Doc No: SC22/ W21/ N1494
J16/ 03- 0077

Dat e: 09/ 09/ 2003
Proj ect: JTC1. 22. 32
Reply to: Dani el F. Gutson

dani el gut son@wotmai |l . com
Pure inplenentati on nethod decl arati on

1. The Probl em

When declaring a nethod intended to inplement a specific

abstract nethod in a base class, there is no way to warrant the
connection other than the nane and signature matching.

If, by maintenance, mistake, or lack of docunentation, sonmeone

changes the nmethod in the base/abstract class, the binding is |ost and
the code will still conpile while no notification will be issued at all
Additionally, there is no | anguage-standard way of evaluating the

i mpact of changing an interface or base class nethod (i.e., all the

“di sconnections” it would cause to the derived cl asses).

However, it is quite conmon to make changes to base cl asses, and

also -in "historical” terms- to start meking a class, then generalizing
it with a base class, and then nodi fying the base cl ass.

Finally, there is no standard way to expliciting in the code the
programmer’s intention for specifying when a method is a ~“pure’
i mpl enentation, expecting that the nethod is defined in a base class.

The consequences of not addressing this problemare

- need for additional documentation

- static analysis tool for evaluating the inpact of changing a base cl ass,
or a tinme demandi ng anal ysis looking for all the derived classes where
the nmethod is inplenmented

- the possibility of inserting a silent change of undesirabl e behavi or

The categories where this proposal fits are:

* inprove support for systens programming

* inmprove support for library building

* make C++ easier to teach and learn (see bel ow)

2. The Proposa
Thi s paper proposes to add the inplenmentation’ s counterpart of the
abstract nethod decl arati on:

virtual ... > 0;

virtual ... >= 0;

When a nmethod is declared as

virtual nethod(....) > O;
means t hat
- the method will be inplemented in this class

- the method MJST be declared in sone base cl ass.
Met hods declared in this way could be naned “pure inplenentation
met hods” .

When a nmethod is declared as
virtual nmethod(....) >= 0;
nmeans that the nethod is semantically a conbination of the

virtual ... =0
and
virtual ... >0
decl arations, viz:
- the nethod can be not inplenmented in this class
- the class cannot be instantiated
- the met hod MUST be declared in sone base cl ass.

These decl arations neither change run tinme behavi or nor code
generation, but conpile-time checking only.

A virtual ... > 0 methods behaves exactly the sane way as a
virtual ... method, plus the additional checking nmentioned above.
Simlarly, a virtual ... >= 0 behaves as a virtual ... = 0 nethod, plus

the checking of existence in a base class.

When the checking rules are not acconplished, a conpiler error shal
be generat ed.

A net hod declared as virtual = 0 or virtual only in a base cl ass,

can be declared either as virtual >0 or virtual >=0 in a derived cl ass.
A net hod declared as virtual >= 0 in a (non-base) class, can be decl ared
as either virtual >= 0 or virtual >0 in a derived cl ass.

A nmet hod declared as virtual >0 in a (non-base) class, can only be
declared as virtual >0 in a nore derived cl ass.

2.1 Basic Cases

struct Base

{
virtual void f() = 0;
b
class Der : public Base
{
virtual void f() >0
{ /'* do sonething */ }
virtual void g() > O; /1 error: g does not exist in Base
3

2.2 Advanced Cases
This proposal is applicable to virtual inheritance al so.

struct Base

{
virtual void f() = 0;
virtual int g() const = 0O;
3
class DerF : virtual public Base
{

virtual void f() >0
{ /*do something */ }
1

class DerG : virtual public Base

{
virtual int g() const >= 0;
1
class BottonmDer : public DerF, public DerG
{
virtual int g() const >0
{ /*return sonething*/ }
b

3. Interactions and I nplenentability

3.1 Interactions

Decl arations forns proposed in this paper nmay interact with

CV-qualifiers as well, being a semantic orthogonal feature.

Bei ng a new granmatical form no existing code is broken and
backward conpatibility is maintained.

This feature perforns an idiomatic closure with the virtual =0 idi om
as far as the inplenentation counterpart is provided.

It helps to learn C++ due to its declaration consistency at the

| anguage scope.

3.2 Inplenentability

This feature applies to the conpiler-tine phase only, and can be
i mpl enmented by querying the conpiler tables as an additiona
checki ng.

