) -> decltype(a); // equivalent to template<class T> T f(T) 
 
That is, we can mention a template argument type without actually naming it. 
 So, auto simply denotes the most general (the least constrained) concept. It 
follows that any concept might be used in place of auto. For example: 
 
 Iterator p = f(x); // p gets the type of the value returned by f(x) 
    // provided that value is of an Iterator type 
 
 Iterator f(Iterator a) -> decltype(a); // f returns an Iterator of the type it accepts 
 



To complete the generalization based on the observation that auto is the name for the 
most general concept, it could be allowed instead of class to introduce an arbitrary 
template type argument: 
 
 template<auto T> T f(T); // equivalent to template<class T> T f(T) 
 

It is a separate question whether the complexity of having two ways of saying 
things outweighs the advantage of being able to say simple things simply. My inclination 
is to accept both styles. 

It may be possible to extend the meaning of auto so as to accept non-type 
arguments. Gabriel Dos Reis is considering the feasibility and desirability of 
distinguishing auto from class in this way. For now, we will assume that auto matches 
any type but not any non-type. 
 

Composing concepts 
Concepts model types. Consequently, most (possibly all) of the mechanisms we use for 
constructing types from other types are useful for constructing concepts out of other 
concepts. 
 

Parameterized concepts 
Parameterized (templatized) concepts are essential for describing types that are 
constructed from templates. For example: 
 
 template<Value_type T> concept Forward_iterator { 
  // iteration operations for a sequence of Ts 
 }; 
 
 template<Value_type T> concept Container { 
  // iteration over a sequence of Value_types 
 }; 
 
These concepts might be used like this: 
 
 template<Value_type T> class vector { 
  / / … 
 }; 
 
 template<Container<int> C>  C::iterator find(C& c, int val) 
 { 
  return find(c.begin(),c.end(), val); 
 } 
 
 vector<int> vi; 
 int a[10]; 



 // … 
 vector<int>::iterator p = find(vi,7); // ok: vector<int> is a container 
 int* q = find(a,7);    // error: an array is not a Container 
 
Note that typename is not needed to prefix C::iterator because Container must be in 
scope and is known to name a type. 
The function template find() can equivalently be expressed using the terser “simplified 
syntax”: 
 
 auto  find(Container<int>& c, int val) 
 { 
  return find(c.begin(),c.end(), val); 
 } 
 
 vector<int> vi; 
 // … 
 auto p = find(vi,7); 
 
How do we generalize this to any container of any value type? It is most obviously 
expressed using the traditional template syntax 
 
 template<Value_type T, Container<T> C, Value_type U> 
 C::iterator find(C& c, U val) 
 { 
  return find(c.begin(),c.end(),val); 
 } 
 
 vector<int> vi; 
 list<int> lsti; 
 vector<double> vd; 
 // … 
 vector<int>::iterator p1 = find(vi,7);  
 vector<int>::iterator p2 = find(vi,7.7); 
 list<int>::iterator p3 = find(lsti,7); 
 vector<double>::iterator p4 = find(vd,7); 
 
This can obviously be reduced to 
 
 template<Value_type T> auto find(Container<T>& c, Value_type val) 
 { 
  return find(c.begin(),c.end(),val); 
 } 
  
 vector<int> vi; 
 list<int> lsti; 
 vector<double> vd; 



 // … 
 auto p1= find(vi,7);  
 auto p2 = find(vi,7.7); 
 auto p3 = find(lsti,7); 
 auto p4 = find(vd,7); 
 
To further reduce this example, we need to extend the rule that a concept can stand for a 
type that matches it in a function argument declaration to the use of a concepts in a 
qualification of a concept: 
 
 auto find(Container<Value_type>& c, Value_type val) 
 { 
  return find(c.begin(),c.end(),val); 
 } 
 
 vector<int> vi;  
 list<int> lsti;  
 vector<double> vd; 
 // …  
 auto p1= find(vi,7);  
 auto p2 = find(vi,7.7); 
 auto p3 = find(lsti,7); 
 auto p4 = find(vd,7); 
 
How would we declare find() without also defining it? 
 
 template<Value_type T, Container<T> C, Value_type V) 
  C::iterator find (C&c, V val); 
 
or 
 
 auto find(Container<Value_type>& c,Value_type val)->decltype(c)::iterator; 
 
Neither declaration is particularly pretty. 
 

Multi-argument constraints 
Some template code makes sense only if several template arguments are suitably related. 
For example: 
 
  template<class T, class U> void f(T t, U u) { g(t,u); } 
 template<class A, class B, class C> void h(A a, B b, C c) { a = b+c; } 
 
Obviously, f() must require that a function g() exist for a give pair of template arguments 
T and U. Similarly, h() must require that for a given set of template arguments { A,B,C } 
the sum of an B and a C must be assignable to an A. 



 We might want to place constraints on the arguments to f() for logical reasons. 
However, the only constraints we need to place on f()’s arguments for implementation 
reasons is that they can be passed along to g(). How might we express that constraint? 
The constraints are easy to express. For example: 
 
 template<Value_type X, Container Y> concept G { 
  constraints(X a, Y y) { g(x,y); } 
 }; 
 
However, there is no elegant way of applying that concept to f(). By twisting our logic a 
bit, we can express the constraint involving two arguments as a constraint on a third 
argument:  
 
 template<class T, class U, G<T,U> Unused> void f(T t, U u) { g(t,u); } 
 
That Unused parameter will always be deduced from the first two parameters. That is, it 
isn’t really a parameter; it is not used to specify an argument. All it does is to constrain 
the other two arguments: If G<T,U> can be formed for specific types T and U, a 
specialization of f() will be valid; otherwise that specialization will fail. 
 Apparently, this suffices to specify any constraints involving multiple template 
arguments, so the question is whether the notation is acceptable. After looking at a few 
examples, my opinion is that that idiom is important enough to deserve to be supported 
by syntax and odd enough to be condemned as “yet another obscure hack” if it isn’t. 
Therefore, we can use a “where clause” to express multi-parameter constraints: 
 
 template<class T, class U> where G<T,U> void f(T t, U u) { g(t,u); } 
 
The semantics is as specified above. 
 

Derived concepts 
Consider the standard library iterators. Their requirements form a hierarchy. It follows 
that a good model of iterators also form a hierarchy. For example, consider just 
Forward_iterator and Randon_access_iterator (ignoring the rest for simplicity): 
 
 concept Forward_iterator<Value_type> { 
  // forward iterator facilities 
 }; 
 
 concept Random_access_iterator<Value_type T> : Forward_iterator<T> { 
  // facilities provided by a random access iterator 
  // over and above what a forward iterator provides 
 }; 
 
In other words, a Random_access_iterator is a Forward_iterator, so that any type that 
is a Random_access_iterator is also a Forward_iterator. We see no point in defining 



visibility of concept bases. Obviously, as with classes, parameterization and derivation 
can be used in combination for concepts. 
 We see no reason to complicate the notion of concept with private or protected 
inheritance of concepts. 
 

Composition operators 
Consider a couple and useful simple concepts: 
 
 concept Comparable { 
  // can be compared using <. <=, ==, and != 
 }; 
 
 concept Value_type { 
  // can be copied 
 }; 
 
How can we require that a type must be both Comparable and a Value_type? Multiple 
inheritance provides an obvious solution: 
 concept Comparable_value : Comparable, Value_type { }; 
 
 void f(Comparable_value cv); 
 
However, that requires the introduction of a new named concept. That may be 
inconvenient. Instead, we might express the idea directly: 
 
 template<Comparrable && Value_type T> void f(T cv); 
 
or even more directly: 
 
 void f(Comparable && Value_type cv); 
 
Concepts can be combined using the three logical operators && (and), || (or) and ! (not). 
Assuming that Pointer and Reference are concepts, this is another example 
 
 void g(Comparable && !Reference); 
 void h(Pointer || Reference); // access indirectly 
 
Here is a more realistic example: 
 
 template<RandomIterator<ValueType && Comparable> Iter> 
 void sort(Iter first, Iter last); 
 
 template<Container<ValueType && Comparable> C> 
 void sort(C& c) 
 { 



  sort(c.begin(),c.end()); 
 } 
 
 vector<int>vi; 
 vector<complex<float>> vc; 
 int ai[10]; 
 // … 
 sort(vi); 
 sort(vc); // error: vc is not a Container of Comparables 
 sort(ai); // error: ai is not a Container 
 
This last function could also be defined using the simplified syntax 
 
 void sort(Container<ValueType && Comparable & c); 
 

Template overloading 
Given concepts, we can obviously select templates based on the template argument types. 
If all arguments match their corresponding concepts, an instantiation is possible, 
otherwise not. For example: 
 
 template<Pointer P> class List; // List of pointers 
 template<Comparable> class List; // List of types with compare operations 
 template<Value_type> class List; // List of types with copy operations 
 
 List<int*> lst1;  // List of pointers 
 List<int> lst2;  // ??? 
 List< complex<int> > lst3; // List of value types (complex has no <) 
 List< int& > lst4;  // error: no match 
 
 class Blob { 
  // <, <=, … 
 private: 
  Blob& operator=(const Blob&); // prevent copy 
  // … 
 }; 
 
 List<Blob> lst5; // List of Comparable 
 
How about lst2? For any reasonable definition an int is both a Comparable and a 
Value_type. If neither Comparable nor Value_type are derived from each other, we 
have an ambiguity and the declaration of lst2 is an error. However, we could resolve the 
problem by providing a hierarchy of types and apply the usual overload resolution rules 
and choose the most specialized implementation: 
 
 concept Value_type { /* … */ }; 



 concept Comparable : Value_type { /* … */ }; 
 
 List<int> lst2; // List of Comparable 
 
Naturally, this requires foresight in the definition of the concepts. If that isn’t feasible or 
convenient, foresight can be applied to the definitions of List. For example: 
 
 template<Comparable && Value_type> class List;  // #1 
 template<Value_type && !Comparable > class List;  
 template<Comparable && !Value_type> class List; 
 
 List<int> lst2; // List #1 
 
This is messy. If having to choose among valid definitions of a template is shown to be 
common and important, we must provide a mechanism for expressing a preference order 
among templates or a way of explicitly specifying a template at a point of use. For 
example; 
 
 preference List<Comparable>, List<Value_type>;  
 
A template mentioned before another in a preference-list will be preferred. 
 

Defined concept match 
When I define a type, I might like to say that it is intended to match a know concept. For 
example: 
 
 concept C { /* … */ }; 
 class X { /* … */ }; // X matches C 
 
Unfortunately, that comment is only a comment. A compiler can’t verify that pious wish, 
and despite my best efforts, I might have made a mistake in the definition of X. However, 
I can easily check: 
 
 void is_C(C) {} 
 void X_checker(X x) {  is_C(x); } 
 
Now, X_checker() will compile only if X is a C. 
 This can be seen as an elegant technique, or as a sleazy hack. If the latter view 
prevails, we could introduce special syntax to say “X matches Y”. The obvious syntax is 
the base class syntax: 
 
 class X : C { /* … */ }; 
 



After all, “:” or “: public” are often pronounced “is a” or “is a kind of”. If a type needs to 
be checked against a concept in a place separate from it’s definition, the is_C() technique 
seems perfectly adequate. 
 It is essential that there be no language requirement or widespread “style rule” to 
the effect that a class should be defined with its set of concepts. 
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