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Executive Summary:
The aim of thisreport is:

» to gve the reader a model of time and space overheads implied by use of
various C++ language and library fedaures,

» to debunk widespread myths about performance problems,

* to present techniques for use of C++ in applications where performance
meatters, and

e to present techniques for implementing C++ Standard language and library
facilitiesto yield efficient code.

As far as run-time and space performance is concerned, if you can afford to use C for
an application, you can afford to use C++ in a style that uses C++'s facilities
appropriately for that application.



This report first discusses areas where performance issues matter, such as various
forms of embedded systems programming and high-performance numerical
computation. After that, the main body of the report considers the basic cost of using
language and library facilities, techniques for writing efficient code, and the special
neals of embedded systems programming.

Performance implications of objed-oriented programming are presented. This
discussion rests on measurements of key language fadlities sipporting OOP, such as
clases, class member functions, class hierarchies, virtual functions, multiple
inheritance, and run-time type information (RTTI). It is demonstrated that, with the
exception of RTTI, current C++ implementations can match hand-written low-level
code for equivalent tasks. Similarly, the performance implications of generic
programming wsing templates are discussed. Here, however, the emphasis is on
tedhniques for effedive use. Error handling using exceptions is discussed based on
another set of measurements. Both time and space overheads are discussed. In
addition, the predictabil ity of performance of a given operation is considered.

The performance implicaions of |0Streams and Locales are examined in some detall
and many generally useful techniques for time and space optimizations are discussed
here.

The special neals of embedded systems programming are presented, including
ROMability and predictability. A separate dapter presents general C and C++
interfaces to the basic hardware facilities of embedded systems.

Additional reseach is continuing into tedniques for producing efficient C++ libraries
and programs. Please see the WG21 web site & www.dkuugdk/jtcl/sc22/wg21 for
example wde from this tedchnica report and pointers to other sites with relevant
information.
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1 Introduction

“Performance” has many aspeds — exeaution speed, code size, data size, and memory
footprint at run-time, or time and space onsumed by the eit/compilée/link process It
could even refer to the time neassry to find and fix code defects. Most people ae
primarily concerned with exeaution speed, although program footprint and memory
usage @an be citical for small embedded systems where the program is dored in
ROM, or where ROM and RAM are combined on a single chip.

Efficiency has been a major design goal for C++ from the beginning, also the
principle of “zero overheal” for any feaure that is not used in a program. It has been
a guiding principle from the ealiest days of C++ that “you don’'t pay for what you
don't use”.

Language features that are never used in a program should not have a ©st in extra
code size, memory size, or run-time. If there ae places where C++ cannot guarantee
zero overhea for unused feaures, this paper will attempt to document them. It will
also discuss ways in which compiler writers, library vendors, and programmers can
minimize or eliminate performance penalties, and will discuss the trade-offs among
different methods of implementation.

Programming for resource-constrained environments is another focus of this paper.
Typically, programs that run into resource limits of some kind are either very large or
very small. Very large programs, such as database servers, may run into limits of disk
spaceor virtual memory. At the other extreme, an embedded applicaion may be
constrained to run in the ROM and RAM spaceprovided by a single chip, perhaps a
total of 64K of memory, or even smaller.

Apart from the isaues of resource limits, some programs must interfacewith system
hardware & a very low level. Historically the interfaces to hardware have been
implemented as proprietary extensions to the compiler (often as maaos). This has led
to the situation that code has not been portable, even for programs written for a given
environment, becaise e&h compiler for that environment has implemented different
sets of extensions.

Mentions of “the Standard” or “IS” followed by a clause or paragraph number refer to
the C++ Standard — ISO/IEC 148821998 Programming Languags — C++. Sedion
numbers not preceded by “1S’ refer to locaions within this document.
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1.1 Glossary

ABC — commonly used shorthand for an Abstract Base Class — a base class (often a
virtual base clasg which contains pure virtual member functions and thus cannot
be instantiated (81S-10.4).

Access M ethod —refers to the way a memory cell or an I/O device is conneded to the
procesr system and the way in which it is addressed.

Addressng Range — a procesor has one or more aldressing ranges. Program
memory, data memory and I/O devices are all conneded to a processor
addressing range. A procesor may have special ranges which can only be
addressed with special processor instructions.

A procesor's physica address and data bus may be shared among multiple
addressing ranges.

Address Interleave — the gaps in the aldressing range which may occur when a
deviceis conneded to a processor data bus which has a bit width larger than the
device data bus.

Cache — a buffer of high-speed memory used to improve accss times to medium-
speed main memory or to low-speal storage devices. If an item is found in
cache memory (a "cade hit"), access is faster than going to the underlying
device If anitemis not found (a"cade miss"), then it must be fetched from the
lower-spedd device

Code Bloat —the generation of excessive amounts of code instructions, for instance,
from unneassry template instantiations.

Code Size — the portion of a program's memory image devoted to exeautable
instructions. Sometimes immutable data also is placed with the amde.

CrossCagst — a cat of an objed from one base class sibobjed to another. This
requires RTTI and the use of the dynamic_cast<...> operator.

Data Size — the portion of a program's memory image devoted to data with static
storage duration.

Device also 1/0 Device —this term is used to mean either a discrete 1/0 chip or an
I/0 function block in a single chip processor system. The data bus bit width is
significant in the acessmethod used for the I/O device

Device Bus, aso 1/0 Device Bus — the data bus of a device. The bit width of the
device bus may be lessthan the width of the procesor data bus, in which case it
may influence the way the deviceis addressed.

Device Register, also I1/0 Device Register — a single logical register in a device A
device may contain multiple registers located at different addresses.

Device Register Buffer —multiple contiguous registersin adevice
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Device Register Endianness— the endianness for a logical register in a device The
device register endianness may be different from the endianness used by the
compiler and proces9or.

Down-Cast — a cat of an objed from a base class sibobjed, to a more derived class
subobject. Depending on the complexity of the objed's type, this may require
RTTI and the use of the dynamic_cast<...> operator.

EEPROM - Eledrically Erasable Programmable Read-Only Memory. EEPROM
retains its contents even when the power is turned off, but can be eased by
exposing it to an eledricd charge. EEPROM is similar to flash memory
(sometimes called flash EEPROM). The principal difference is that EEPROM
requires data to be eased and written one byte & atime whereas flash memory
requires datato be eased in blocks and written one byte & atime.

Endianness— if the width of a data value is larger than the width of data bus of the
device where the value is dored the data value must be located at multiple
processor addresses.

Big-endian and little-endian refer to whether the most significant byte or the
least significant byte is locaed on the lowest (first) address

Embedded System — a program which functions as part of a device Often the
software is burned into firmware instead of loaded from a storage device It is
usually a freestanding implementation rather than a hosted one with an operating
system (81S-1.417).

Flash Memory — a non-volatile memory device type which can be real like ROM.
Flash memory can be updated by the processor system. Erasing and writing
often require special handling. Flash memory is considered to be ROM in this
document.

Heap Size —the portion of a program's memory image devoted to data with dynamic
storage duration, asociated with objeds creaed with operator new

Interleave — see adressinterleave.

[/O — Input/Output — in this paper, the term used for reading from and writing to
deviceregisters (85).

I/0O Bus — special processor addressing range used for input and output operations on
hardware registersin adevice
I/O Device—synonym for device

L ocality of Reference — the heuristic that most programs tend to make most memory
and disk acesss to locaions nea those acce=d in the recent past. Keeping
items aacessed together in locaions nea each other increases cache hits and
deaeases page faults.

Logical Register — refers to a device register treated as a single entity. A logical
register will consist of multiple physical device registers if the width of the
devicebus is less than the width of the logicd register.
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Memory Bus — a processor addressing range used when addressng data memory
and/or program memory. Some procesr architedures have separate data and
program memory buses.

Memory Device — chip or function block intended for holding program code and/or
data.

Memory Mapped 1/0O — 1/O devices conneded to the processor addressing range
which are also used by data memory.

MTBF — Meax+Time Between Failures — the statistically determined average time a
device is expeded to operate corredly without failing, used as a measure of a
hardware component's reliability. The alculation takes into aceount the MTBF of all
devices in asystem. The more devices in a system, the lower the sysitem MTBF.

Non-Volatile Memory — a memory device that retains the data it stores, even when
eledric power isremoved.

Overlays — atednique for handling programs that are larger than available memory,
older than Virtual Memory Addressing. Different parts of the program are
arranged to share the same memory, with each overlay loaded on demand when
another part of the program calls into it. The use of overlays has largely been
succealed by virtual memory addressing where it is available, but it may still be
used in memory-limited embedded environments or where predse programmer
or compiler control of memory usage improves performance

Page — a olledion of memory addresses treated as a unit for partitioning memory
between applicaions or swapping out to dsk.

Page Fault —an interrupt triggered by an attempt to accessa virtual memory address
not currently in physical memory, and thus the neal to swap virtual memory
from disk to physicd memory.

POD - shorthand for "Plain Old Data" — term used in the Standard (81S-1.815) to
describe adata type which is compatible with the eguivalent data type in C in
layout, initialization, and its abil ity to be cpied with memcpy.

PROM — Programmable Read Only Memory. It is equivalent to ROM in the cntext
of this document.

RAM —Random Access M emory. Memory devicetype for holding dataor code. The
RAM content can be modified by the processor. Content in RAM can be
accessed more quickly than that in ROM, but is not persistent through a power
outage.

Real-Time — refers to a system in which average performance and throughput must
meé defined goals, but some variation in performance of individual operations
can be tolerated (also Soft Real-Time). Hard Real-Time means that every
operation must med specified timing constraints.

ROM — Real Only Memory. A memory device type, normally used for holding
program code, but may contain data of static storage duration as well. Content
in ROM can not be modified by the procesor.
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ROM able — refers to entities that are gopropriate for placement in ROM in order to
reduce usage of RAM or to enhance performance

ROM ability — refers to the processof placing entities into ROM so as to enhance the
performance of programs written in C++.

RTTI — Run-Time Type Information. Information generated by the compiler which
makes it possible to determine & run-time if an object is of a specified type.

Stack Size —the portion of a program’'s memory image devoted to data with automatic
storage duration, also with certain bookkeegping information to manage the
code's flow of control when calling and returning from functions. Sometimes the
data structures for exception handling are also stored on the stadk (82.4.1.1).

Swap —

Swapped Out —

Swapping —the processof moving part of a program’s code or datafrom fast RAM to
a slower form of storage such as a hard disk. See &so Working Set and Virtual
Memory Addressng.

System-on-Chip (SoC) — aterm referring to an embedded system where most of the
functionality of the system is implemented on a single chip, including the
procesr(s), RAM and ROM.

Text Size —a ommon aternative name for Code Size.

UDC — commonly used shorthand for a User Defined Conversion, which refers to the
use, implicit or explicit, of a class member conversion operator.

Up-Cast — a cast of an objed to one of its base class sibobjeds. This does not
require RTTI and can use the static_cast<...> operator.

VBC — commonly used shorthand for a Virtual Base Class (81S-10.114). A single
sub-objed of the VBC is shared by every sub-objed in an inheritance graph
which declares it as a virtual base.

Virtual Memory Addressing — a tedhnique for enabling a program to address more
memory spacethan is physicdly available. Typically, portions of the memory
spacenot currently being addressed by the processor can be “swapped out” to
disk space A mapping function, sometimes implemented in specialized
hardware, translates program addresses into plysical hardware addreses. When
the processor needs to accessan addressnot currently in physical memory, some
of the data in physicad memory is written out to disk and some of the stored
memory is real from disk into physical memory. Since realing and writing to
disk is slower than accessng memory devices, minimizing swaps leals to faster
performance.

Working Set — the portion of a runnng program that at any given time is physically
in memory and not swapped out to disk or other form of storage device

WPA — Whole Program Analysis. A term used to refer to the processof examining
the fully linked and resolved program for optimization possibilities. Traditional
analysis is performed on a single translation unit (sourcefile) at atime.
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1.2 Typical Application Areas

Since no computer has infinite resources, all programs have some kind of limiting
constraints. However, many programs never encounter these limits in pradice Very
small and very large systems are those most likely to need effedive management of
limited resources.

1.2.1 Embedded Systems

Embedded systems have many restrictions on memory-size and timing requirements
that are more significant than are typical for non-embedded systems. Embedded
systems are used in various application areas as follows':

+ Scale
» Small
These systems typically use single dips containing both ROM and
RAM. Single-chip systems (System-on-Chip or SoC) in this category

typically hold approximately 32 KBytes for RAM and 32 48 or 64
KBytes for ROM?2.

Examples of applicaionsin this caegory are:

engine control for automobiles

hard disk controllers

consumer eledronic gopliances

smart cards, aso cdled Integrated Chip (IC) cards — about the
size of a aedit card, they usually contain a processor system
with code and data embedded in a chip which is embedded (in
the literal meaning of the word) in a plastic cad. A typical size
is 4 KBytes of RAM, 96 KBytes of ROM and 32 KBytes
EEPROM. An even more mnstrained smart cad in use
contains 12 KBytes of ROM, 4 KBytes of flash memory and
only 600Bytes of RAM data storage.

M edium

These systems typically use separate ROM and RAM chips to exeaite
a fixed applicaion, where sizeis limited. There ae different kinds of
memory device, and systems in this category are typically composed of
several kinds to achieve different objedives for cost and speed.
Examples of applicaionsin this caegory are:

hand-held digital VCR

printer

copy machine

digital till camera — one @mmon model uses 32 MBytes of
flash memory to hold pictures, plus faster buffer memory for

\74

! Typical sysems during the year 2003
2 These numbers are derived from the popular C8051chipset.
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» Large
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temporary image cature, and a procesor for on-the-fly image

compresson.

These systems typically use separate ROM and RAM devices, where
the aplicaion is flexible and the size is relatively unlimited.
Examples of applicaionsin this caegory are:

 Timing:

personal digital assistant (PDA) — equivalent to a personal
computer without a separate screen, keyboard, or hard dsk
digital television

set-top box

car navigation system

central controllers for large production lines of manufaduring
machines

Of course, systems with soft red-time or hard red-time @nstraints are not
necessarily embedded systems; they may run on hosted environments.

» Critical (soft real-time and hard real-time systems)

Examples of applicaionsin this caegory are:

™~

motor control

nuclea power plant control

hand-held digital VCR

mobile phone

CD or DVD player

eledronic musical instruments

hard disk controllers

digital television

digital signal processing (DSP) applicaions

> Non-critical

Examples of applicaionsin this caegory are:

1.2.2 Servers

digital still camera
copy machine

printer

car navigation system

For server applications, the performance-critical resources are typically speel
(e.g. transadions per seoond), and working-set size (which also impads
throughput and speed). In such systems, memory and data storage are
measured in terms of megabytes, gigabytes or even terabytes.

Often there ae soft real-time onstraints bounded by the neel to provide
service to many clients in a timely fashion. Some examples of such
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applicationsinclude the eentral computer of a pulic lottery where transactions
are heavy, or large scale high-performance numerical applicaions, such as
wedher forecasting, where the alculation must be completed within a cetain
time.

These systems are often described in terms of dozens or even hundreds of
multiprocesors, and the prime limiting fador may be the Mean Time Between
Failure (MTBF) of the hardware (increasing the anount of hardware results in
adeaease of the MTBF — in such a cae, high-efficiency code would result in
greder robustness.
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2 Language Features:
Overheads and Strategies

Does the C++ language have inherent complexities and overheads which make it
unsuitable for performance-critical applications? For a program written in the C-
conforming subset of C++, will penalties in code size or exeaution speed result from
using a C++ compiler instead of a C compiler? Does C++ code necessarily result in
“unexpeded” functions being called at run-time, or are cetain language fedures, like
multiple inheritance or templates, just too expensive (in size or speed) to risk using?
Do these feaures impose overheads even if they are not explicitly used?

This Technica Report examines the major fedures of the C++ language that are
perceived to have an associated cost, whether real or not:

* Namespaces

* Type Conversion Operators

* Inheritance

* Run-Time Type Information (RTTI)
» Exception handling (EH)
 Templates

* The Standard IOStreams Library

2.1 Namespaces

Namespaces do not add any significant spaceor time overheals to code. They do,
however, add some complexity to the rules for name lookup. The principal advantage
of namespaces is that they provide a mechanism for partitioning names in large
projeds in order to avoid name clashes.

Namespace qualifiers enable programmers to use shorter identifier names when
compared with alternative medhanisms. In the &sence of namespaces, the
programmer has to explicitly alter the namesto ensure that name clashes do not occur.
One common approad to thisisto use a caonical prefix on each name:

staticc har*mylib_nane =" MWReallyUsefulL ibrary";
staticc har*mylib_copyright=" Junel5,2 003";

st d::cout< <" Nane: "< <mylib_nane <<s td::endl
<<" Copyright: "< <mylib_copyright <<std::endl;
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Another common approadh is to placethe names inside aclass and use them in their
qualified form:
cl assT hisLiblnfo {
staticc har* nane;
staticc har* copyright;

h

char*T hisLi bl nf o: : nane =" Anot herU seful Library";
char*T hisLi bl nfo::copyright=" Augustl 7,20 03"

st d::cout< <" Nane: "< <T hisLi bl nfo::n ame <<s td::endl
<<" Copyright: "< <ThisLiblnfo::c opyright< <std::endl

With namespace s, the number of charaders necessry is similar to the class
aternative, but unlike the class alternative, qualification can be avoided with using
declarations which move the unqualified names into the arrent scope, thus allowing
the names to be referenced by their shorter form. This sves the programmer from
having to type those extra charaders in the source program, for example:

nanmespace T hi sLi bl nfo {

char* nane
char* copyright

" Yet A not herU seful Library";
" Decenberl 8,2 003"

h

usi ng T hi sLi bl nf o: : nane;
usi ng T hi sLi bl nf o: : copyri ght;

st d::cout< <" Nane: "< <nanme << std :: endl
<<" Copyright: "< <copyright< < std::endl;

When referencing names from the same enclosing ramespace no using dedaration
or namespacequalification is neaessary.

With all names, longer names take up more spacein the program’s symbol table and
may add a negligible amount of time to dynamic linking. However, there ae tools
which will strip the symbol table from the program image and reducethis impad.

2.2 Type Conversion Operators

C and C++ permit explicit type conversion using cast notation (81S-5.4), for example:
inti _pi=( int)3.14159;

Standard C++ adds four additional type cnversion ogerators, using syntax that looks
like function templates, for example:

inti=s tatic_cast<int>(3.14159);

The four syntadic forms are:

const_cast<Type>(expression) Il 81S5.211
static_cast<Type>(expression) Il 81S5.2.9
reinterpret_cast<Type>(expression) Il 81S5.210
dynamic_cast<Type>(expression) Il 81S5.27
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The semantics of cast notation (which is gill recognized) are the same as the type
conversion operators, but the latter distinguish between the different purposes for
which the cat is being used. The type mnversion operator syntax is easier to identify
in source ®de, and thus contributes to writing programs that are more likely to be
corred®. It should be noted that as in C, a cat may crede atemporary objed of the
desired type, so casting can have run-time implications.

The first threeforms of type mnversion operator have no size or speed penalty versus
the equivalent cast notation. Indeed, it is typicd for a compiler to transform cast
notation into one of the other type wnversion operators when generating objed code.
However, dynamic_cast<T> may incur some overheal at run-time if the required
conversion involves using RTTI mechanisms guch as crosscasting (82.3.8).

2.3 Classes and Inheritance

Programming in the object-oriented style often involves heavy use of class
hierarchies. This dion examines the time and space overheals imposed by the
primitive operations using classes and class hierarchies. Often, the alternative to
using class hierarchies is to perform similar operations using lower-level facilities.
For example, the obvious alternative to a virtual function call is an indired function
cal. For thisreason, the mds of primitive operations of classes and class hierarchies
are compared to those of similar functionality implemented without classes. See
“Inside the C++ Objed Model” [BIBREF-17] for further information.

Most comments about run-time @sts are based on a set of simple measurements
performed on three different machine achitedures using six different compilers run
with a variety of optimizaion options. Ead test was run multiple times to ensure that
the results were repeatable. The code is presented in Appendix D:. The aim of these
measurements is neither to get a predse statement of optimal performance of C++ on
a given madine nor to provide a ©mparison between compilers or machine
architedures. Rather, the aim is to gve developers a view of relative asts of
common language @nstructs using current compilers, and also to show what is
possible (what is achieved in one compiler isin principle possible for al). We know
— from specialized compilers not in this fudy and reports from people using
unreleased beta versions of popular compilers —that better results are possible.

In general, the statements about implementation tedniques and performance ae
believed to be true for the vast majority of current implementations, but are not meant
to cover experimental implementation techniques, which might produce better — o
just different — results.

2.3.1 Representation Overheads

A class without a virtual function requires exadly as much spaceto represent as a
struct ~ with the same data members. That is, no spaceoverhea is introduced from
using aclass compared to aC struc t. A class objed does not contain any data

3 \f the compiler does not provide the type mnversion operators natively, it is possible to implement them using function
templates. Indeed, prototype implementations of the type cnversion operators were often implemented this way.
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that the programmer does not explicitly request (apart from possible padding to
adiieve gpropriate dignment, which may also be present in C struct ). In
particular, a non-virtual function does not take up any spacein an objed of its class
and neither does a gtatic data or function member of the class .

A polymorphic class (aclass that has one or more virtual functions) incurs a per-
objed spaceoverheal of one pointer, plus a per-class spaceoverhead of a “virtual
function table” consisting of one or two words per virtual function. In addition, a per-
class space overheal of a “type information objed” (aso called “run-time type
information” or RTTI) is typically about 40 bytes per class, consisting of a name
string, a wuple of words of other information and another couple of words for ead
base class. Whole program analysis (WPA) can be used to eliminate unused virtual
function tables and RTTI data Such analysis is particularly suitable for relatively
small programs that do not use dynamic linking, and which have to operate in a
resource-constrained environment such as an embedded system.

Some aurrent C++ implementations share data structures between RTTI support and
exception handling support, thereby avoiding representation overhead specifically for
RTTI.

Aggregating dataitemsinto asmall class or struct  can impose arun-time overheal
if the compiler does not use registers effedively, or in other ways fails to take
advantage of possible optimizations when class objeds are used. The overheads
incurred through the failure to optimize in such cases are referred to as “the
abstraction penalty” and are usually measured by a benchmark produced by Alex
Stepanov (D.3). For example, if accessng a value through atrivial smart pointer is
significantly slower than accessing it through an ordinary pointer, the compiler is
inefficiently handling the astradion. In the past, most compilers had significant
abstraction penalties and several current compilers gill do. However, at least two
compilers' have been reported to have abstradion penalties below 1% and another a
penalty of 3%, so eliminating this kind of overhead is well within the state of the at.

* Theseare production compilers, not just experimental ones.
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2.3.2 Basic Class Operations

Calling a non-virtual, non-static, non-inline member function of a classcosts as much
as calling a freestanding function with one extra pointer argument indicating the data
on which the function should operate. Consider a set of simple runs of the test
program described in Appendix D:

Table2.3-1 #1 #2 #3 #4 #5
Non-virtual: px->f(1) 0.019 0002 0.016 0.085 0
g(ps, 1) 0.020 0.002 0.016 0.067 0
Non-virtual:  x.g(1) 0.019 0.002 0.016 0.085 0
g(&s, 1) 0.019 0 0.016 0.067 0.001
Staticmenber: X :h(1) 0.014 0 0.013 0.069 0
h( 1) 0.014 0 0.013 0.071 0.001

The @mpiler/machine cmbinations #1 and #2 match traditional “common sense”
expectations exadly, by having calls of a member function exactly match calls of a
non-member function with an extra pointer argument. As expeded, the two last calls
(the X:h(1) cdl of a static member function and the h(1) call of a global function)
are faster because they don’t pass a pointer argument. Implementations #3 and #5
demonstrate that a dever optimizer can take alvantage of implicit inlining and
(probably) caching to produce results for repeated cdls that are 10 times (or more)
faster than if a function call is generated. Implementation #4 shows a small (<15%)
advantage to non-member function calls over member function calls, which
(curiously) is reversed when no pointer argument is pased. Implementations #1, #2,
and #3were run on one system, while #4 and #5were run on another.

The main lesson drawn from this table is that any differences that there may be
between non-virtual function calls and non-member function calls are minor and far
lessimportant than differences between compilers/optimizers.

2.3.3 Virtual Functions

Calling avirtual function is roughly equivalent to calling a function through a pointer
stored in an array:

Table 2.3-2 #1 #2 #3 #4 #5
Virtual : px- >f (1) 0.025 0.012 0.019 0.078 0.059
Ptr-to-fct: p[1](ps,1) 0.020 0.002 0.016 0.055 0.052
Virtual : x. f(1) 0.020 0.002 0.016 0.071 0

Ptr-to-fct: p[1](&s,1) 0.017 0.013 0.018 0.055 0.048
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When averaged over a few runs, the minor differences sen above smooth out,
illustrating that the cost of virtual function and pointer-to-function calls is identical.
Here it is the compiler/machine combination #3 that most closely matches the naive
model of what isgoing on. For x.f(1 ) implementations #2 and #5reagnizethat the
virtual function table need not be used because the exact type of the object is known
and a non-virtual call can be used. Implementations #4 and #5 appea to have
systematic overheads for virtual function calls (caused by treaing single-inheritannce
and multiple inheritance equivalently, and thus missing an optimization). However,
this overhea is on the order of 20% and 124 — far less than the variability between
compilers.

Comparing Table 2.3-1 and Table 2.3-2, we seethat implementations #1, #2, #3, and
#5 confirm the obvious assumption that virtual calls (and indirect cdls) are more
expensive than non-virtual calls (and dired calls). Interestingly, the overhead isin the
range 20% to 23% where one would expect it to be, based on a simple @unt of
operations performed. However, implementations #2 and #5 demonstrate how
(implicit) inlining can yield much larger gains for non-virtual calls. Implementation
#4 counter-intuitively shows virtual calls to be faster than non-virtual ones. If nothing
else, this shows the danger of measurement artifads. It may also show the effed of
additional effort in hardware and optimizers to improve the performance of indired
function calls.

2.3.3.1 Virtual functions of classtemplates

Virtual functions of a class template can incur overhead. If a class template has
virtual member functions, then each time the classtemplate is gecialized it will have
to generate new specializaions of the member functions and their associated support
structures such asthe virtual function table.

A straight-forward library implementation could produce hundreds of KBytes in this
case, much of which is pure replication at the instruction level of the program. The
problem is a library modularity issue. Putting code into the template, when it does
not depend on template-parameters and could be separate cde, may cause eah
instantiation to contain potentially large and redundant code sequences. One
optimization avail able to the programmer is to use non-template helper functions, and
to describe the template implementation in terms of these helper functions. For
example, many implementations of the std::map class $ore data in a red-blad tree
structure. Because the red-bladk treeis not a dass template, its code need not be
duplicaed with each instantiation of std::map

A similar tedhnique plages non-parametric functionality that doesn’t need to be in a
template into a non-template base class This tednique is used in several places in
the standard library. For example, the std::ios_base class (81S-27.4.2) contains
static data members which are shared by all instantiations of input and output streams.
Finally, it should be noted that the use of templates and the use of virtual functions are
often complementary techniques. A class template with many virtual functions could
be indicative of adesign error, and should be caefull y re-examined.
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2.3.4 Inlining

The discusson above monsidersthe ms of a function call to be asmple faa of life (it
does not consider it to be overhead). However, many function calls can be eliminated
through inlining. C++ dlows explicit inlining to be requested, and popular
introductory texts on the language seem to encourage this for small time-critical
functions. Basically, C++'sinline  is meant to be used as a replacement for C's
function-style maaos. To get an idea of the effectiveness of inline , compare alls of
an inline member of a classto a non-inline member and to a maao.

Table2.3-3 #1 #2 #3 #4 #5
Non-inline: px->g(1) 0.019 0.002 0.016 0.085 0
Non-inline: x.g(1) 0.019 0.002 0.016 0.085 0
In1ine: ps->k(1) 0.007 0.002 0.006 0.005 0
Mecr o: K(ps, 1) 0.005 0.003 0.005 0.006 0
Inline: x. k(1) 0.005 0.002 0.005 0.006 0
Mecr o: K(&s, 1) 0.005 0 0.005 0.005 0.001

The first observation here is that inlining provides a significant gain over a function
call (the body of these functions is a simple expression, so this is the kind of function
where one would exped the greatest advantage from inlining). The exceptions are
implementations #2 and #5 which already have adieved significant optimizations
through implicit inlining. However, implicit inlining cannot (yet) be relied upon for
consistent high performance For other implementations, the alvantage of explicit
inlining is significant (fadorsof 2.7, 2.7, and 17).

2.3.5 Multiple Inheritance

When implementing multiple inheritance there exists awider array of implementation
tedhniques than for single inheritance. The fundamental problem is that ead call has
to ensure that the this  pointer passed to the cdled function points to the rred sub-
objed. This can cause time and/or spaceoverheal. The this pointer adjustment is
usually done in one of two ways:

 The dler retrieves a suitable offset from the virtual function table and adds it
to the pointer to the clled objed, or

* a“thunk” isused to perform this adjustment. A thunk is a simple fragment of
code that is called instead of the adual function, and which performs a
constant adjustment to the objed pointer before transferring control to the
intended function.
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Table2.3-4 #1 #2 #3 #4 #5
Sl,n on-virtual : px->g( 1) 0.019 0.002 0.016 0.085 0
Basel,n on-virtual: pc->g(i) 0.007 0.003 0.016 0.007 0.004
Base2,n on-virtual: pc->gg(i) 0.007 0004 0.017 0.007 0.028

Sl,v irtual: px->f (1) 0.025 0.013 0.019 0.078 0.059
Basel,v irtual: pa->f (i) 0.026 0.012 0.019 0.082 0.059
Base2,v irtual: pb- >f f (i) 0.025 0.012 0.024 0.085 0.082

Here, implementations #1 and #4 managed to inline the non-virtual calls in the
multiple inheritance @se, where they had not bothered to do so in the single
inheritance cae. Thisdemonstratesthe dfedivenessof optimization and also that we
cannot simply assume that multiple inheritance imposes overheals.

It appeasthat implementations #1 and #2 d not incur extra overheads from multiple
inheritance @mpared to single inheritance. This could be caised by imposing
multiple inheritance overheads redundantly even in the single inheritance cae.
However, the cmparison between (single inheritance) virtual function calls and
indirea function callsin Table 2.3-2 shows this not to be the cae.

Implementations #3 and #5 show overhead when using the seand branch of the
inheritancetree as one would exped to arise from aneed to adjust athis pointer. As
expected, that overheal is minor (25% and 20%) except where implementation #5
misses the opportunity to inline the all to the non-virtual function on the second
branch.  Again, differences between optimizers dominate differences between
different kinds of calls.

2.3.6 Virtual Base Classes

A virtual base class adds additional overhead compared to a non-virtual (ordinary)
base class. The ajustment for the branch in a multiply-inheriting class can be
determined statically by the implementation, so it becomes a simple add of a mnstant
when rneaded. With virtual base classes, the position of the base class subobjed with
resped to the cmplete objed is dynamic and requires more evaluation — typicaly
with indiredion through a pointer —than for the non-virtual M| adjustment.

Table 2.3-5 #1 #2 #3 #4 #5
SI,n on-virtual:  px->g(1) 0.019 0.002 0.016 0.085 0
VBC,n on-virtual: pd->gg(i) 0.010 0.010 0.021 0.030 0.027
Sl,v irtual: px- >f (1) 0.025 0.013 0.019 0.078 0.059
VBC,v irtual: pa- >f (i) 0.028 0.015 0.025 0.081 0.074
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For non-virtual function calls, implementation #3 appeas closest to the naive
expectation of a slight overhead. For implementations #2 and #5that dight overhead
becomes significant because the indiredion implied by the virtual base class causes
them to miss an oppatunity for optimizaion. There doesn't appea to be a
fundamental problem with inlining in this case, but it is most likely not common
enough for the implementers to have bothered with — so far. Implementations #1 and
#4 again appea to be misgng a significant optimization opportunity for “ordinary”
virtual function calls. Counter intuitively, using a virtual base produces faster code!

The overhead implied by using a virtual base in a virtual call appeas small.
Implementations #1 and #2 leg it under 15%, implementation #4 gets that overheal
to 3% but (from looking at implementation #5) that is done by missng optimization
opportunities in the cae of a “normal” single inheritance virtual function call.

As aways, simulating the effed of this language fedure through other language
fedures also caries a wst. If a programmer decides not to use avirtual base class,
yet requires a class that can be passed around as the interfaceto a variety of classs,
an indiredion is nealed in the acess to that interface and some mechanism for
finding the proper class to be invoked by a all through that interface must be
provided. This mechanism would be & least as complex as the implementation for a
virtual base class much harder to use, and less likely to attract the attention of
optimizers.

2.3.7 Type Information

Given an object of a polymorphic class (a classwith at least one virtual function), a
type_info  objed can be obtained through the use of the typeid operator. In
principle, this is a simple operation which involves finding the virtual function table,
through that finding the most-derived classobjed of which the objed is part, and then
extrading a pointer to the type_info  objed from that object’s virtual function table
(or equivalent). To provide ascale, the first row of the table shows the cost of a all
of aglobal function taking one agument:

Table2.3-6 #1 #2 #3 #4 #5

Global : h(1) 0.014 0 0.013 0.071 0.001
Onbase: t ypei d( pa) 0.079 0.047 0.218 0.365 0.059
Onderived: t ypei d( pc) 0.079 0.047 0.105 0.381 0.055
On VBC: t ypei d( pa) 0.078 0.046 0.217 0.379 0.049

VBCond erived: typeid(pd) 0.081 0046 0113 0.382 0.048

There is no reason for the speeal of typeid to differ depending on whether a base is
virtual or not, and the implementations reflect this. Conversely, one @uld imagine a
difference between typeid for a base class and typeid on an objed of the most
derived class. Implementation #3 demonstrates this. In general, typeid seems very
slow compared to a function call and the small amount of work required. It is likely
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that this high cost is caused primarily by typeid being an infrequently used operation
which has not yet attraded the atention of optimizer writers.

2.3.8 Dynamic Cast

Given a pointer to an objed of a polymorphic class a cat to a pointer to another base
subobject of the same derived class objed can be done using a dynamic_cast . In
principle, this operation involves finding the virtual function table, through that
finding the most-derived class objed of which the objed is part, and then using type
information associated with that object to determine if the @nversion (cast) is
allowed, and finally performing any required adjustments of the this pointer. In
principle, this cheding involves the traversal of a data structure describing the base
classes of the most derived class Thus, the run-time st of a dynamic_cast may
depend on the relative positions in the classhierarchy of the two classes involved.

Table2.3-7 #1 #2 #3 #4 #5

Virtualc all: px- >f (1) 0.025 0.013 0.019 0.078 0.059
Up-castt ob asel: cast (pa, pc) 0.007 0 0.003 0.006 0

Up-castt ob ase2: cast (pb, pc) 0.008 0 0.004 0.007 0.001
Down-castf rombasel: cast(pc, pa) 0.116 0.148 0.066 0.640 0.063
Down-castf rombase2: cast(pc, pb) 0.117 0.209 0.065 0.632 0.070
Cross-cast : cast (pb, pa) 0305 0.356 0.768 1.332 0.367

2-levelu p-castt ob asel:

cast (pa, pcc) 0.005 0 0.005 0.006 0.001

2-levelu p-castt ob ase2:

cast (pb, pcc)  0.007 0 0.006 0.006 0.001

2-leveld own-castf rombasel:

cast (pcc,pa) 0.116 0.148 0.066 0.641 0.063

2-leveld own-castf rombase2:

cast (pcc,pb) 0117 0203 0065 0634 0.077
2-levelc ross-cast:  cast(pa, pb) 0.300 0.363 0.768 1.341 0.377
2-levelc ross-cast:  cast(pb, pa) 0.308 0.306 0.775 1.343 0.288

As with typeid , we see the immaturity of optimizer technology. However,
dynamic_cast iS a more promising target for effort than is typeid . While
dynamic_cast iS not an operation likely to occur in a performance aitical loop of a
well-written program, it does have the potential to be used frequently enough to
warrant optimization:

* An up-cast (cast from derived class to base clasg can be compiled into a
simplethis  pointer adjustment, as done by implementations #2 and #5

* A down-cast (from base classto derived class) can be quite complicated (and
therefore quite expensive in terms of run-time overhead), but many cases are
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simple. Implementation #5 shows that a down-cast can be optimized to the
equivalent of a virtual function call, which examines a data structure to
determine the necessary adjustment of the this pointer (if any). The other
implementations use simpler strategies involving several function calls (about
4,10, 3, and 10calls, respedively).

Crosscasts (casts from one branch of a multiple inheritance hierarchy to
another) are inherently more complicated than down-casts. However, a cross
cast could in principle be implemented as a down-cast followed by an up-cast,
so one should exped the st of a aosscast to converge on the cs of a
down-cast as optimizer technology matures. Clealy these implementations
have along way to go.

2.4 Exception Handling

Exception handling provides a systematic and robust approach to coping with errors
that cannot be recvered from locally at the point where they are deteded.

The traditional alternatives to exception handling (in C, C++, and ather languages)
include:

Returning error codes

Setting error sate indicaors (e.g. errn o)

Calling error handling functions

Escaping from a context into error handling code using longjmp
Passing along a pointer to a sate objed with each call

When considering exception handling, it must be @ntrasted to aternative ways of
dealing with errors. Plausible aeas of comparison include:

Programming style

Robustness and completenessof error handling code
Run-time system (memory size) overheads
Overheads from handling an individual error

Consider atrivial example:

doublef 1(inta ){r eturnl.O/a ;
doublef 2(inta ){r eturn2.0/a ;
doublef 3(inta ){r eturn3.0/a ;

e

doubleg (intx ,i nty ,i ntz)
{

}

returnf 1(x)+f 2(y)+f 3(z);

This code contains no error handling code. There ae several techniques to detect and
report errors which predate C++ exception handling:

voiderror(constc har*e)

//h andleerror
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doublef 1(inta )

if( a<=0) {
error("badi nputv aluef orf 1()");
returno;

}

el se
returnl .0/aq;

}

inte rror_state=0 ;
doublef 2(inta )

if( a<=0) {
error_state=7 ;
returno;

}

el se
return2 .0/a;

}

doublef 3(inta ,i nt*e rr)

{
if( a<=0) {
*err=7,
returnO;

}

el se
return3.0/a;

}
intg (intx ,i nty ,i ntz )

doublex x=f 1(x);
doubley y=f 2(y);

if( error_state){
//h andleerror
}

ints tate=0 ;
doublez z=f 3(z, &stat e);

if( state){
//h andleerror
}

returnx x+y y+z z;

}

Ideally a real program would use a onsistent error handling style, but such
consistency is often hard to adiieve in a large program. Note that the error_state
tednique is not thread safe unless the implementation provides support for thread
unique static data, and branching with if(error_state) may interfere with pipeline
optimizations in the procesor. Note also that it is hard to use the error()  function
tedhnique effectively in programs where error) may not terminate the program.
However, the key point here is that any way of deding with errors that cannot be
handled locally implies gpaceand time overheads. It also complicaes the structure of
the program.
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Using exceptions the example could be written like this:

st ructE rror{
inte rror_nunber;
Error(intn ):e rror_nunber(n){}

3
doublef 1(inta )

if( a<=0)
throwError(1);
returnl.0/a;

}

doublef 2(inta )

{
if( a<=0)
throwError(2);
return2 .0/a;

}

doublef 3(inta )

{
if( a<=0)
throwError(3);
return3.0/a;

}

intg (intx ,i nty ,i ntz ){

try {
returnf L(x)+f 2(y)+f 3(z);

}c atch( Error&err){
//h andleerror
}

}

When considering the overheads of exception handling, we must remember to take
into acount the g of alternative eror handling techniques.

The use of exceptions isolates the earor handling code from the normal flow of
program exeaution, and unlike the eror code approad, it cannot be ignored or
forgotten. Also, automatic destruction of stadk objeds when an exception is thrown
renders a program lesslikely to leak memory or other resources. With exceptions,
once aproblem is identified, it cannot be ignored — failure to catch and handle an
exception results in program termination®. For a discussion of techniques for using
exceptions, seeAppendix E of “The C++ Programming Language” [BIBREF-30].

Early implementations of exception handling resulted in significant increases in code
size ad/or some run-time overhead. This led some programmers to avoid it and
compiler vendors to provide switches to suppress the use of exceptions. In some
embedded and resource-constrained environments, use of exceptions was deli berately
excluded either because of fea of overheads or becaise available exception
implementations could not mee a projed’s requirements for predictability.

° Many programs catch all exceptionsin main() to ensure graceul exit from totally unexpected errors. However, this does nat
catch urhandled exceptions that may occur during the construction o destruction of static objects (81S-15.3113).
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We @n distinguish threesources of overhead:
* try-blocks Data and code associated with each try-block or cach clause.

» regular functions  Data axd code asociated with the normal exeaution of
functions that would not be needed had exceptions not existed, such as missed
optimization opportunities.

» throw-expressons Data and code asociated with throwing an exception.

Ead source of overheal has a @rresponding overhead when handling an error using
traditional techniques.

2.4.1 Exception Handling Implementation Issues and Techniques
The implementation of exception handling must address gveral issues.

o try-block Establi shes the mntext for asociated cach clauses.

o catch clause The EH implementation must provide some run-time type-
identification mechanism for finding cach clauses when an exception is
thrown.

There is 9me overlapping —but not identica — information needed by both
RTTI and EH feaures. However, the EH type-information mechanism must
be able to match derived classes to base classes even for types without virtual
functions, and to identify built-in types sich asint . On the other hand, the
EH type-information does not need support for doan-casting or crosscasting.

Because of this overlap, some implementations require that RTTI be enabled
when EH is enabled.

* Cleanup of handled exceptions Exceptions which are not re-thrown must
be destroyed upon exit of the cach clause. The memory for the exception
objed must be managed by the EH implementation.

* Automatic and temporary objects with non-trivial destructors Destructors
must be alled if an exception occurs after construction of an object and before
its lifetime ends (81S-3.8), even if no try/cach is present. The EH
implementation is required to keep tradk of all such objeds.

» Congtruction of objects with non-trivial destructors If an exception
occurs during construction, all completely constructed base classes and sub-
objeds must be destroyed. This means that the EH implementation must tradk
the aurrent state of construction of an object.

* throw-expression A copy of the exception objed being thrown must be
allocated in memory provided by the EH implementation. The dosest
matching cach clause must then be found using the EH type-information.
Finally, the destructors for automatic, temporary, and partially constructed
objeds must be exeauted before control is transferred to the cdch clause.
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» Enforcing exception specifications Conformance of the thrown types to the
list of types permitted in the exception-spedfication must be chedked. If a
mismatch is deteded, the unexpeded-hander must be alled.

* operator new If an exception is thrown during construction of an
objed with dynamic storage duration (81S-3.7.3), after cdling the destructors
for the partially constructed object the @rresponding operator ~ delete  must
be clled to dedlocate memory.

Again, asimilar mechanism to the one implementing try/catch can be used.
Implementations vary in how costs are dlocated aaossthese elements.
The two main strategies are:

* The “code” approadh, where mde is asciated with each try-block, and
* The*“table” approad, which uses compiler-generated static tables.

There ae also various hybrid approadies. This paper only discusses the two principal
implementation approades.

24.1.1 The" Code" Approach

Implementations using this approach have to dynamicdly maintain auxiliary data-
structures to manage the cature and transfer of the exeaution contexts, plus other
dynamic data-structures involved in tracking the objeds that need to be unwound in
the event of an exception. Early implementations of this approach used
setjimp /longjmp to return to a previous context. However, better performance @n be
obtained using special-purpose @de. It is also possible to implement this model
through the systematic use of (compiler generated) return codes. Typicd ways in
which the de gpproacd deals with the issues identified in 2.4.1 are & follows:

o try-block Save the exeaution environment and push a reference to cach
code on EH stadk at try-block entry.

* Automatic and temporary objects with non-trivial destructors Register eat
constructed objed together with its destructor in preparation for later
destruction. Typical implementations use alinked list structure on the stad.
If an exception is thrown, this list is used to determine which objeds neel to
be destroyed.

» Construction of objectswith non-trivial destructors One well-known
implementation increments a counter for ead base class and subobjed as they
are mnstructed. If an exception is thrown during construction, the @unter is
used to determine which parts need to be destroyed.

» throw-expression After the cdach clause has been found, invoke the
destructors for all constructed objeds in the region of the stack between the
throw-expresson and the asociated cach clause. Restore the execution
environment associated with the cdch clause.
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2.4.1.1.1 SpaceOverhead of the” Code’ Approach

* No exception handling cost is associated with an individual objed, so objed
sizeis unaffeded.

» Exception handling implies a form of RTTI, which may require some increase
to code size, data size or both.

» Exception handling code is inserted into the objed code for ead try/catch.

» Code registering the neel for destruction is inserted into the objed code for
each stadk object of atype with a non-trivial destructor.

* A cost is associated with cheding the throw-spedfications of the functions
that are cdled.

2.4.1.1.2 TimeOverhead of the” Code’ Approach

* Onentry to eat try-block
» Commit changes to variables enclosing the try-block
» Stad the exeaution context
» Stadk the ssociated cach clauses
* On exit from each try-block
» Remove the associated catch clauses
» Remove the stacked exeaution context
* When calling regular functions
» If afunction has an exception-spedfication, register it for chedking
* Aslocal and temporary objects are aeated
» Register eat one with the arrent exception context asit is creeed
* Onthrow or re-throw
» Locae the mrresponding céach clause (if any) — this involves sme
run-time ched (possibly resembling RTTI chedks)
If found, then:
» destroy the registered local objeds
» check the exception-spedfications of the functions called in-

between
= usethe ssciated exeaution context of the cdch clause
Otherwise:

» cal theterminate_handler ~ °
* Onentry to eat cach clause
» Removethe asociated cach clauses
* Onexit from each cach clause

» Retirethe aurrent exception objed (destroy if necessary)

The “code” model distributes the code and associated data structures throughout the
program. This means that no separate run-time support system is needed. Such an
implementation can be portable and compatible with implementations that translate
C++ to C or another language.

® When the terminate_handle r iscalled because no matching exception handler was found, it is implementation-defined
whether the stack isunwound and local objects are destroyed (§1S-15.5.1).
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There aetwo primary disadvantages of the “code” model:

* The a2ciated sadk and run-time asts can ke high for try-block entry.

 Even when no exceptions are thrown, the bookkeguing of the exception
handling stadk must be performed for automatic, temporary and pertially
constructed objeds.

That is, code unrelated to error handling is slowed down by the mere possibility of
exceptions being wed. This is similar to error-handling strategies that consistently
check error state or return values.

The st of this (in this model, unavoidable) bookkeeuing varies dramatically from
implementation to implementation. However, one vendor reports speed impad of
about 6% for a C++ to I1SO C translator. This is generally considered a very good
result.

24.1.2 The" Table" Approach

Typical implementations using this approach will generate read-only tables for
determining the aurrent exeaution context, locating cach clauses and tradking objeds
nealing cestruction. Typical ways in which the table gpproad deals with the issues
identified in 2.4.1 are as follows:

o try-block This method incurs no run-time st. All bookkeeping is pre-
computed as a mapping between program counter and code to be exeauted in
the event of an exception. Tables increase program image size but may be
moved away from working set to improve locality of reference Tables can be
placal in ROM or, on hosted systems with virtual memory, can remain
swapped out until an exception is adually thrown.

* Automatic and temporary objects with non-trivial destructors No  run-
time msts are asociated with normal exeaution. Only in the event of an
exception is it necessary to intrude on normal exeaution.

* throw-expression The satically generated tables are used to locae
matching handers and intervening objeds nealing destruction. Again, no
run-time costs are asociated with normal execution.

2.4.1.2.1 SpaceOverhead of the“ Table” Approach

* No exception handling cost is associated with an objed, so dbjed size is
unaffected.

» Exception handling implies a form of RTTI, implying some increase in code
and data size

» Thismodel uses gatically allocated tables and some library run-time support.

* A run-time st is asociated with cheding the throw-spedfications of the
functionsthat are cdled.
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2.4.1.2.2 Time Overhead of the“Table’” Approach
* Onentry to eat try-block

» Some implementations commit changes in exeaution state to variables
in the scopes enclosing the try-block — ather implementations use a
more sophisticaed state table’

On exit from each try-block
» No overhead

When calling regular functions
» No overhead

Aseah local and temporary object is creaed
» No overhead

On throw or re-throw
» Using the tables, determine if there is an appropriate cadch clause
If thereis, then:

» destroy all local, temporary and partially constructed objeds
that occur between the throw-expression and the cach clause
» check that the exception honors the exception-spedfications of
functions between the throw and the hander
= transfer control to the ctch clause
Otherwise:
= cal theterminate_handler 8
* Onentry to eat cach clause
» No overhead
* On exit from each cach clause
» No overhead

The primary advantage of this method is that no stad or run-time asts are asociated
with managing the try/catch or objed bookkeeping. Unless an exception is thrown,
no run-time overhea is incurred.

Disadvantages are that implementation is more complicated, and does not lend itself
well to implementations that translate to another high-level language, such as C. The
static tables can be quite large. This may not be aburden on systems with virtual
memory, but the st can ke significant for some eanbedded systems. All associated
run-time asts occur only when an exception is thrown. However, becaise of the
need to examine potentially large and/or complex state tables, the time it takes to
respond to an exception may be large, variable, and dependent on program size and
complexity. This nealsto be fadored into the probable frequency of exceptions. The
extreme cae is a system optimized for infrequent exceptions where the first throw of
an exception may cause disk ac@sEs.

"In such implementations, this eff ectively makes the variables partially volatile and may prejudice other optimizations as a
result.

8 When the terminate_handle r iscalled because no matching exception handler was found, it is implementation-defined
whether the stack isunwound and local objects are destroyed (§1S-15.5.1).
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One vendor reported a code and data space impad of about 15% for the generated
tables. It ispossibleto do better, asthis vendor had no need to optimize for space

2.4.2 Predictability of Exception Handling Overhead

2.4.2.1 Prediction of throw/catch Perfor mance

For some programs, difficulty in predicting the time nealed to pass control from a
throw-expresson to an appropriate cdch clause is a problem. This uncertainty comes
from the need to destroy automatic objeds and —in the “table” model — from the need
to consult the table. In some systems, especially those with real-time requirements, it
isimportant to be aleto predict acarrately how long operations will take.

For this reason current exception handling implementations may be unsuitable for
some @plicaions. However, if the cll tree ca be statically determined, and the
table method of EH implementation is used, it is possible to daticaly analyze the
sequence of events necessary to transfer control from a given throw-expression to the
corresponding catch clause. Ead of the events could then be staticaly analyzed to
determine their contribution to the cost, and the whole sequence of events aggregated
into asingle cst domain (worst-case and best-case, unbounded, indeterminate). Such
analysis does not differ in principle from current time estimating methods used for
non-exception code.

One of the reservations expressed about EH is the unpredictable time that may elapse
after athrow-expresson and before control passes to the cach clause while automatic
objeds are being destroyed. It should be possible to determine acarately the costs of
the EH mechanism itself, and the ast of any destructors invoked would need to be
determined in the same way as the st of any other function is determined.

Given such analysis, the term “unpredictable” is inappropriate. The st may be quite
predictable, with a well-determined upper and lower bound. In some caes (reaursive
contexts, or conditional cdl trees), the cost may not be determined statically. For
real-time goplications, it is generally most important to have a determinate time
domain, with a small deviation between the upper and lower bound. The adual speed
of exeaution is often lessimportant.

2.4.2.2 Exception Specifications
In general, an exception-spedfication must be chedked at run-time. For example:
voidf (intx )t hrow(AB)

/1w hat ever
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will in a straightforward implementation generate code roughly equivalent to:
voidf (intx)

try {
/lw hat ever

}c atch( A&){
t hrow,
}c atch( B&)({
t hrow,
}c atch(...) {
unexpect ed();
}

}

In principle, static analysis (especially whole program analysis) can be used to
eliminate such tests. This may be espedally relevant for applications that do not
support dynamic linking, which are not so large or complex as to defea analysis, and
do not change so frequently as to make analysis expensive. Dependent on the
implementation, empty excetion-spedfications can be especially helpful for
optimization.

The use of an empty exception-specification should reduce overheals. The aller of a
function with an empty exception-specification can perform optimizations based on
the knowledge that a cdled function will never throw any exception. In particular,
objeds with destructors in a block where no exception can be thrown neel not be
protected against exceptions. That is, in the “code” model no registration is needed,
and in the “table” model no table entry needs to be made for that objed. For example:

intf (inta )t hrow();

charg (consts td::string&s)

{
std::strings 2=s;
intmaxi mum=s tatic_cast<int>(s.size());
intx=f (maxi mumn;
if( x<0| |maximm<=x)
x=0 ;
returns 2[ x];

}

Here the compiler need not protect against the posshility of an exception
being thrown after the cnstruction of s2.

There is of course no requirement that a compiler performs this optimization.
However, a compiler intended for high-performance use is likely to perform it.

2.5 Templates

2.5.1 Template Overheads

A class template or function template will generate anew instantiation of code eab
time it is gecialized with different template-parameters. This can lead to an
unexpectedly large amount of code and date’. A typical way to ill ustrate this problem

% Virtual function tables, EH statetables, etc.
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isto create alarge number of Standard Library containers to hold pointers of various
types. Eadhtype @an result in an extra set of code and data being generated.

In one experiment, a program instantiating 100instances of a single spedalization of
std::list<T*>, for some type T, was compared with a seand program instantiating
asingle instance of std::list<T*> for 100 dfferent types T. (SeeAppendix D.2 for
sample mde.) These programs were cwmpiled with a number of different compilers
and a variety of different compiler options. The results varied widely, with one
compiler producing code for the second program that was over 19 times as large &
the first program; and another compiler producing code for the first program that was
nealy 3 times as large & the second.

The optimization here is for the compiler to recognize that while there may be many
specializaions with different types, at the level of machine de-generation, the
specializaions may adually be identical (the type system is not relevant to machine
code).

While it is possible for the cmpiler or linker to perform this optimizaion
automatically, the optimization can also be performed by the Standard Library
implementation or by the gplication programmer.

If the compiler supports partial specialization and member function templates, the
library implementer can provide partial specializaions of containers of pointers to a
single underlying implementation that uses void* . Thistednique is described in The
C++ Programming Language 3rd edition [BIBREF-30].

In the dsence of compiler or library support, the same optimization technique can be
employed by the programmer by writing a class template alled, perhaps, plist<T>

that is implemented using std::list<void*> to which all operations of plist<T>
are delegated.
Source @de must then refer to plist<T > rather than std:list<T*> , S0 the

technique is not transparent, but it is a workable solution in the absence of tool or
library support. Variations of thistechnique an be used with other templates.

2.5.2 Templates vs. Inheritance

Any non-trivial program needs to ded with data structures and algorithms. Because
data structures and algorithms are so fundamental, it is important that their use be &
simple and error-free & possible.

The template @ntainers in the Standard C++ Library are based on principles of
generic programming, rather than the inheritance gproach used in other languages
such as Smalltalk. An ealy set of foundation classes for C++, called the National
Institutes of Health ClassLibrary (NIHCL), was based on a class hierarchy following
the Smalltalk tradition.

Of course, this was before templates had been added to the C++ language, but it is
useful in illustrating how inheritance @mpares to templates in the implementation of
programming idioms such as containers.
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In the NIH ClassLibrary, all classes in the tree inherited from a roat class Object ,
which defined interfaces for identifying the real class of an objed, comparing objects,
and printing objeds'®. Mog of the functions were dedared virtual, and so had to be
overridden by derived clases™. The hierarchy also included a class Class that
provided a library implementation of RTTI (which was also not yet part of the C++
language). The Collection  classes, themselves derived from Object , could hold
only other objeds derived from Object which implemented the necessary virtual
functions.

But the NIHCL had several disadvantages due to its use of inheritance versus
templates for the implementation of container classes. The following is a portion of
the NIHCL hierarchy (taken from the README file):

NIHCL -L ibraryStaticMenberV ariablesa nd Functi ons
hject -Rooto ft heNIHClassL ibraryln heritanceTree
Bitset -S eto fS malll ntegers( |like Pascal'st ypeSET)
dass -C lassDescriptor
Col l ection -A bstractC |l assf orC olle ctions
Arraychar -B yteArray
ArrayOb -Arrayo fO bjectP ointers
Bag -U norderedCollectiono fO bj ects
SeqCitn -A bstractC lassf orO rdered,| ndexedColl ections
Heap -Min-MaxHeapo fO bject Pointers
Li nkedLi st -S ingly-LinkedLi st
OderedCitn -OrderedCollectiono fO bjectP ointers
Sorteddtn -S ortedColle ction
KeySortCtn -K eyed SortedCol |l ection
Stack -S tacko fO bjectP ointers
Set -U norderedColl ectiono fN on- Dupl i cat e Obj ects
Dictionary -S eto fA ssoci ati ons
IdentDict -DictionaryKe yedb yObjectA ddress
IdentSet -S etK eyedb yObject Address
Fl oat -F | oatingP oi nt N unber
Fraction -R ationalA rithnetic
Integer -1 ntegerN unber O bj ect
Iterator -C ollectionl terator
Link -A bstractC lassf orL inkedLi st Links
Li nkGb -L inkContainingObject Pointer
LookupKey -A bstractC lassf orD ictio nary A ssoci ati ons
Assoc -A ssociationofO bjectP ointers
Assoclnt -A ssociationo fO bject Pointerwithl nteger
Nl -T heNilO bject
Vector -A bstractC |lassf orV ectors
BitVec -B itV ector
ByteVec -B yteVector
ShortVec -S hortl ntegerV ector
IntVec -1 ntegerV ector
LongVec -L ong!l ntegerV ector
Fl oatVec -F loatingP ointV ector
Doubl eVec -D oubl e-PrecisionFloati ngPointV ector

10TheObjec t classitsdf inherited from class NIHCL , which encapsulated some static data membersused by all classes.

1 Presumably, had the NIHCL been written today, these would have been pure virtual functions.
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Thus the class KeySortCltn (roughy equivalent to std::map ), is ®ven layers deg
in the hierarchy:
NI HCL
oj ect
Col | ection
Seqd tn
Orderedd tn

Sortedd tn
KeySortdtn

Because alinker cannot know which virtual functions will be alled at run-time, it
typically includes the functions from all the preceding levels of the hierarchy for ead
classin the exeautable program. This can leal to code bloat without templates.

There ae other performance disadvantages to inheritance-based coll ection classes:

» Primitive types cannot be inserted into the mlledions. Insteal, these must be
replacel with classes in the Object hierarchy, which are programmed to have
similar behavior to primitive aithmetic types, such as Integer and Float .
This circumvents procesr optimizaions for arithmetic operations on
primitive types. In addition, it is difficult to dugdicae exadly the behavior of
primitive types through classmember functions and operators.

* Becaise C++ has compile-time type decking, providing type-safe wntainers
for different contained data types requires code to be dugicated for ead type.
Type safety is the reason that template @ntainers are instantiated multiple
times. To avoid this duplication of code, the NIHCL colledions hold pointers
to a generic type — the base Object class However, this is not type-safe and
requires run-time dedks to ensure objeds are type-compatible with the
contents of the lledions. It also leads to many more dynamic memory
alocaions, which can hinder performance Becaise classes used with the
NIHCL must inherit from Objed and are required to implement a number of
virtual functions, this lution is intrusive on the design of classes from the
problem domain. For this reason alone, the obligation to inherit from
class Object often means that the use of multiple inheritance also beames
necessary, since domain specific classes may have their own hierarchical
organization. The C++ Standard Library containers do not impose such
requirements on their contents'.

* The C++ Standard Library establishes a set of principles for combining dcata
structures and algorithms from different sources. Inheritance-based libraries
from different vendors — where the algorithms are implemented as member
functions of the mntainers — can be difficult to integrate and dfficult to

extend.
12A class used in a standard container must be Assignable  and CopyConstructible ; often it additionally needsto have
adefault congtructor and implement operator == and operator <.
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2.6 Programmer Directed Optimizations

2.6.1 General Considerations

There ae many fadorsthat influencethe performance of a wmputer program. At one
end of the scale is the high-level design and architedure of the overall system, at the
other is the raw speal of the hardware and operating system software on which the
program runs. Assuming that the goplicaions programmer has no control over these
fadors of the system, what can be done & the level of writing code to achieve better
performance?

Compilers typically use aheuristic processin optimizing code that may be different
for small and large programs. Therefore, it is difficult to recommend any techniques
that are guaranteed to improve performance in all environments. It is vitally
important to measure aperformance-critical application in the target environment and
concentrate on improving performance where bottleneds are discovered. Becaise so
many factors are involved, measuring adual performance an be difficult but remains
an essential part of the performancetuning process

The best way to optimize aprogram is to use space and time-efficient data structures
and algorithms. For example, changing a sequential seach routine to a binary seach
will reduce the average number of comparisons required to search a sorted N-element
table from about N/2 to just log:N; for N=100Q this is a reduction from 500
comparisonsto 10. For N=1,000,000, the average number of comparisonsis 20.

Another example is that std::vector IS a more mmpad data structure than
std::list . A typical std::vector<int> implementation will use about threewords
plus one word per element, whereas a typical std::list<int> implementation will

use @out two words plus three words per element. That is, asuming
sizeof(int)==4 , agtandard vector of 1,000int s will occupy approximately 4,000
bytes, whereas alist of 1,000int swill occupy approximately 12,000 kbytes. Thanks
to cade and pipeline effects, traversing such a vector will be much faster than
traversing the equivalent list. Typically, the compadness of the vedor will aso
asaure that moderate amounts of insertion or erasure will be faster than for the
equivalent list. There ae good reasons for std::vector being recommended as the
default standard library container®.

The C++ Standard Library provides sveral different kinds of containers, and
guarantees how they compare & performing common tasks. For example, inserting an
element at the end of an std::vector takes constant time (unlessthe insertion forces
a memory reallocation), but inserting one & the beginning or in the middle takes
linea time increasing with the number of elements that have to be moved to make
spacefor the new element. With an std::list on the other hand, insertion of an
element takes constant time & any point in the olledion, but that constant time is
somewhat slower than adding one to the end of a vector. Finding the N™ element in
an std::vector involves a simple @mnstant-time aithmetic operation on a random-

13 The recommendation comes from Bjarne Stroustrup in [BIBREF-30] and from Alex Stepanov in private correspondence with
him.
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access iterator accessing contiguous forage, whereas an std::list would have to be
traversed one dement a atime, so accesstime grows linearly with the number of
elements. A typical implementation of std:map maintains the elements in sorted
order in a red-black tree structure, so accessto any element takes logarithmic time.
Though not a part of the C++ Standard Library (at the time this is written), a
hash_map is cgpable of faster lookups than an std::map , but is dependent on a well-
chosen hash function and bucket size Poor choices can degrade performance
significantly.

Always measure before dtempting to optimize — it is very common for even
experienced programmers to guess incorredly about performance implications of
choosing one kind of container over another. Often performance depends critically on
the machine achitecture and the quality of optimizer used.

The C++ Standard Library also provides a large number of algorithms with
documented complexity guarantees. These ae functions that apply operations to a
sequence of elements. Achieving good performance, as well as correctness, is a major
design fador in these algorithms. These @an be used with the Standard containers,
with native arays, or with newly written containers, provided they conform to the
Standard interfaces.

If profiling reveals a bottlened, small local code optimizaions may be effedive. But
it is very important always to measure first. Transforming code to reduce run-time or
space onsumption can often deaease program readability, maintainability,
modularity, portability, and robustness as a side effect. Such optimizaions often
saaifice important abstractions in favor of improving performance, but while the
performance st may be reduced, the effed on program structure and maintainabil ity
neals to be fadored into the decision to rewrite code to achieve other optimization
goals.

An old rule of thumb is that there is a trade-off between program size and execution
speal —that techniques such as declaring code inline  can make the program larger
but faster. But now that processors make extensive use of on-board cade and
instruction pipelines, the smallest code is often the fastest as well. Compilers are free
toignoreinline  diredives and to make their own decisions about which functions to
inline, but adding the hint is often useful as a portable performance enhancement.
With small one- or two-line functions, where the implementation code generates
fewer instructions than a function preamble, the resulting code may well be both
smaller and faster.

Versionfor PDTR approval ball ot Page 41 of 189



Technical Report on C++ Performance PDTR 18015

Programmers are sometimes surprised when their programs call functions they have
not explicitly spedfied, maybe have not even written. Just as a single innocuous-
looking line of C code may be a maao that expands to dozens of lines of code,
possibly involving system calls which trap to the kernel with resulting performance
implicaions, asingle line of C++ code may also result in a sequence of function calls
which is not obvious without knowledge of the full program. Simply dedaring a
variable of user-defined type such as:

X vi; /11 ooksi nnocent
Xv2=7 ; /10 bviouslyi nitialized

can result in hidden code being exeauted. In this case, the declaration of v1 implicitly
invokes the class  X's default constructor to initialize the objed vi. The purpose of
constructors and destructors is to make it impossible to forget mandatory processing
at the beginning and end of an objed’s lifetime. Depending on the dassdesign, proper
initialization may involve memory allocations or system calls to aajuire resources

Although declaring a user-defined variable in C does not implicitly invoke a
constructor, it is important to remember that the object must still be initialized and
that code would have to be explicitly called by the programmer. Resources would
also have to be explicitly released at the gpropriate time. The initialization and
release ade is more visible to the C programmer, but possibly lessrobust becaise the
language does not support it automaticaly.

Understanding what a C++ program is doing is important for optimization. If you
know what functions C++ silently writes and calls, careful programming can keep the
"unexpeded” code to a minimum. Some of the works cited in the bibliography
(Appendix E:) provide more extensive guidance (e.g. [BIBREF-17]), but the
following sedions provide some suggestions for writing more dficient code.

2.6.2 Object Construction

The @nstruction of objeds, though sometimes invisible, can be more expensive than
expected. Therefore some @nsiderations about implementation can improve
applicaion performance

* In congtructors, prefer initializetion of data members to assgnment. If a
member has a default constructor, that constructor will be alled to initialize
the member before aty assgnment takes place.  Therefore, an assignment to a
member within the constructor body can mean that the member is initialized as
well as asggned to, effedively doubling the amount of work done.

* As a genera principle, do not define a variable before you are realy to
initialize it. Defining it ealy results in a @nstructor cdl (initialization)
followed by an assignment of the value needed, as opposed to simply
constructing it with the value needed. Apart from performance isaues, there is
then no chance that the variable an be used before it has received its proper
initial value.

* Passing arguments to a function by value [e.g.void f(T x) ] is cheg for
built-in types, but patentially expensive for classtypes since they may have a
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non-trivial copy constructor. Passing by address[e.g. void f(T const* x) ]
is light-weight, but changes the way the function is called. Passing by
reference-to-const [e.g.void f(T const& x) ] combines the safety of
passing by value with the efficiency of passing by address'.

» Cadling a function with a type that differs from the function’s declared
argument type implies a wnversion. Note that such a @mnversion can require
work to be done & run-time. For example:

voidf 1(double);

f1(7.0); //n oconversion( passb yv alue imdiesc opy)
fL(7); /1c onversion: f 1(doubl e(7))

voidf 2(constd oubl e&);

f2 (7.0); /In oc onversion

f2 (7); //m eans: const double tnmp = 7; f(tnp);
voidf 3(std::string);

std::strings=" MES";

f3 (s); //n oconversion( passb yv alue imdiesc opy)

f3("NES"); [//c onversion: f3(std::string("NES"));

voidf 4(consts td::string&);
f4 (s); /In oconversion( passb yr eference,n oc opy)
f4 ("AS"); //means: const std::string tnmp("AS"); f4(tnmp);

If afunction is called several times with the same value, it can be worthwhile
to put the value in a variable of the gpropriate type (such ass in the example
above) and passthat. That way, the conversion will be done onceonly.

* Unless you need automatic type mnversions, declare all one-argument
constructors”™ explicit . This will prevent them from being called
accidentally. Conversions can still be done when necessary by explicitly
stating them in the @de, thus avoiding the penalty of hidden and urexpeded
conversions.

* Anempty body in a class constructor, or an unwritten default constructor, can
invoke an amount of code which may be surprising at first glance This is
because all member subobjeds and base subobjects with constructors must be
initialized as part of the class construction. Compiler-generated default
constructors are inline member functions, as are function definitions written
within the body of the classdefinition. Therefore an innocent-looking {} can
not be asumed to producetrivial machine mde:

cl ass X
{
A a;
B b;

virtualv oidf ();

h

14 of courseif the argument type and the expression type differ, atemporary variable may be aeated by the compiler.

15 This refers to any congructor that may be alled with a single argument. Multi ple-parameter constructors with default
arguments can be called as one-argument constructors.
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classY:p ublicX
{

Cc;
D d;
3
classZ:p ublicyY

{
E e;
Ff;
publ i c:
Z(){}

Z z;

The @nstructor for Z, itself only empty bradets, causes the compiler to
generate de to initialize all of the base classes and all data members, thus
invoking defined or compiler-generated constructors for classes A, B, X, C, D,
Y, E, and F. If al of these ae inline and non-trivial, a substantial block of
machine ade can be inserted at this point in the program. It will also initialize
the virtual table. Therefore it is important to know what functions will be
called when an object is initialized and to make adive decisions on whether
that code should be placal inline. Empty-bradket functions are often used for
destructors as well, but a similar analysis of the mss dould be performed
before making them inline.

2.6.3 Temporary Objects

When the compiler creaes a temporary objed of a user-defined type which has a
constructor, the same initialization takes place @ if it were adedared variable. But
with careful programming the @nstruction of temporary objeds can sometimes be
avoided.

Understand how and when the compiler generates temporary objeds. Often
small changes in coding style an prevent the aedion of temporaries, with
consequent benefits for run-time speed and memory footprint. Temporary
objeds may be generated when initializing objeds, passing parameters to
functions, or returning values from functions.

Rewriting expressions can reduce or eliminate the neal for temporary objeds.
For example, if a, b, and ¢ are objeds of class Matrix :
Marixa ; /1 inefficient: don'tc reatean objectb efore

/11 ti sr eallyn eeded;d efault initialization
//c anb ee xpensive

a =b+c ; [l inefficient: (b+c )c reates at enporary
/1o bjecta ndt henassignsi t to a

Marixa=b ; // better: nod efaulti nit ialization

a +=c; /1 better: not enporaryob je ctsc reated

Better yet, use alibrary that eliminates need for the rewrite using +=. Such
libraries, which are @mmon in the numeric C++ community, usually use
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function objeds and expresson templates to yield uncompromisingly fast code
from conventional-looking source

» Use the return value optimization to gve the compiler a hint that temporary
objeds can be eliminated. This technique enables the cwmpiler to use the
memory for a function’s return value to hold a locd objed of the same type
that would atherwise have to be pied into the return value locaion, thus
saving the s of the wpy. This is usually signalled by inserting constructor
arguments into the return statement:

constR ationalo perator*( Rationalc onst& |hs,
Rationalc onst& rhs)
{

returnRational (I hs. numerator()*r hs. nunmerator(),
I hs. denom nator ()*r hs.denominator());

}

Less carefull y written code might create alocal Rational  variable to hold the
result of the clculation, use the asignment operator to copy it to atemporary
variable holding the return value, then copy that into a variable in the alling
function.

/In ott hisway. ..

constR ationalo perator*( Rationalc onst& |hs,
Rationalc onst& rhs)
{

Rationalt nmp; //c allst hedefaultc onstr uctor( ifa ny)
t np. my_nuner at or =1 hs. nunerat or () * rhs. nunerat or ();
tnp. ny_denom nator=1 hs.denom nator()* rhs.denomn nator();

returnt np; //c opies tnp tot her eturnv alue,w hichis
/I thenc opiedi ntot her eceivingv ariable

}

However, with recent improvements in compiler tedwnology, modern
compilers may optimizethis code in asimilar manner.

» Prefer the prefix versus the pogfix forms for increment and deaement
operators.

Postfix operators like i++ copy the eisting value to a temporary objed,
increment the internal value, and then return the temporary. Prefix operators
like ++i increment the adua value first and return a reference to it. With
objeds such as iterator s, which may be structures containing pointers to
nodes, creaing temporary copies may be expensive when compared to built-in
int S.

for( list<X>::iteratori t=m ylist.begin();

it! =mylist.end();
++it) /IN OTE:r athert han it++

{
}

/1.

» Sometimesit is helpful to “widen” the interface for a dass with functions that
take different data types to prevent automatic conversions (such as adding an
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overload on char * to a function which takes an std::string parameter).
The numerous overloads for operators +, ==, !=, and < in the <string>  header
are an example of such a "fat" interface'®. If the only supported parameters
were std::string s, then charaders and pointers to charader arrays would
have to be cnverted to full std::string objects before the operator was

applied.

A function with one or more default arguments can be alled without
specifying its full argument list, relying on the cmpiler to insert the default
values. This necessarily requires the @nstructor to crede a temporary objed
for ead default value. If the construction of that temporary is expensive and
if the function is called several times, it can be worth while to construct the
default argument value somewhere and use that value in each call. For

example:

cl ass C

{

publ i c:
Clinti ){. ..} /I'p ossiblye xpensive
intmf()c onst;
/1.

3

intf( constC&x=C (0)){ //c onstructa newC(0)f ore ach
[lc allt of ()
returnx .nf();

}

intg () { _ _
staticc onstCx (0); //c onstructx in thef irstc all
returnx .nf();

}

constCc 0(0); /1c onstructc Of oru sei n callsofh ()

inth( constC &x=c 0) {
returnx .nf();
}

18 1t is also worth noting that even if a converson is needed, it is sometimes better to have the conversion performed in ore

place, where an overloaded “wrapper” function calls the one that really performsthe work. This can help to reduce program size,
where each caller would atherwise perform the conversion.
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2.6.4 Function Inlining

» Objed-oriented programming often leads to a number of small functions per
class often with trivial implementation. For example:

cl ass X
{
privat e:
int val ue_;
double*a rray_; [//p ointert oarrayof [size_]d oubles
size_t size_;
publ i c:
int value() {r eturnvalue_; }
size_t size() {r eturnsize_; }

1.
h

Small forwarding functions can usually be inlined to advantage, especialy if
they occupy lesscode spacethan preparing the stadk frame for a function call.
As arule of thumb, functions consisting of only one or two lines are generally
good candidates for inlining.

*  When procesors read aheal to maintain a pipeline of instructions, too many
function calls can slow down performance becaise of branching or cade
misses. Optimizers work best when they have stretches of sequential code to
analyze, becaise it gives them more opportunity to use register alocation,
code-movement, and common sub-expression elimination optimizations. This
is why inline functions can help performance, as inlining exposes more
sequential code to the optimizer. Manual techniques, such as avoiding
conditional code and unrolling short loops, also help the optimizer do a better
job.

* The use of dynamic binding and virtual functions has ©sme overhead in both
memory footprint and run-time performance  This overhead is minor,
especially when compared with alternative ways of achieving run-time
polymorphism (82.3.3). A bigger fador is that virtual functions may interfere
with compiler optimizations and inlining.

Note that virtual functions should be used only when run-time polymorphic
behavior is desired. Not every function needs to be virtual and not every class
should be designed to be abase class

* Use function objects'” with the Standard Library algorithms rather than
function pointers. Function pointers defeat the data flow analyzers of many
optimizers, but function objeds are passed by value and optimizers can easily
handleinline  functions used on objeds.

ot Objects of a dass type that has been designed to behave like a function, because it defines operator () as a member
function. Often all the member functions of such atypeare defined inline  for efficiency.
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2.6.5 Object-Oriented Programming

» Many programs written in some @nventional objed-oriented styles are very
slow to compile, becaise the compiler must examine hundreds of header files
and tens of thousands of lines of code. However, code can be structured to
minimize re-compilation after changes. This typically produces better and
more maintainable designs, becaise they exhibit better separation of concerns.

Consider aclasscal example of an objed-oriented program:

cl ass S hape {
public: /li nterfacet ouserso fS hapes
virtualv oiddraw)c onst;
virtualv oidr otate(intd egrees);
1. ..
pr ot ect ed: //c ommond ata( fori nplenenters ofS hapes)
Poi ntc enter;
Colorc ol;
/1.

h

classCircle:p ublicShape {
publ i c:

void draw)c onst;

void rotate(int){ }

1. ..
pr ot ect ed:

int radi us;

/1.

h

classTriangle:p ublicS hape {
publ i c:

void draw)c onst;

void rotate(int);

1. ..
pr ot ect ed:

Pointa ;

Pointb ;

Pointc ;

/1.

h

The ideais that users manipulate shapes through Shape's public interface and
that implementers of derived classes (such as Circle  and Triangle ) share
aspeds of the implementation represented by the proteded members.

It is not easy to define shared aspeds of the implementation that are helpful to
al derived classes. For that reason, the set of proteded members is likely to
need changes far more often than the pulic interface For example, even
though a center is arguably a valid concept for al Shapes, it is a nuisance to
have to maintain a Point  for the center of a Triangle ; it makes more sense to
calculate the center if and only if someone expresses interest in it.

The protected members are likely to depend on implementation detail s that the
clients of Shape would rather not have to depend on. For example, much code
using a Shape will be logically independent of the definition of Color , yet the
presence of Color in the definition of Shape makes all of that code dependent
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on the healer files defining the operating system's notion of color, often
requiring that the client code is recompiled whenever such healer files are
changed.

When something in the protected part changes, client code using Shape has to
be recompiled, even though only implementers of derived classes have acess
to the protected members. Thus, the presence of "information helpful to
implementers” in the base class— which also acts as the interfaceto users — is
the source of several problems:

» Ingtability in the implementation,

» Spurious rewmmpilation of client code (when implementation
information changes), and

» Excess inclusion of header files into client code (because the
"information helpful to implementers’ needs those healers).

Thisis metimes known as the "brittle base class problem".

The obvious Dlution isto omit the "information helpful to implementers® for
classes that are used as interfages to users. In other words, interface classes
should represent “pure” interfaces and therefore take the form of abstrad
classes, for example:

cl ass S hape {

public: //i nterfacet ouserso fS hapes
virtualv oiddraw)c onst=0
virtualv oidr otate(intd egrees)=0;
virtualP ointc enter()c onst=0;
1. ..
/In odata

h

classCircle:p ublicShape {
public:
void draw)c onst;
void rotate(int){ }
Pointc enter()c onst{r eturncent; }
/1.
pr ot ect ed:
Poi ntc ent;
Colorc ol;
i nt radi us;
/1.

Versionfor PDTR approval ball ot Page 49 of 189



Technical Report on C++ Performance PDTR 18015

classTriangle:p ublicS hape {
publ i c:
void draw)c onst;
void rotate(int);
Pointc enter()c onst;
/1.
pr ot ect ed:
Colorc ol;
Pointa ;
Pointb ;
Pointc ;
/1.

h

The users are now insulated from changes to implementations of derived
clases. This tednique has been known to deaease build times by orders of
magnitude.

But what if there really is me information that is common to al derived
classes (or even to several derived classes)? Simply placethat information in a
class and derive the implementation classes from that:

cl ass S hape {

public: /li nterfacet ousersofS hapes
virtualv oiddraw()c onst=0 ;
virtualv oidr otate(intd egrees)=0;
virtualP ointc enter()c onst=0;
1. ..
/In odata

3
st ructC ommon {
Colorc ol;
/1.
3
classCircle:p ublicShape,p rotectedConmon{
publ i c:
void draw)c onst;
void rotate(int){ }
Pointc enter()c onst{r eturncent; }
/1.
pr ot ect ed:
Poi ntc ent;
int radi us;
3
classTriangle:p ublicShape,p rotectedComnon {
publ i c:
void draw)c onst;
void rotate(int);
Pointc enter()c onst;
/1.
pr ot ect ed:
Pointa ;
Pointb ;
Pointc ;
3

* Another technique for ensuring better separation between parts of a program
involves an interface objed holding a single pointer to an implementation
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objed. This is often called “the PIMPL” (Pointer to |M PLementation'®)
idiom. For example:
/Il nterfaceh eader:

classVisible {
cl assHi dden;

i—i“dden*p I mpl ;
publ i c:
voidf cnl();

h

/I'l  nplementations ource:
cl assVisi bl e:: Hidden {

publi.;:-:
voidf cnl_inpl();

h
voidVisible::fecnl(){p Inpl->fcnl_inpl();}

2.6.6 Templates

* Whenever possible, compute values and catch errors at translation time rather
than run-time. With sophisticated use of templates, a cmplicaed bock of
code can be compiled to a single constant in the executable, therefore having
zeo run-time overheal. This might be described as code implosion (the
opposite of code explosion). For example:

tenmplate<intN >
classF actorial {

publ i c:
staticc onsti ntv alue=N*F actoria I< N-1>::val ue;
}s

cl assF actorial <1>{
publ i c:

staticc onsti ntv alue=1;
k

Using this class template'®, the value N is accessble a compile-time as
Factorial<N>::value

As another example, the following classand function templates can be used to
generate inline ade to calculate the dot product of two arrays of numbers:

18Als;o known as the "Cheshire Cat” idiom.

19 withinli mitations, remember that if anint  is32-bits, the maximum N can beisjust 12.
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IIG ivenaf orwardd eclaration:
tenplate<intDimc lassT>
structd ot _cl ass;

/las pecializedb asec asef orr ecursion:
tenplate<classT >
structd ot _class<l, T>{
statici nlineTd ot(constT *a ,c onstT * b)
{r eturn* a** b;}
s

/It her ecursivet enpl at e:
tenplate<intDimc |lassT>
structd ot _class{
statici nlineTd ot(constT *a ,c onstT * b)
{r eturnd ot _class<Dim1, T>::dot (a+1, b+1) +
*a** b; }
s
/l. ..a ndsonmesyntactics ugar:
tenplate<intDimc lassT>
inlineTd ot(constT *a ,c onstT *b )
{r eturnd ot _class<Dim T>::dot(a,b ); }

/I'T hen
intp roduct=d ot<3>(a,b );

/It esultsi nt hes ame( near-)optimalc odeas
intp roduct=a [0]*b[0]+a [1]*b[1l]+a [2]*b[2];

Template meta-programming and expression templates are not tedhniques for
novice programmers, but an advanced praditioner can use them to good effed.

» Templates provide mmpile-time polymorphism, wherein type selection does
not incur any run-time penalty. If appropriate to the design, consider using
classtemplates as interfaces instead of abstract base classes. For some designs
it may be gpropriate to use templates which can provide mpile-time
polymorphism, while virtual functions which provide run-time polymorphism
may be more gopropriate for others.

Templates have several useful properties. they impose no space or code
overheal on the class used as atemplate agument, and they can ke dtacdhed to
the class for limited times and puposes. If the dass does not provide the
needed functionality, it can be defined externaly through template
specialization. If certain functions in the template interface ae never used for
agiven class they need not be defined because they will not be instantiated.

In the example below, the talk_in_German() function in the "interfacé is
only defined for class CuckooClock , becaise that is the only objed for
which it is needed. Invoking talk_in_German() on an object of a different
type results in a cmpiler diagnostic:

#i ncl ude < i ostream>
usings td::cout;
usings td::endl;
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/s omedonaino bjects
cl assDog {
publ i c:
voidt alk()c onst{c out< <" woofw oof" << endl;}

3
cl ass C uckood ock {
publ i c:
voidt alk()c onst{c out< <" cuckooc uckoo"< <endl;}
voidt alk_in_German()c onst{c out< <" wacheta uf!"< <
endl ; }
3
cl assBigBend ock {
publ i c:
voidt alk()c onst{c out< <" takeat ea-break" <<endl; }
voidp l ayBongs()c onst{c out< <" bingbo ng bingb ong"< <
endl ; }
3

cl assSilentd ock {
//d oesn'tt alk
h

/g enerict enplatet op roviden on-inheritance-based
/I'p ol ynor phi sm
tenplate<classT >
cl assT al kative {

T&t;
publ i c:

Tal kative(T&obj):t (obj){ }

voidt al k()c onst{t .talk(); }

voidt alk_in_German()c onst{t .talk_in_German(); }
3

/l's pecializationt oadaptf unctionality
te npl ate <>
cl ass T al kat i ve<Bi gBend ock> {

Bi gBend ock& t;

publ i c:
Tal kat i ve( Bi gBend ocké& o bj)
:t (obj) {}

voidt al k()c onst{t .playBongs();}
3

/l's pecializationt oaddmissingf unctionality
te npl ate <>
cl assT al kati ve<Si | ent A ock> {

Si | ent A ock& t;

publ i c:
Tal kat | ve( Si | ent d ock& o bj)
it (obj) {}

voidt alk()c onst{c out< <" tickt ock" << endl;}

h

/la dapterf unctiont osinplifys yntaxi nu sage
tenplate<classT >
Tal kati ve<T>makeTal kati ve(T&obj){
returnT al kati ve<T>( obj );
}
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/[f unctiont ouseanobjectw hichi nplements the
/I Tal kative tenpl ate-interface
tenplate<classT >

voi d makel t Tal k( Tal kati ve<T>1t)

t.tal k();
}
intm ain()
Dog abog;
Quckood ock a Cuckood ock;
Bi gBend ock a Bi gBenCl ock;
Silentd ocka Sil entd ock;
//u seo bjectsi ncontextswhichdonot requiret alking
1. ..
Tal kat i ve<Dog>t d(aDog);
td.tal k(); [ Iw oofw oof
Tal kat i ve<Quckood ock>t cc(aCuckood ock);
tce.talk(); /I cuckoo c uckoo
makeTal kati ve(aDog) . tal k() ; [ /w oofw oof
makeTal kat i ve(aCuckooC ock).tal k_in_German(); /lw achet
I auf!
makel t Tal k( mekeTal kati ve(aBi gBend ock) ) ; //b ingb ong
//b ingb ong
makel t Tal k(makeTal kati ve(aSi | ent d ock)); /1t ickt ock
returno;
}

Controlling the instantiation of class templates and function templates can help
to reduce the footprint of a program. Some @mpilers instantiate atemplate
only once into a separate "repository”; others instantiate every template into
every translation unit where it is used. In the latter case, the linker typically
eliminates duplicates. If it does not, the exeautable an suffer significant
memory overheads.

Explicit instantiation of a classtemplate specialization causes instantiation of
all of its members into the translation unit containing the explicit instantiation
diredive. In addition to instantiating a class template a& a whole, explicit
instantiation can also be used for a member function, member class or static
data member of a classtemplate, or a function template or member template
Specializaion.

For example (from 81S-14.7.212):

te nplate<classT >classArray{v oidmf();}
te nplatec | ass A rray<char>;
tenplatev oi dArray<int>::nf();

te nplate<classT >voids ort(Array<t™&v){ /I~ ...* [ }
te nplatev oids ort (Array<char>§&);
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2.6.7

nanespace N {
tenplate<classT >voidf (T& {}
}

templatev oidN::f<int>(int&);

Explicitly instantiating template @de into a library can save space in every
translation unit which links to it. For example, in their run-time libraries,
some library vendors provide instantiations of std::basic_string<char>

and std::basic_string<wchar_t> . Some compilers also have cmmand-
line options to force complete template instantiation or to suppress it as
needed.

Standard Library

The Standard class std::string is not a lightweight component. Becaise it
has a lot of functionality, it comes with a cetain amount of overhead. And
because the mnstructors of the Standard Library exception classes described
in Clause 19 of IS 14882 (although ot their base dass std::exception )
require an argument of type std::string , this overhead may be included in a
program inadvertently. In many applications, strings are aeded, sored, and
referenced, but never changed. As an extension, or as an optimization, it
might be useful to create alighter-weight, unchangeable string class

Some implementations of std::list<T>::size() have linear complexity
rather than constant complexity. This latitude is allowed by the Standard
container requirements gecified in 81S-23.1. Caling such a function inside a
loop would result in quadratic behavior. For the same reason it is better to use
constructs such as if(myList.empty()) rather than if(MyList.size()==0)

Input/output can be aperformance bottlened in C++ programs. By default,
the standard iostreams (cin , cout , cerr , clog , and their wide-charader
counterparts) are synchronized with the C stdio streams (stdin , stdout |,
stderr ), S0 that reads fromcin and stdin , or writesto cout and stdout , can
be freely intermixed. However, this coupling has a performance ®©st, becaise
of the buffering in both kinds of streams. In the pre-sandard "classic"
iostreams library, unsynchronized mode was the default.

If there is no need for a program to make alls to both standard C streams and
C++ iostreams, synchronization can be turned off with this line of code:

st d: :i os_base::sync_w th_stdio(fal se);
If any input or output operation has occurred using the standard streams prior
to the all, the effect is implementation-defined. Otherwise, called with a false

argument, it alows the standard streams to operate independently of the
standard C streams (81S-27.4.2.4).
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2.6.8

Another standard default is to flush all output to cout before reading from
cin , for the purpose of displaying interadive prompts to the gplication user.
If this synchronized flushing is not neaded, some alditional performance @n
be gained by disablingit:

std::cin.tie(0);

Additional Suggestions

Shift expensive cmmputations from the most time-critical parts of a program to
the least time-critical parts (often, but not always, program start-up).
Tedniques include lazy evaluation and caching of pre-computed values. Of
course, these strategies apply to programming in any language, not just C++.

Dynamic memory allocation and deallocation can be abottlenedk. Consider
writing classspedfic operator new() and operator delete()  functions,
optimized for objeds of a specific size or type. It may be possible to recycle
blocks of memory instead of releasing them badk to the heg whenever an
objed is deleted.

Reference oounting is a widely used optimization tednique. In a single-
threaded application, it can prevent making unnecessary copies of objeds.
However, in multi-threaded applications, the overhead of locking the shared
data representation may add unneaessary overheads, negating the performance
advantage of reference ounting®.

Pre-compute values that won't change. To avoid repeaed function calls inside
aloop, rather than writing:

whil e( nyListlterator! =myList.end()). ..

for( size_tn=0 ;n<m yVector.size(),+ +n) .. .

instead call myList.end()  or myVector.size() exadly once before the loop,
storing the result in a variable which can be used in the repeaed comparison,
for example:

std::list<nyT>::iteratormyEnd=m yList.end();
whil e ( nyListlterator! =myEnd). ..

On the other hand, if a function such as myList.end() is ®© simple that it can
be inlined, the rewrite may not yield any performance alvantage over the
original code when translated by a good compiler.

When programming "close to the metal”, such as for accessing low-level
hardware devices, some use of assembly code may be unavoidable. The C++
asm declaration (81 S-7.4) enables the use of assembly code to be minimized.

20 of course, if optimization for space is more important than optimization for time, reference munting may still be the best

choice.
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The alvantage of using short assembler functions can be lost if they have to be
placel in separate source files where the efficiency gained is over-shadowed
by the overheal of calling and returning a function, plus attendant effects on
the instruction pipeline and register management. The asm dedaration can be
used to insert small amounts of assembly code inline where they provide the
most benefit.

However, a compiler istypically unaware of the semantics of inlined assembly
instructions. Thus, use of inlined assembly instructions can defea other
important optimizations such as common sub-expression elimination and
register allocation. Consequently, inline asembly code should be used only
for operations that are not otherwise acessible using C++.

2.6.9 Compilation Suggestions

In addition to these portable wding techniques, programming tools offer additional
platform-spedfic help for optimizing programs. Some of the techniques available
include the following:

 Compiler options are usually extra aguments or switches, which pass
instructions to the wmpiler. Some of these instructions are related to
performance, and control how to:

» Generate eeautable @de optimized for a particular hardware
architedure.

» Optimize the translated code for size or speed. Often there ae sub-
options to exercise finer control of optimization techniques and how
aggressively they should be goplied.

\7

Suppress the generation of debugging information, which can add to
code and datasize

\7

Instrument the output code for run-time profiling, as an ad to
measuring performance and to refine the optimization strategies used
in subsequent builds.

» Disable exception handling overhead in code which does not use
exceptions at all.

» Control the instantiation of templates.

* #pragma diredives allow compilers to add feaures gecific to machines and
operating systems, within the framework of Standard C++. Some of the
optimizaion-related uses of #pragma diredives are to:

» Specify function calling conventions (a C++ linkage-spedfication can
also be used for this purpose).

» Influencethe inline expansion of code.
» Specify optimization strategies on a function-by-function basis.
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» Control the placement of code or data into memory areas (to achieve
better locality of reference d run-time).

» Affect the layout of class members (through alignment or padking
constraints, or by suppressing compiler-generated data members).

Note that #pragma s are not sandardized and are not portable.

* Linking to static libraries or shared libraries, as appropriate. Linker options
can aso be used to control the amount of extra information included in a
program (e.g., symbol tables, debugging formeats).

» Utilities for efficiently allocating small blocks of memory. These may take the
form of system calls, #pragma s, compiler options, or libraries.

» Additional programs:

» Many systems have autility progran?* to remove the symbol table and
line number information from an objed file, once debugging is
complete, or this can often be done & link-time using a linker specific
option. The purpose is to reduce file storage and, in some @ses,
memory overhead.

» Some systems have utilities® and tools to interpret profiling data and
identify run-time bottleneds.

* Sometimes, minimizing compile-time is important. When code is being
creaed and debugged, suppressing optimization may enable the compiler to
run faster.

The most effedive tedhnique for reducing compile-time relies on reducing the
amount of code to be cwmpiled. The key is to reduce coupling between
different parts of a program so as to minimize the size and number of headler
files neaded in most translation units. Some tedhniques for acawmplishing this
include the use of abstrad base classes as interfaces and the PIMPL idiom, as
discussed above.

Also, suppressing automatic template instantiation in a given translation unit
may reduce ®mpile-time.

* Realing and parsing header code takestime. Yeas ago, the mmmon pradice
was to #includ e as few headers as possible, so that only necessary symbols
were declared. But with technology to pre-compile headers, build time may be
reduced by using a single header in each translation unit which #include s
everything needed for the program.

Well-designed headers will usually protect their contents against multiple
inclusion by following this pattern:

21 Eor ingtance the strip  utility, which is part of the Software Development Utilities option in the IEEE Posix/Open Group
Unix /ISO/IEC 99452002 specifications.

22 Eor ingtance the prof utility, whichis not part of the Posix/Unix Standard, but is avail able on many systems.
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#i f1 defined T H S_HEADER H
#defineT H S_HEADER H

//h erearet hecontentso ft heh eader
#endif /*T HI S_HEADER H*/

The header is sid to be “idempotent” because, regardless of how many times
it is #include d, it has the effed of being #include d only once If the
compiler provides the “idempotent guard” optimization, it will record in an
internal table the fad that this header is guarded by a macro. If this header is
subsequently #include d again, and the maao THIS_HEADER_Hstill remains
defined, then the compiler can avoid acassing the header contents.

If the compiler does not perform this optimizaion, the dedk can be
implemented by the programmer:

#i f! defined MY_HEADER H
#i ncl ude" ny_header. h"
#endi f

This has the disadvantage of coupling the header’s guard maao to the source
fileswhich #include that healer.

As always, local measurements in specific circumstances should govern the
decision.
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3 Creating Efficient Libraries

This dion discusses tedhniques which can be used in credaing any library. These
tedhniques are discussed in the mntext of an implementation of part of the C++
Standard Library.

3.1 The Standard IOStreams Library — Overview

The Standard 10Sreams library (81S-27) has a well-eaned reputation of being
inefficient. Most of this reputation is, however, due to misinformation and naive
implementation of this library component. Rather than tadling the whole library, this
report addresses efficiency considerations related to a particular asped used
throughout the |OStreams library, namely those aspeds relating to the use of the
Locales (81S-22). An implementation approach for removing most, if not al,
efficiency problems related to locales is discussed in §3.2.

The efficiency problems come in several forms:

3.1.1 Executable Size

Typically, using anything from the |OSreams library drags in a huge amount of
library code, much of which is not actually used. The principal reason for this is the
use of std::locale in al base classes of the IOStreams library (e.g. std::ios_base

and std::basic_streambuf ). Inthe worst case, the ade for al required faces from
the Locales library (81S-22.1.1.1.1Y4) is included in the exeautable. A milder form of
this problem merely includes code of unused functions from any face from which one
or more functions are used. Thisisdiscussed in 83.2.2.

3.1.2 Execution Speed

Since cetain aspeds of 10Sreams processing are distributed over multiple facds, it
appeas that the Standard mandates an inefficient implementation. But this is not the
case — by using some form of preprocessing, much of the work can be avoided.
With a slightly smarter linker than is typicdly used, it is possible to remove some of
these inefficiencies. Thisisdiscussed in 83.2.3 and §3.2.5.
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3.1.3 Object Size

The Standard seems to mandate an std::locale objed being embedded in each
std::ios_base and std::basic_streambuf objed, in addition to several options
used for formatting and error reporting. This makes for fairly large stream objeds.
Using a more alvanced organization for strean objects can shift the cods to those
applications adualy using the @rresponding fedures. Depending on the exad
approadch taken, the codts are shifted to one or more of:

* Compilationtime
» Higher memory usage when adually using the @rresponding feaures
* Exeaution spead

Thisisdiscussed in §83.2.6.

3.1.4 Compilation Time

A widespreal approadch for coping with the ubiquitous lack of support for exported
templates isto include the template implementations in the headers. This can result in
very long compile and link times if, for example, the |OStreams headers are included,
and especially if optimizations are enabled. With an improved approac using pre-
instantiation and consequent deaupling techniques, the compile-time can be reduced
significantly. Thisisdiscussed in 83.2.4.

3.2 Optimizing Libraries — Reference Example:
"An Efficient Implementation of Locales and I0Streams”

The definition of Locales in the C++ Standard (81S-22) seans to imply a pretty
inefficient implementation. However, thisis not true. It is possible to create dficient
implementations of the Locales library, both in terms of run-time efficiency and
executable size. This does take some thought and this report discusses me of the
possibilities that can be used to improve the dficiency of std:locale
implementations with a special focus on the functionality as used by the |OSreams
library.

The gproades discussd in this report are primarily applicable to satically bound
executables as are typically found in, for example, embedded systems. If shared or
dynamically loaded libraries are used, different optimization goals have precedence,
and some of the gproades described here could be @unterproductive. Clever
organizéion of the shared libraries might deal with some efficiency problems too;
however, this is not discussed in this report.

Nothing described in this report involves magic or redly new tedniques. It just
discusses how well known techniques may be employed to the benefit of the library
user. It does, however, involve alditional work compared to atrivial implementation,
for the library implementer as well as for the library tester, and in some cases for the
compiler implementer. Some of the techniques focus on just one dficiency asped
and thus not al techniques will be @plicable in al situations (e.g. cetan
performance improvements can result in additional code spacg. Depending on the
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requirements, the library writer, or possibly even the library user, has to choose which
optimizations are most appropriate.

3.2.1 Implementation Basics for Locales

Before going into the detail s of the various optimizations, it is worth introducing the
implementation of Locales, describing feaures implicit to the Standard definition.
Although some of the material presented in this dion is not grictly required and
there ae other implementation alternatives, this dion should provide the necessary
detail sto understand where the optimizations should be direded.

An std::locale objed is an immutable mlledion of immutable objeds, or more
precisely, of immutable facds. This immutability trait is important in multi-threaded
environments, becaise it removes the need to synchronize most accesses to locales
and their facas. The only operations needing multi-threading synchronizaion are
copying, assigning, and destroying std::locale objeds and the aedion of modified
locales.

Instead of modifying a locale object to augment the objed with a new facd or to
replace an existing one, std::locale constructors or member functions are used,
creaing new locale objeds with the modifications applied. As a nsequence,
multiple locale objeds can share their internal representation and multiple internal
representations can (in fad, have to) share their facds. When a modified locale object
is creded, the existing facets are copied from the original and then the modification is
applied, possibly replacing some facds. For corred maintenance of the facds, the
Standard mandates the necessary interfaces, allowing reference @unting or some
equivalent tednique for sharing facds. The corresponding functionality is
implemented in the class std::locale::facet , the base classfor all facds.

Copying, assigning, and destroying std::locale objeds reduces to simple pointer
and reference count operations. When copying a locale object, the reference ount is
incremented and the pointer to the internal representation is assgned. When
destroying a locale objed, the reference wunt is deaemented and when it dropsto 0,
the internal representation is released. Assgnment is an appropriate cmbination of
these two. What remains is the default construction of an std::locale which is just
the same @& a @py of the aurrent global locale object. Thus, the basic lifetime
operations of std::locale objects are reasonably fast.

Individual facds are identified using an ID, more predsely an objed of type

std::locale::id, which is available as a static data member in all base classes
defining afacd. A facd is a classderived from std::locale::facet which has a
pulicly accessible static member called id of type std:locale::id (8IS

22.1.1.1.291). Although explicit use of a locale's faces sems to use atype & an
index (referred to here & F), the Locales library internally uses F:id . The
std::locale::id simply stores an index into an array identifying the locaion of a
pointer to the arresponding face or O if a locale object does not store the
corresponding face.
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In summary, a locale objed is basically a reference ®unted pointer to an internal
representation consisting of an array of pointers to reference ®unted facds. In a
multi-threaded environment, the internal representation and the facds might store a
mutex (or some similar synchronization facility), thus protecting the reference ount.
A corresponding excerpt of the declarations might look something like this (with
namespace std and ather qualificaiions or elaborations of names omitted):

cl ass| ocal e{
publ i c:
classf acet {
/1.

private:
size_t refs;
nmut ex | ock; /1o ptional
b
classi d{
/1.
private:

size_t index;

}s

/1.
private:
structi nternal {
/1.
size_tr efs;
mutex | ock; /lo ptional
facet*m enbers;

internal * rep;

h

These declarations are not really required and there ae some interesting variations:

Rather than using a double indiredion with an internal struct , a pointer to an
array of unions can be used. The union would contain members siitable &
reference ount and possble mutex lock, as well as pointers to facets. The
index O could, for example, be used as “reference ®unt” and index 1 as
“mutex”, with the remaining array members being pointersto faces.

Instead of protecting each face objed with its own mutex lock, it is possible
to share the locks between multiple objeds. For example, there may be just
one global mutex lock, becaise the need to lock facds is relatively rare (only
when amodified locale object is necessary isthere aneel for locking) and it is
unlikely that this global lock remains held for extended periods of time. If this
is too coarse grained, it is possible to pace amutex lock into the static id
objed, such that an individual mutex lock exists for ead face type.

If atomic increment and deaement are available, the reference munt alone is
sufficient, because the only operations needing multi-threading protection are
incrementing and deaementing of the reference ount.

The locale objeds only need a representation if there ae modified locale
objeds. If such an objed is never creaed, it is possible to use an empty
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std::locale objed. Whether or not thisisthe cae @n be determined using
some form of "whole program optimization" (83.2.5).

*  Whether an array or some other data structure is used internally does not redly
matter. What is important is that there is a data Sructure indexed by

std::locale::id

* A trivial implementation could use anull pointer to indicate that a face is
absent in a given locale objed. If a pointer to a dummy face is used instead,
std::use_facet() can simply use a dynamic_cast<>() to produce the
corresponding std::bad_cast ~ exception.

In any case, as gtated ealier, it is reasonable to envision a locale objed as being a
reference ounted pointer to some internal representation containing an array of
reference ounted facds. Whether this is adually implemented so as to reduce run-
time @sts by avoiding a double indiredion, and whether there ae mutex locks and
where these ae, does not redly matter to the remainder of this discussion. It is,
however, assumed that the implementer chooses an efficient implementation of the
std::locale

It is worth moting that the standard definition of std::use_facet() and
std::has_facet() differ from ealier Committee Draft (CD) versions quite
significantly. If a face is not found in a locale objed, it is not available for this
locale. Inealier CDs, if afacd was not found in agiven locale, then the global locale
objed was ®ached. The definition chosen for the standard was made so that the
standard could be more dficiently implemented —to determine whether a face is
available for a given locale objed, a smple aray lookup is sufficient. Therefore, the
functions std::use_facet() and std:has_facet() could be implemented
something like this:

externs td::locale::facetd umy;

te npl at e < t ypenane F>

boolh as_facet(std::localec onst&l oc){
returnl oc.rep->facets[F::id::index]! = &Junmy;
}

te npl at e < t ypenane F>
F const&use_facet(std::localec onst&l oc){

returnd ynam c_cast<Fc onst & (*| oc.rep->facets[Facet::id::index]);
}

These versions of the functions are tuned for speed. A simple aray lookup, together
with the necessary dynamic_cast<>(), is used to obtain a facd. Since this implies
that there is a slot in the aray for eat face possbly used by the program, it may be
somewhat wasteful with resped to memory. Other techniques might ched the size of
the aray first or store id/facet pairs. In extreme caes, it is possible to locéae the
corred face using dynamic_cast<>() and store only those facds that are actualy
available in the given locale.

3.2.2 Reducing Executable Size

Linking unused code into an exeautable @n have a significant impad on the
executable size Thus, it is best to avoid having unused code in the executable
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program. One source of unused code results from trivial implementations. The
default facet std::locale::classic( ) includes a cetain set of facds as described
in 81S-221.1.1.192. It is tempting to implement the aedion of the crresponding
locale with a straightforward approach, namely explicitly registering the listed facets:
std::localeconst&std::locale::classic() {

statics td::local eo bject;
staticb oolu ninitialized=t rue;

if( uninitialized)({
object.intern_register(newcollate<char>);
object.intern_register(newcollate<wchar_t>);
/1.

}

returno bject;

}

However, this approach can result in a very large exeautable, as it drags in all facets
listed in the table. The alvantage of this approach is that a relatively simple
implementation of the various locale operations is possible. An alternative one,
producing smaller code, is to include only those facets that are redly used, perhaps by
providing specialized versions of use_facet() ~ and has_facet().  For example:
te nplate<typename F >s tructf acet_aux{
staticFc onst&use_facet(localeconst& I) {

returnd ynam c_cast<Fc onst&(*l.rep
->facets[Facet::id::index]);

}
staticb oolh as_facet(localec onst&l ){

returnl .rep->facets[F::id::index]!= &Jumy;
}

3
tenplate< >s tructf acet_aux<ctype<char>>{
staticc type<char>c onst&use_facet(local e const&l ){
try {
returnd ynam c_cast <ct ype<char > const&>(*|.rep
->facets[Facet::id::index]);
}c atch( bad_castc onst&) {
| ocal e::facet*f=1I .intern_regis ter(newctype<char>);
returnd ynam c_cast <ct ype<char >&>(*f) ;

}

staticb oolh as_facet(localec onst&{re turnt rue; }
b

II's imlarlyf ort heotherf acets

te npl at e < t ypenane F>

F const&use_facet(localeconst&l ) {
returnf acet _aux<F>::use_facet(l);

}

te npl at e < t ypenane F>

boolh as_facet(localec onst&l ) {
returnf acet _aux<F>::has_facet(l);

}

This is just one example of many possible implementations for areaurring theme. A
face is creaed only if it is indeal referenced from the program. This particular
approadh is iitable in implementations where exceptions cause arun-time overhead
only if they are thrown, because, like the normal exeaution path, if the lookup of the
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face is successful it is not burdened by the extra cde used to initialize the facd.
Although the @ove @de seems to imply that struct facet_ aux has to be
specialized for all required facds individually, this need not be the cae. By using an
additional template agument, it is possible to use partial specialization together with
some tagging mechanism to determine whether the facet should be aeaed on the fly
if it isnot yet present.

Different implementations of the lazy face initialization include the use of static
initializers to register used facets. In this case, the specialized versions of the function
use_facet)  would be placal into individual objed files together with an objed
whose static initialization registers the crresponding facet. This approad implies,
however, that the function use_facet()  is implemented out-of-line, possibly causing
unnecessary overhead both in terms of run-time and exeautable size

The next source of unused code is the mmbination of several related aspeds in just
one face due to the use of virtual functions. Normally, instantiation of a class
containing Mrtual functions requires that the code for all virtual functions be present,
even if they are unused. This can be relatively expensive & in, for example, the cae
of the face dealing with rumeric formatting. Even if only the integer formatting
functions are used, the typically larger code for floating point formatting gets dragged
in just to resolve the symbols referenced from the virtual function table.

A better approach to avoid linking in unused virtual functions would be to change the
compiler so that it generates appropriate symbols which enable the linker to determine
whether a virtual function is really called. If it is, the reference from the virtual
function table is resolved; otherwise, there is no need to resolve it, becaise it will
never be alled anyway.

For the Standard faces however, there is a “poor man's’ alternative that comes close
to having the same effect. The ideais to provide anon-virtual stub implementation
for the virtual functions, which is placel in the library such that it is sached fairly
late. The real implementation is placed before the stub implementation in the same
objed file along with the implementation of the forwarding function. Since use of the
virtua function has to go through the forwarding function, this symbol is also un-
referenced, and resolving it brings in the @rred implementation of the virtual
function.

Unfortunately, it is not totally true that the virtual function can only be alled through
the forwarding function. A classderiving from the face can diredly call the virtual
function because these ae protected  rather than private . Thus, it is dill necessary
to drag in the whole implementation if there is a derived facd. To avoid this, another
implementation can be placel in the same objed file as the mnstructors of the face,
which can be alled using a hidden constructor for the aitomatic instantiation.
Although it is possible to get these gproadhes to work with typicd linkers, a
modified compiler and linker provide a much-preferred solution, unfortunately one
which is often outside the scope of library implementers.

In many cases, most of the normally visible cde bloat can be removed using the two
tedhniques discussed above, i.e. by including only used facds and avoiding the
inclusion of unused virtual functions. Some of the gpproadhes described in the other
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sedions can also result in a reduction of exeautable size but the focus of those
optimizations is on a different asped of the problem. Also, the reduction in code size
for the other approadhes is not as significant.

3.2.3 Preprocessing for Facets

Oncethe exeautable size is reduced, the next observation is that the operations tend to
be slow. Take numeric formatting as an example: to produce the formatted output of
anumber, threedifferent facets are involved:

* num_put, which doesthe adual formatting, i.e. determining which digits and
symbols are there, doing padding when necessary, etc.

* numpunct, which provides detail s about local conventions, such as the need to
put in thousands separators, which charader to use & adedmal point, etc.

* ctype, which transforms the daraders produced internally by num_put into
the gopropriate "wide" charaders.

Ead of the ctype or numpunct functions called is essentially a virtual function. A
virtual function call can be an expensive way to determine whether a cetain charader
is a decimal point, or to transform a darader between a narrow and wide
representation. Thus, it is necessry to avoid these alls wherever possible for
maximum efficiency.

At first examination there does not appea to be much room for improvement.
However, on closer inspedion, it turns out that the Standard does not mandate cllsto
numpunct or ctyp e for ead pieceof information. If the num_put facet has widened a
charader aready, or knows which decimal point to use, it is not required to cal the
corresponding functions. This can be taken a step further. When creding a locale
objed, certain data can be @ded using, for example, an auxiliary hidden facd.
Rather than going through virtual functions over and over again, the required deta ae
simply cached in an appropriate data structure.

For example, the cade for the numeric formatting might consist of a darader
translation table resulting from widening all digit and symbol charaders during the
initial locale setup. This translation table might also contain the decimal point and
thousands separator — combining cata obtained from two different faces into just one
table. Taking it another step further, the cahe might be set up to use two different
functions depending on whether thousands separators are used acording to the
numpunct facet or not. Some preprocessing might also improve the performance of
parsing strings like the Boolean values if the std::ios_base::boolalpha flagis st.

Although there ae many detail s to be handled, such as distinguishing between normal
and cache facds when creaing a new locale objed, the dfed of using a cahe @an ke
fairly significant. It is important that the cahe facds are not generally shared
between locale representations. To share the cade, it has to be verified that all facds
contributing to the cated data ae identicd in ead of the crresponding locales.
Also, certain approades, like the use of two different functions for formatting with or
without thousands separators, only work if the default face is used.
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3.2.4 Compile-Time Decoupling

It may appea strange to talk about improving compile-time when discussng the
efficiency of Locales, but there ae good reasons for this. First of all, compile-time is
just another concern for performance efficiency, and it should be minimized where
possible. More important to this tednicd report however, is that some of the
tedhniques presented below rely on certain aspeds that are related to the compil ation
Process

The first technique that improves compile-time is the liberal use of forward
declarations, avoiding definitions wherever possible. A standard header may be
required to include other healers that provide aneeded definition (81S-17.4.4.191);
however, this does not apply to declarations. As a consequence, a header need not be
included just because it defines a type which is used only as a return or argument type
in a function declaration. Likewise, a forward declaration is sufficient if only a
pointer to a dasstype is used as a class member (seethe discussion of the PIMPL
idiomin 8.6).

Looking at the members imbue() and getloc() of the class std:ios_base , it
would seem that the <ios> header is required to include <locale> simply for the
definition of std:locale  , becaise gparently an std:ios_base object stores a

locale objed in a member variable. This is not required! Instead, std:ios_base
could store a pointer to the locale's internal representation and construct an
std::locale objed on the fly. Thus, there is no necessity for the header <ios> to
include the header <locale> . The header <locale> will be used elsewhere with the
implementation of the std::ios_base class, but that isa completely different isaue.

Why does it matter? Current compilers, lacking support for the export keyword,
require the implementation of the template members of the stream classes in the
headers anyway and the implementation of these classes will need the definitions
from <locale> —wont they? It istrue that some definitions of the template members
will indeed require definitions from the header <locale> . However, this does not
imply that the implementation of the template members is required to reside in the
header files — a simple alternative is to explicitly instantiate the crresponding
templates in suitable objed files.
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Explicit instantiation obviously works for the template aguments mentioned in the
standard; for example, explicit specialization of std::basic_ios<char> and
std::basic_ios<wchar_t> works for the class template std::basic_ios . But what
happens when the user tries ©me other type & the charader representation, or a
different type for the darader traits? Since the implementation is not inline but
requires explicit instantiation, it cannot always be present in the standard library
shipped with the compiler. The preferred approadch to this problem is to use the
export  keyword, but in the &sence of this, an entirely different approadc is
necessary. One such approad is to instruct the user on how to instantiate the
corresponding classes using, for example, some environment-specific implementation
file and suitable compiler switches. For instance, instantiating the |OStreams classes
for the dharader type mychar and the traits type mytraits ~ might look something like:

c++- 0i o-inst-mychar-nytraits.oi o-inst.cpp\
-Dchar T=nychar- Diraits=nytraits- D ncl ude="nychar. hpp"

Using such an approach causes ome trouble to the user and more work for the
implementer, which seems to be a fairly high price to pay for a reduction in
dependencies and a speed up of compile-time. But note that the improvement in
compile-time is typically significant when compiling with optimizations enabled. The
reason for this is simple: with many inline functions, the cmpiler passes huge dunks
of code to the optimizer, which then has to work extra hard to improve them. Bigger
chunks provide better optimization possibilities, but they also cause significantly
longer compile-times due to the non-linea increase in the cmplexity of the
optimization step as the size of the dunks increases. Furthermore, the objed files
written and later processed by the linker are much bigger when all used instantiations
are present in each objea file. This can also impad the executable size, becaise
certain code may be present multiple times, embedded in different inline functions
which have some @de from just one other function in common.

Another reason for having the IOStreams and Locales functions in a separate place is
that it is possible to tell from the undefined symbols which feaures are used in a
program and which are not. This information can then be used by a smart linker to
determine which particular implementation of a function is most suitable for a given
applicaion.

3.2.5 Smart Linking

The discusson above already addresses how to omit unused code by means of a
slightly non-trivial implementation of Locales and virtual functions. It does not
addresshow to avoid unnecessary code. The term “unnecessary code” refers to code
that is adually executed, but which does not have any real effed. For example, the
code for padding formatted results has no effect if the width() IS never set to a non-
zeo value. Similarly, there is no need to go through the virtual functions of the
various facds if only the default locale is ever used. Asin all other aspeds of C++, it
is reasonable to avoid paying a st in code size or performance for any feaure which
IS not used.
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The basic ideafor coping with this is to avoid umecessary overheals where possible
by providing multiple implementations of some functions. Since writing multiple
implementations of the same function can easily become amaintenance nightmare, it
makes ense to write one implementation, which is configured at compile-time to
handle different situations. For example, a function for numeric formatting that
optionall y avoids the ade for padding might look like this:

te nplate<typenanec T,t ypenaneOutlt>

num put<cT,O utlt>::do_put(Qutlti t,i os_base& fnt,
cTfill,] ongv) const
{

charb uffer[some_suitabl e_size];
char*e nd=g et_formatted(fnt,v );
if( need_padding&&f nt.width()>0 )
returnp ut_padded(it,f m,f ill,b uff er);
el se
returnput(it,f m,b uffer);
}

The value need_padding is a @nstant bool which is &t to false if the compilation
is configured to avoid padding code. With a clever compiler (normally requiring
optimization to be enabled) any referenceto put_padded() isavoided, as isthe chedk
for whether the width() is greaer than zero. The library would just supply two
versions of this function and the smart linker would need to choose the right one.

To choose the right version, the linker has to be instructed under what circumstances
it should use the one aroiding the padding, i.e. the one where need_padding is %t to
false . A simple analysis shows that the only possbility for width()  being non-zero
is the use of the std::ios_base::width() function with a parameter. The library
does not set a non-zero value, and hence the simpler version can be used if
std::ios_base::width() isnever referenced from user code.

The example of padding is pretty simple. Other cases are more wmplex but still
manageable. Another issue worth considering is whether the Locales library must be
used or if it is possible to provide the functionality diredly, possibly using functions
that are shared internally between the Locales and the IOStreams library. That is, if
only the default locale is used, the |IOSreams functions can call the formatting
functions diredly, bypassing the retrieval of the @rresponding face and as<ociated
virtual function call —indeed, bypassng all code related to locales — thus avoiding any
need to drag in the corresponding locale maintenance @de.

The analysis neassary to ched if only the default locde is used is more mwmplex,
however. The simplest test isto chedk for use of the locale's constructors. If only the
default and copy constructors are used, then only the default locale is used because
one of the other constructorsis required to create adifferent locale objed. Even then,
if another locale object is constructed, it may not necessarily be used with the
|OStreams. Only if the global locale is changed, or one of
std::ios_base::imbue() , std::basic_ios<...>::imbue() , or
std::basic_streambuf<...>::imbue() is ever called, can the streams be affeded
by the non-default locale objed. Although this is smewhat more complex to
determine, it is gill feasible. There ae other approadies which might be exploited
too: for example, whether the streams have to ded with exceptions in the input or
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output functions (this depends on the strean buffer and locales possbly used);
whether invoking callback  functions is nealed (only if callback S are ever
registered, is this necessary); etc.

In order for the linker to dedde which functionality is used by the gplication, it must
follow a set of “rules’ provided by the library implementer to exclude functions. It is
important to base these rules only on the gplicaion code, to avoid unnecessary
restrictions imposed by unused Standard Library code. However, this results in more,
and more @mplex, rules. To determine which functionality is used by the
application, the unresolved symbols referenced by the gplication code ae examined.
This requires that any function mentioned in a “rule” is indead unresolved and results
in the @rresponding functions being non-inline.

There aethreeproblems with this approad:

» The maintenance of the implementation becomes more complex becaise extra
work is necessary. This can be reduced to a more accetable level by relying
on a dever compiler to eliminate @de for branches that it can determine ae
never used.

» The analysis of the cnditions under which code can be avoided is metimes
non-trivial.  Also, the conditions have to be made available to the linker,
which introduces another potential cause of error.

» Even simple functions cannot be inline when they are used to exclude asimple
implementation of the function std::ios_base::width() . This might result
in lessefficient and sometimes even larger code (for smple functions the mst
of calling the function can be bigger than the adual function). See 83.2.7 for
an approadh to avoiding this problem.

The same gproach can be beneficial to other libraries, and to areas of the Standard
C++ library other than |OStreams and Locales. In general, the library interface @an be
simplified by choosing among similar functions applicable in different Situations,
while still retaining the same efficiency. However, this technique is not applicable to
all situations and should be used carefully where gpropriate.

3.2.6 Object Organization

A typicd approad to designing a classis to have member variables for all attributes
to be maintained. This may seem to be anatural approacd, but it can result in abigger
footprint than necessary. For example, in an application where the width()  is never
changed, there is no neal to actually store the width. When looking at |10OStreams, it
turns out that ead std::basic_ios objed might store a relatively large amount of
data to provide functionality that many C++ programmers using |IOStreams are not
even aware of, for example:

« A st of formatting flags is dored in an std:ios_base:fmtflags
subobject.

* Formatting parameters like the width() and the precision() are stored in
std::streamsize objeds.
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* An std:locale subobjea (or some suitable reference to its internal
representation).

e Thepword() andiword() lists.
 Alist of callback s.

« The aror flags and exception flags are stored in objects of type
std::ios_base::iostate . Since eah of these has values representable in
just threebits, they may be folded into one word.

» Thefill charader used for padding.
* A pointer to the used stream buffer.
* A pointer tothetie() ed std::basic_ostream

Thisresults in at least eight extra 32-bit words, even when folding multiple data into
just one 32-bit word where possible (the formatting flags, the state axd exception
flags, and the fill charader can fit into 32 bits for the charader type char ). These ae
32 hytes for every stream objed even if there is just one stream — for example,
std::cout ~ — which in a given program never uses a different predsion, width (and
thus no fill charader), or locale; probably does not set up special formeatting flags
using the pword() oriword() facilities; almost certainly does not use callback s, and
is not tie() ed to anything. In such a cae — which is not unlikely in an embedded
application — it might even need no members at all, and operate by simply sending
string literals to its outpui.

A different organization could be to use an array of unions and the pword() /iword()
mechanism to store the data. Eacdh of the pieces of data listed above is given an index
in an array of unions (possibly several pieces can share asingle union like they shared
just one word in the conventional setting). Only the pword() /iword()  pieces would
not be stored in this array because they are required to accessthe aray. A fedure
never acesed does not get an index and thus does not require any spacein the aray.
The only complication is how to ded with the std::locale  , becaise it is the only
non-POD data. This can be handled using a pointer to the locale's internal
representation.

Depending on the exad organizaion, the gproach will show different run-time
charaderistics. For example, the eaiest approacd for assigning indices is to do it on
the fly when the orresponding data ae initialized or first accesed. This may,
however, result in arrays which are smaller than the maximum index and thus the
acces to the aray has to be bounds-chedked (in case of an out-of-bound access the
array might have to be increased; it is only an error to access the corresponding
element if the index is bigger than the biggest index provided so far by
std::ios_base::xalloc() ).
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An alternative is to determine the maximum number of slots used by the Standard
library at link-time or a sart-up time before the first stream objed is initialized. In
this case, there would be no need to ched for out-of-bound access to the |I0OStreams
feaures. However, thisinitialization is more cmplex.

A similar approach can be goplied to the std::locale objects.

3.2.7 Library Recompilation

So far, the tedhniques described assume that the gplication is linked to a pre-
padkaged library implementation. Although the library might contain different
variations on some functions, it is gill pre-padkaged (the templates possibly
instantiated by the user can also be cnsidered to be pre-padkaged). However, this
asumption is not necessarily corred. If the source code is available, the Standard
library can also be recompiled.

This leads to the “two phase” building of an applicaion: in the first phase, the
applicaion is compiled against a "normal”, fully-fledged implementation. The
resulting objed files are aittomatically analyzed for feaures acually used by looking
at the unresolved references. The result of this analysis is sme @nfiguration
information (possibly a file) which uses conditional compilation to remove all unused
fedures from the Standard library; in particular, removing unused member variables
and unnecessry code. In the seand phese, this configuration information is then
used to recompil e the Standard library and the goplication code for the final program.

This approad does not suffer from drawbacks due to dynamic determination of what
are dfedively static feaures. For example, if it is known at compile-time which
|OStreams fedures are used, the stream objeds can be organized to include members
for exadly those features. Thus, it is not necessary to use alookup in a dynamicaly
allocaed array of facds, possibly using a dynamicaly assigned index, if the full
flexibility of the |IOSreams and Locales architecture is not used by the arrent
applicaion. Also, inthe final compilation phase, it is possible to inline functions that
were not previously inlined (in order to producethe unresolved symbol references).
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4 Using C++ in Embedded Systems

4.1 ROMability

For the purposes of this technical report, the terms “ROMable” and “ROMability”
refer to entities that are gpropriate for placement in Read-Only-Memory and to the
processof placing entities into Read-Only-Memory so as to enhance the performance
of programs written in C++.

There aetwo principal domains that benefit from this process

» Embedded programs that have @nstraints on available memory, where code
and data must be stored in physicd ROM whenever possible.

* Modern operating systems that suppat the sharing of code and data anong
many instances of a program, or among several programs sharing invariant
code and data

The subjed of ROMability therefore has performance gplicaion to al programs,
where immutable portions of the program can be placed in a shared, read-only space
On hosted systems, “read-only” is enforced by the memory manager, while in
embedded systemsiit is enforced by the physical nature of ROM devices.

For embedded programs in whose environment memory is scarce, it is critical that
compilers identify strictly ROMable objeds and allocate ROM, not RAM, areafor
them. For hosted systems, the requirement to share ROMable information is not as
critical, but there ae performance alvantages to hosted programs as well, if memory
footprint and the time it takes to load a program can be gredly reduced. All the
tedniques described in this sdion will benefit such programs.

4.1.1 ROMable Objects

Most constant information is ROMable. Obvious candidates for ROMability are
objeds of datic storage duration that are dedared const and have @nstant
initializers, but there ae several other significant candidates too.

Objeds which are not dedared const can be modified; consequently they are not
ROMable. But these objeds may have mnstant initializers, and those initializers may
be ROMable. This paper considers those enttities in a program that are obviously
ROMable such as global const objeds, entities that are generated by the compilation
system to support functionality such as switch statements, and also places where
ROMability can be goplied to intermediate entities which are not so obvious.
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4.1.1.1 User-Defined Objeds

Objeds declared const that are initialized with constant expressions are ROMable.
Examples:

An agoregate (81S-8.5.1) object with static storage duration (81S-3.7.1) whose
initializers are all constants:

staticc onsti ntt ab[]={ 1, 2,3}

Objeds of scalar type with external linkage:

A const-qualified objea of scalar type has internal (81S-7.1.5.1) or no
(81S-3.512) linkage and thus can usually be trested as a cmpile-time @nstant,
i.e. objed data aeas are not allocaed, even in ROM. For example:

consti ntt ablesize=4 8§;
doubl et able[tablesize]; [/ table hass pace for4 8d oubl es

However, if such an objed is used for initializetion or assignment of pointer or
reference variables (by explicitly or implicitly having its address taken), it
requires gorage space ad isROMable. For example:

externc onsti nta=1 ; /le xternl inkage

consti ntb =1; /1i nternall inkage

consti nt*c =&b; /lv ariable b shouldb eall ocated

consti ntt bsize =256; //i ti se xpected that tbsize isn ot
/la |locatedatru n-ti me

charc tb[thbsize];

String literals:

An ordinary string literal has the type “aray of n const char 7 (81S-2.13.4),
and so isROMable. A string literal used as the initializer of a dharader array
is ROMable, but if the variable to be initialized is not a const-qualified array
of char , then the variable beinginitialized is not ROMable:

constc har*c onsts 1=" abc"; //b oth sl and abc are RQOwabl e
chars 2[] =" def"; [/ s2 isn ot RQDbIle

A compiler may achieve further spacesavings by sharing the representation of
string literalsin ROM. For example:

constc har*s 1=" abc"; //o nlyonec opyo f abc needs
constc har*s 2=" abc"; //t oexist,a ndi t isR Owable

Y et further possibilities for saving spaceexist if a string literal is identical to
the trailing portion of a larger string literal. Storage spacefor only the larger
string literal is necessary, as the smaller one can reference the cmmon sub-
string of the larger. For example:

constc har*s 1=" Hell oWorl d";
constc har*s 2=" Wrld"

/IC ouldbeconsideredt obei nplicitlye quiv al entt o:
constc har*s 1=" Hell oWorl d"
constc har*s 2=s 1+6 ;
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4.1.1.2 Compiler-Generated Objeds

Jump tables for switch statements:

If a jJump table is generated to implement a switch statement, the table is
ROMable, since it consists of a fixed number of constants known at compil e-
time.

Virtual function tables:
Virtual function tables of a classare usually** ROMable.
Type identification tables:

When a table is generated to identify RTTI types, the table is usually*
ROMable.

Exception tables:

When exception handling is implemented using static tables, the tables are
usually® ROMable.

Reference to constants:

If a constant expresgon is gedfied as the initializer for a const-qualified
reference, atemporary objed is generated (81S-8.5.3).This temporary objed is
ROMable. For example:

/IT hed eclaration:
constd ouble&a=2 .0;

/IM ayb er epresenteda s:
staticc onstd oublet np=2 .0; // tnp i sR OMble
constd ouble&a=t np;

If a is declared elsewhere & an extern variable, or if its addressis taken, then
spacemust be allocated for it. If this happens, a is aso ROMable. Otherwise,
the compiler may substitute a dired reference to tmp (more acarately, the
addressof tmp) anywhere a is used.

2 Eor some systems, virtual function tables may not be ROMableif they are dynamically linked from a shared library.

24 Eor some systems, RTTI tables may not be ROMableif they are dynamically linked from a shared library.

25 Eor some systems, exception tables may not be ROMableif they are dynamically linked from a shared library.
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Initiali zers for aggregate objeds with automatic storage duration:

If all the initializers for an aggregate objed that has automatic storage duration
are oonstant expressions, atemporary objed that has the value of the constant
expressons and code that copies the value of the temporary objed to the
aggregate objed may be generated. This temporary objed is ROMable. For
example:
st ruct A{
inta ;
intb ;
intc ;
h
voidt est() {
Aa={ 1,2,3};
}

/IM ayb ei nterpretedas:

voidt est() {
staticc onstAt np={ 1,2,3}; [// tnmp is ROvable
Aa=t np;

}

Thus, the instruction code for initializing the aygregate objed can be replaced
by a simple bitwise wpy, saving both code space ad exeaution time.

Constants creaed during code generation:

Some literals, such as integer literals, floating point literals, and addresses, can
be implemented as either instruction code or data. If they are represented as
data, then these objeds are ROMable. For example:

voidt est() {
doublea=r ead_sone_val ue();
a+=1.0;

}

/IM ayb ei nterpretedas:

voidt est() {
staticc onstd oublet mp =1.0; // tnp is ROvable
doublea=r ead_sone_val ue();
a+=t np;
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4.1.2 Constructors and ROMable Objects

In general, const objeds of classes with constructors must be dynamically initialized.
However, in some caes compile-time initialization could be performed if static
analysis of the constructors resulted in constant values being wsed. In this case, the
objed could be ROMable. Similar analysis would need to be performed on the
destructor.
cl assA {
inta ;
publ i c:
A(intv ):a (v){ }

c,onstAt ab[2]={ 1,2}

Even if an objed is not dedared const , its initialization “pattern” may be ROMable,
and can be bitwise cpied to the ac¢ual objed when it isinitialized. For example:
cl assA {
inta ;
char*p ;

publ i c:
, A0 (= THT

A not_const ;

In this case, all objects are initialized to a constant value (i.e. the pair {7, "Hi"} ).
This constant initial value is ROMable, and the constructor could perform a bitwise
copy of that constant value.

4.2 Hard Real-Time Considerations

For most embedded systems, only a very small part of the software is truly real-time
critical. But for that part of the system, it isimportant to exadly determine the time it
takes to exeaute a specific piece of software. Unfortunately, this is not an easy
analysis to do for modern computer architedures using multiple pipelines and
different types of caches. Nevertheless, for many code sequences it is gill quite
straightforward to cdculate aworgt-case analysis.

While it may not be possble to perform this analysis in the general case, it is possible
for a detailed analysis to be worked out when the details of the specific architedure
are well understood.

This gatement also holds for C++. Here is a short description of several C++ feaures
and their time predictabil ity.
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4.2.1 C++ Features for which Timing Analysis is Straightforward

4.2.1.1 Templates

As pointed out in detail in 82.5, there is no additional real-time overhead for calling
function templates or member functions of class templates. On the contrary,
templates often allow for better inlining and therefore reduce the overhead of the
function call.

4.2.1.2 Inheritance

4.2.1.2.1 Singlelnheritance

Converting a pointer to a derived class to a pointer to base class™ will not introduce
any run-time overhead in most implementations (82.3). If there is an overhea (in
very few implementations), it is a fixed number of machine instructions (typically
one) and its geal can easily be determined with a test program. This is a fixed
overhea; it does not depend on the depth of the derivation.

4.2.1.2.2 MultipleInheritance

Converting a pointer to a derived class to a pointer to base classmight introduce run-
time overhead (82.3.5). This overheal is a fixed number of machine instructions
(typically one).

4.2.1.2.3 Virtual Inheritance

Converting a pointer to a derived class to a pointer to a virtual base class will
introduce run-time overhead in most implementations (82.3.6). This overheal is
typically a fixed number of machine instructions for eat access to a data member in
the virtual base class

4.2.1.3 Virtual functions

If the static type of an objed can be determined at compile-time, calling a virtual
function may be no more expensive than calling a non-virtual member function. If the
type must be dynamically determined at run-time, the overhead will typically be a
fixed number of machine instructions (82.3.3) for ead call.

4.2.2 C++ Features for Which Real-Time Analysis is More Complex

The following feaures are often considered to be prohibitively slow for hard red-time
code sequences. But this is not always true. The run-time overhead of these features
is often quite small, and even in the real-time parts of the program, there may be a
number of CPU cycles available to spend. If the red-time task is complex, a dean
structure that allows for an easier overall timing analysis is often better than hand-
optimized but complicated code — as long as the former is fast enough. The hand-

26 5uch a conversionisalso necessary if a function that isimplemented in a base classis called for a derived class objed.
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optimized code might run faster but is in most cases more difficult to analyze
corredly, and the feaures mentioned below often allow for clearer designs.

4.2.2.1 Dynamic Casts

In most implementations, dynamic_cast<...> from a pointer (or reference) to base
classto a pointer (or reference) to derived class (i.e. a down-cast), will produce an
overheal that is not fixed but depends on the details of the implementation and there
IS no general rule to test the worst case.

The same istrue for crosscasts (82.3.8).

As an alternate option to using dynamic_cast S, consider using the typeid operator.
Thisisa theger way to ched for the target’ s type.

4.2.2.2 Dynamic Memory Allocation

Dynamic memory allocaion has — in typicd implementations — a run-time overheal
that is not easy to analyze. In most cases, for the purpose of real-time analysis it is
appropriate to assume dynamic memory allocaion (and also memory deallocation) to
be non-deterministic.

The most obvious way to avoid dynamic memory allocation is to predlocae the
memory — either staticdly at compile- (or more @rrectly link-) time or during the
general setup phase of the system. For deferred initialization, preallocae raw
memory and initialize it later using new-placement syntax (81S-5.3.4111).

If the real-time ade redly neals dynamic memory allocation, use a implementation
for which all the implementation details are known. The best way to know all the
implementation details is to write a eistom memory allocaion mechanism. This is
easlly done in C++ by providing classspecific operator new  and delete  functions
or by providing an Allocator template agument to the Standard Library containers.

But in all cases, if dynamic memory allocaion is used, it is important to ensure that
memory exhaustion is properly anticipated and handled.

4.2.2.3 Exceptions

Enabling exceptions for compilation may introduce overhead on each function call
(82.4). Ingenera, it is not so difficult to analyze the overhead of exception handling
as long as no exceptions are thrown. Enable exception handling for red-time aiticd
programs only if exceptions are adually used. A complete analysis must always
include the throwing of an exception, and this analysis will always be implementation
dependent. On the other hand, the requirement to ad within a deterministic time
might loosen in the cae of an exception (e.g. there is no need to handle any more
input from a devicewhen a wnnection has broken down).

An overview of alternatives for exception handling is given in §2.4. But as diown
there, al options have their run-time @sts, and throwing exceptions might still be the
best way to ded with exceptional cases. As long as no exceptions are thrown a long
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way (i.e. there ae only a few nested function calls between the throw-expression and
the hander), it might even reducerun-time @sts.

4.2.3 Testing Timing

For those feaures that compile to a fixed number of machine instructions, the number
and nature of these instructions (and therefore an exad worgt-case timing) can be
tested by writing a simple program that includes just this gecific feaure and then
looking at the aeded code. In general, for those simple @ases, optimization should
not make adifference But, for example, if a virtual function call can be resolved to a
static function call at compile-time, the overhead of the virtual function call will not
show up in the ade. Therefore it is important to ensure that the program really tests
what it nealsto tedt.

For the more cmplex cases, testing the timing is not so easy. Compiler optimizaion
can make abig difference and a simple test case might produce completely different
machine a@de than the real production code. It is important to thoroughy know the
details of the specific implementation in order to test those caes. Given this
information, it is normally possible to write test programs which produce @de from
which the correct timing information may be derived.
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5 Hardware Addressng Interface

Embedded applications often must interad with specialized 1/0 devices, such as real-
time sensors, motors, and LCD displays. At the lowest level, these devices are
accessed and controlled through a set of special hardware registers (1/0 registers) that
devicedriver software can read and/or write.

Although different embedded systems typically have their own unique mllections of
hardware devices, it is not unusual for otherwise very different systems to have
virtually identical interfacesto similar devices.

As C language implementations have matured over the yeas, various vendor-specific
extensions for accesing hesic I/0O hardware registers have been added to address
deficiencies in the language. Today amost all C compilers for freestanding
environments and embedded systems support some method of dired accessto /O
hardware registers from the C source level. However, these extensions have not been
consistent acossdialeds. As a growing number of C++ compiler vendors are now
entering the same market, the same I/O driver portability problems become gparent
for C++.

As a simple portability goal the driver source code for a given item of 1/O hardware
should be portable to all processor architedures where the hardware itself can be
connected. Ideally, it should be possible to compile source @de that operates diredly
on 1/O hardware registers with different compiler implementations for different
platforms and get the same logical behavior at run-time.

Obvioudly, interfacedefinitions written in the common subset of C and C++ would
have the widest potential audience, since they would be readable by compilers for
both languages. But the alditional abstradion mechanisms of C++, such as classes
and templates, are useful in writing code & the hardware acces layer. They allow the
encapsulation of features into classes, providing type safety along with maximum
efficiency through the use of templates.

Nevertheless it is an important goal to provide an interface that allows device driver
implementers to write code that compiles equally under C and C++ compilers.
Therefore, this report spedfies two interfaces: one using the cmmon subset of C and
C++ and a seoond using modern C++ constructs.  Implementers of the cmmon-
subset style interface might use functions or inline functions, or might decide that
function-like maaos or intrinsic functions better serve their objedives.

A proposed interfacefor addressing 1/0 hardware in the C language is described in:
Tednical Report ISO/IEC WDTR 18037

“ Extensions for the programning language C to suppat embedded
processors”

This interfaceis referred to asiohw in this report. It is included in this report for the
convenience of the reader. If the description of iohw in this report differs from the
description in ISO/IEC WDTR 18037 the description there takes precadence. iohw is
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also used to refer to both the C and C++ interface where they share common
charaderistics. In paralel with that document, the interfaceusing the common subset
of C and C++ is contained in a header named <iohw.h> .

Although the C variant of the iohw interfaceis based on maaos, the C++ language
provides fedures which make it possible to create dficient and flexible
implementations of this interface while maintaining hardware driver source @de
portability. The C++ interfaceprovides definitions with a broader functionality than
the C interface It not only provides mechanisms for writing portable hardware device
drivers, but also general methods to accessthe hardware of a given system. The C++
interface is contained in a header named <hardware> , and its symbols are placel in
the namespace std:hardware . The name is deliberately different, as it is the
intention that <hardware > provides similar functionality to <iohw.h> , but through a
different interface and implementation, just as <iostream>  provides parallel
functionality with <stdio.n>  through different interfaces and implementation. There
is no header <ciohw> specified, as that name would imply (by analogy with other
standard library headers) that the C++ interfaces were identical to those in <iohw.h>
but placed inside anamespace Since maaos do not resped namespace scope, the
implicaion would be false and misleading.

A header exists for the purpose of making certain names visible in the translation unit
in which it is included. It may not exist as an adual file, if the cmpiler uses me
other mechanism to make names visible. When this document mentions the
“<iohw.h> interface” or the “<hardware> interface”it is referring to the wlledion of
types and declarations made visible by the corresponding header.

Thisreport provides:

* A general introduction and overview to the iohw interfaces (85.1)

e A presentation of the mmmon-subset interface(85.2)

* A description of the C++ <hardware> interface (85.3)

» Usage guidelines for the <hardware> interface(8Appendix A:)

» General implementation guidelines for both interfaces (8Appendix B:)

« Detailed implementation discusson for the <hardware> interface (8B.8)

» A discussion about tedhniques for implementing the cmmon-subset interface
ontop of an implementation in C++ (8Appendix C:)

5.1 Introduction to Hardware Addressing

The purpose of the iohw acaess functions described in this chapter is to promote
portability of iohw driver source @de and general hardware accesbility aaoss
different exeaution environments.
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5.1.1 Basic Standardization Objectives

A standardization method for basic iohw addressng must be able to fulfill three
reguirements at the same time:

* A standardized interface must not prevent compilers from producing machine
code that has no additional overhead compared to code produced by existing
proprietary solutions. This requirement is essential in order to get widespread
accetance from the embedded programming community.

* The hardware driver source @de modules should be completely portable to
any procesor system without any modifications to the driver source code
being required [i.e. the syntax should promote driver source @de portability
aqossdifferent environments).

» A standardized interface should provide an “encapsulation” of the underlying
access mechanisms to alow different access methods, different processor
architedures, and different bus systems to be used with the same hardware
driver source code [i.e. the standardization method should separate the
charaderistics of the 1/0 register itself from the charaderistics of the
underlying execution environment (procesor architedure, bus system,
addresses, alignment, endianness, etc.)].

5.1.2 Terminology

The following is an overview of the mncepts related to basic I/0O hardware aldressing
and short definitions of the terms used in this Technical Report:

e |10 and /O are short notations for Input-Output. Inthe context of this chapter,
these terms have no relation to C++ iostreams.

* Anl/O deviceor hardware deviceis a hardware unit which uses registersto
crede adatainterfacebetween a procesor and the external world. Asthe
<hardware> interfacedefines a broader interface ad encompasses all hardware
access from procesor registers to memory locations, this report uses the more
general term hardware deviceand hardware register, though the <iohw.h>
interface definition from WDTR 18037and reprinted in 85.2 sill uses the terms
I/0O device, 1/0 register, etc.

* A hardwareregister isthe basic data unit in a hardware device

* A hardwaredevicedriver is ©ftware which operates on hardware registersin a
hardware device.

» Thelogical hardwareregister isthe register unit asit is seen from the hardware
device The language datatype used for holding the hardware register data must
have abit width equal to, or larger than, the bit width of the logical hardware
register. The bit width of the logical hardware register may be larger than the bit
width of the hardware device data bus or the procesor data bus.
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 Hardwareregister accessisthe processof transferring data between a hardware
register and one of the cmpiler’s native data storage objeds. In a program this
processis defined via ahardware register designator spedfication for the given
hardware register or hardware register buffer.

* A hardwareregister designator spedfication specifies hardware access
properties related to the hardware register itself (for instancethe hardware
register bit width and hardware register endiannesg and propertiesrelated to the
hardware register accessmethod (for instance processor address paceand
addresslocdion).

* The<hardware> interface separates the hardware access properties into register-
specific properties and (hardware) platform-specific properties. So, for the
<hardware> interface there is no single hardware register designator for a
specific hardware register, but a combination of two. But thereis gill asingle
identifier that can be used in portable driver code (portable acossdifferent
implementations of this interface.

* A hardwareregister designator encapsulates a hardware register designator
spedfication -- the sum of all of aregister’s properties plus the properties of its
access method —and unquely identifies a single hardware register or hardware
register buffer. The main pupose of the hardware register designator isto hide
this information from the hardware devicedriver code, in order to make the
hardware device driver code independent of any particular processor (or
compiler).

* Multiple hardware registers of equal size may form ahardware register buffer.
All registers in the hardware register buffer are addressed using the same
hardware register designator. A hardware register buffer element is referenced
with an indexin the same manner asa C array.

» Multiple hardware registers may form a hardware group.

* A hardware device may contain multiple hardware registers. These registers can
be combined into ahardware group which is portable & a specification for a
single hardware unit (for instancean I/O chip, an FPGA cell, a plug-in board €tc).

» Common hardware accessproperties for the hardware registersin a hardware
register group are defined by the hardware group designator.

» Typical hardware accessproperties which are defined and encapsulated viathe
hardware register designator are the following:

* Theaccess methods used for hardware register access Accessmethods refer
to the various ways that hardware registers can be aldressed and hardware
devices can be mnneded in agiven hardware platform. Typical methods are
dired addressing, indexed addessng, and addressng via hardware access

Page 86 of 189 Versionfor PDTR approval ball ot



PDTR 18015 Technical Report on C++ Performance

drivers. Different methods have different hardware access properties.
Common for all access methods isthat all acessproperties are encapsulated by
the hardware register designator.

» Direct addressing accesses a hardware register via asingle mnstant or
variable holding the static addressof the register.

* Indexed addressing accesses a hardware register by adding a cnstant off set
to abase aldressinitialized at runtime. (This acessmethod is not to be
confused with theioindex_t  used for accessing hardware register buffers,
where the off set is not constant.)

* A (user-supplied) hardware accessdriver may be used to encgpsulate
complex acessmechanisms and to crede virtual access aces. Accessvia a
user-supplied aacess function is common in hosted environments and when
external I/0O devices are cnneded to single-chip procesors.

» If al the accessproperties defined by the hardware register designator
spedfication can beinitialized at compil e-time then its designator is called a
static designator.

» |f some accessproperties defined by the hardware register designator
spedfication areinitialized at compile-time and athers require initialization at
run-time, then its designator is called a dynamic designator.

» Hardware registers within the same hardware group shall share the same
platform-related charaderistics. Only the hardware register charaderistics and
addressinformation will vary between the hardware register designator
spedfications.

» Direct designatorsare fully initialized either at compil e-time or by an
iogroup_acquire operation using the <iohw.h> interface. Inthe <hardware>
interface, dired designators are initialized by constructors that have an empty
parameter list for static designators.

* Indirect designatorsare fully initialized by aniogroup_map operation using
the <iohw.h> interface The <hardware> interfaceprovides different meansto
bindindired designators, e.g. template instantiation or function parameter
binding.

» The hardware driver will determine whether a designator isadired designaor
or an indired designator only for the purpose of mapping (binding) a hardware
group cesignaor.

» If the bit width of the logical hardware register islarger than the bit width of

the hardware device data bus, then (seen from the procesor system) the logical
hardware register will consist of two or more partial hardware registers. In
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such cases the hardware register endiannesswill be specified by the
designaor spedfication. The hardware register endianness is not related to
any endiannessused by the processor system or compiler.

« If the bit width of the logical hardware register islarger than the bit width of
the processor data bus or the bit width of the hardware device data bus, then a
single logical hardware register access operation will consist of multiple
partial hardware register accessoperations. Such properties may be
encapsulated by a single hardware register designator for the logical hardware
register.

These oncepts and terms are described in greaer detail in the following sedions.

5.1.3 Overview and Principles

The iohw access functions creade asimple and platform independent interfacebetween
driver source code and the underlying access methods used when addressing the
hardware registers on a given platform.

The primary purpose of the interfaceis to separate charaderistics which are portable
and spedfic for a given hardware register — for instance, the register bit width and
device bus size and endianness— from charaderistics which are related to a specific
execution environment, such as the hardware register address processor bus type and
endianness address interleave, compiler access method, etc. Use of this sparation
principle enables driver source @de itself to be portable to al platforms where the
hardware device @n be mnnected.

In the driver source @de, a hardware register must always be referred to using a
symbolic name, the hardware register designator. The symbolic name must refer to a
complete hardware register designator specification of the acces method used with
the given register. A dandardized iohw syntax approach credes a conceptually
simple model for hardware registers:

symbalic name for hardware register = complete definition o the accessmethod

When porting the driver source code to a new platform, only the definition of the
symbolic name encagpsulating the acessproperties needs to be updated.

5.1.4 The Abstract Model

The standardization of basic /0O hardware aldressing is based on athreelayer abstrad
model:
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Portable hardware device driver source code

Symbolic names for hardware Hardware register designator specifications
registers and goups
Standard 1/O functions Specifications of accessmethods
(portable) (platform-spedfic)

Compil er vendor’s <iohw.h> or <hardware>

The top layer contains the hardware device driver code supgied by the hardware
vendor or written by a driver developer. The source code in this layer is intended to
be fully portable to any platform where the hardware an be @mnneded. This code
must only access hardware registers via the standardized /O functionality described
inthis edion. Ead hardware register must be identified using a symbolic name, the
hardware register designator, and referred to only by that name. These names are
supplied by the author of the driver code, with the expectation that the integrator of
hardware and platform will bind acaessproperties to the names.

The middle layer associates symbolic names with complete hardware register
designaor spedfications for the hardware registers in the given platform. The
hardware register designaor definitions in this layer are aeded last, and are the only
part which must be updated when the hardware driver source code is ported to a
different platform.

The bottom layer is the implementation of the <iohw.h> and <hardware> healers.
They provide interfaces for the functionality defined in this ssaion and specify the
various different access methods supported by the given processor and platform
architedure. This layer is typically implemented by the cmpiler vendor. The
feaures provided by this layer, and used by the middle layer, may depend on intrinsic
compiler cgpabilities.

8Appendix B: contains osme general considerations that should be aldressed when a
compiler vendor implements the iohw functionality.

85.3 proposes a generic C++ syntax for hardware register designator specifications.
Using a general syntax in this layer may extend portability to include user’s hardware
register specificaions, so it can be used with different compiler implementations for
the same platform.

5.1.4.1 The Module Set

A typicd device driver operates with a minimum of threemodules, one for ead of the
abstraction layers. For example, it is convenient to locate dl hardware register name
definitions in a separate header file (called "platform_defs.n " in this example):
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1. Devicedriver module

* The hardware driver source @de

» Portable acosscompilers and platforms

e Includes <iohw.h> or <hardware> and "platform_defs.h
» Implemented by the aithor of the device driver

2. Hardwareregister designator spedficaions in "platform_defs.h

» Defines symbolic names for hardware register designators and their
corresponding acessmethods

» Specific to the exeaution environment

* The header name and symbolic names are aeaed by the author of the
devicedriver

» Other parts are implemented and maintained by the integrator

3. Interface header <iohw.h> or <hardware>
» Defines hardware acessfunctionality and access methods
» Specific to agiven compiler
* Implemented by the cmpiler vendor

These might be used as follows (in the @mmon subset of C and C++):

#i ncl ude <i ohw. h>
#i nclude” pl atformdefs. h" /I'myHWregister definitionsf ort arget

unsi gned ¢ har m ybuf[ 10];
...

io w (MYPCRT1,0 x8); /lwrite singler egister
for( inti=0 i<l 0;i ++)
nmybuf[i]=i ordbuf (MYPORT2,i ); //r ead registera rray
In C++:

For demonstration purposes, the hardware register designator specifications that are
hidden in "platform_defs.h" in the above example ae shown here in the unnamed
namespace For modular production code, these specificaions will typically be in a
separate header file. This example demonstrates various feaures ecific to the
<hardware> interface

#i ncl ude < har dwar e>

nanespace

{
Middle layer (hardware register designator spedfications):

usi ngn anespace s td: : har dwar e;

User-defined class used by the driver:

st ruct U Char Buf
{
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unsi gned ¢ harb uffer[10];
3

Common platform designator used by all registersin this driver:
platform_traits is an implementation-provided class with default definitions, so
only the specifics must be provided (here only the base aldress.

structP latform:p latformtraits

typedefs tatic_address<0x34>a ddress_hold er;

h
Threeregister designators are defined here:
register_traits is also an implementation-provided class with default definitions.
All register designator spedficaions here use astatic address

structP ortAl_T:r egister_traits

typedefs tatic_address<Oxla>a ddress_hold er;

structP ortA2_T:r egister_traits

typedefs tatic_address<0x20>a ddress_hold er;
This designator specification additionally defines the value_type  (the logicd data
type), as the default in this case isuints_t:

structP ortA3_T:r egister_traits

{
typedef U CharBufv al ue_type;
typedefs tatic_address<0x20>a ddress_hold er;

3
} //u nnamedn anmespace

intm ain()

{
Writing to a single hardware register defined by the designators PortA1_T and
Platform:

regi ster_access<PortAl_T,P latformsp 1;
pl=0 x08;
Copying aregister buffer specified by PortA2_T:

unsi gned ¢ harm ybuf [ 10] ;
register_buffer<Port A2_T,P latformsp 2;
for( inti=0 D! =10;+ +)

mybuf[i]=p 2[i];

Essentially the same operation, but as a block read:

regi ster_access<Port A3_T,P latformsp 3;
UChar Buf m yBI ock;
nyBl ock=p 3;
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The device driver programmer only sees the charaderistics of the hardware register
itself. The underlying platform, bus architecure, and compiler implementation do not
matter during driver programming. The underlying system hardware may later be
changed without modificaions to the hardware device driver source code being
necessary.

5.1.5 Information Required by the Interface User

In order to enable adriver library user to define the hardware register designator
specifications for a particular platform, a portable driver library based on the iohw
interface should (in addition to the library source @de) provide & least the following
information:

* All hardware register designator names and hardware group designator names
used by the library (in the diagram in 85.1.4, these things comprise the left half
of the middle layer).

* Device ad register type information for al designators (in 85.1.4 these
congtitute the hardware-specific traits needed in the definitions for the right
half of the middle layer):

» Logical bit width of the logical device register.

» Thedesignator type — single register, aregister buffer or aregister group.

* Bit width of the device data bus.

» Endianness of registers in the device (if any register has a logical width
larger than the devices data bus).

* Relative aldress offset of registers in the device (if the device ontains
more than one register).

*  Whether the driver assumes the use of indired designators.

5.1.6 Hardware Register Characteristics

The principle behind iohw is that all hardware register charaderistics should be
visible to the driver source ®de, while all platform specific charaderistics are
encapsulated by the header files and the underlying iohw implementation.

Hardware registers often behave differently from the traditional memory model. They
may be “read-only”, “write-only”, “read-write,” or “read-modify-write”; often READ
and WRITE operations are allowed only once for eat event, etc.

All such hardware register specific dharaderistics should be visible & the driver
source code level and should not be hidden by the iohw implementation.

5.1.7 Hardware Register Designators

Within a program a machine's hardware registers are spedfied by hardware register
designaors. A hardware register designator acording to the <iohw.h> interface may
be an identifier or some implementation-specific construct. In the <hardware>

interface, a hardware register designator can either be the name of a type or the name
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of an objed, depending on the cntext. It may also be a ¢ass template. In any case,
these ae C++ names that follow the normal rules for name lookup (i.e. they shall not
be preprocesoor maaos). A C implementation must support hardware register
designators in the form of identifiers, other forms of hardware register designators
may be supported but might not be portable to al implementations. A C++
implementation must support hardware register designators according to the
specification in 85.3.

Any unigque, non-reserved identifier can be declared as a designator for a hardware
register. The definition of the identifier includes the size and acess method of the
hardware register. The means, however, by which an identifier is defined as a
hardware register designator is entirely implemented-defined for the C interface and
must follow the specificaionsin 85.3 for the C++ interface

By choosing convenient identifiers as designators for registers, a programmer can
crede device driver code with the expedation that the identifiers can be defined to
refer to the adual hardware registers on a machine supporting the same interface So
long as the only important differences from one platform to another are the accss
methods for the registers, device driver code can be ported to a new platform simply
by updating the designator definitions (the "middle layer") for the new platform.

Additional issues and recommendations concerning hardware register designators are
discussed in Appendices A, B, and C of this Technicd Report.

5.1.8 Accesses to Individual Hardware Registers

The header <iohw.h> declares a number of functions and/or maaos for accesing a
hardware register given a hardware register designator. Eacd “function” defined by
the <iohw.h> header may adually be implemented either as a function or as a
function-like maao that expands into an expresson having the effeds described for
the function. If a function is implemented as a function-like maao, there will
ordinarily not be a orresponding adual function declared or defined within the
library.

<iohw.h> defines functions for realing from and writing to a hardware register.
These functions take ahardware register designator as argument.

The header <hardware> defines the same functionality by defining a class template
register_access . This class template takes two arguments that together form a
hardware register designator. These template aguments are traits classes that
describe the hardware register accessproperties. One traits class defines the register
specific properties while the other defines the platform spedfic properties.

The class template register_access defines an assgnment operator for the write
functionality and a conversion operator to the respedive logical datatype for the read
functionality.

Example using the <iohw.h> interface

If dev_status and dev_out are hardware register designators defined in the
file "iodriv_hw.h ", the following is possible valid code:
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#i ncl ude < i ohw. h>
#include" iodriv_hw h" /[/*P latform specific designator
definitions.* /

/I'W aitu ntilc ontrolleri sn ol ongerb usy.
while( iord(dev_status)&S TATUS BUSY)/ *d o nothing* /;

/IW ritev aluet ocontroller.
io w (dev_out,c h);

Example using the <hardware> interface

#i ncl ude < har dwar e>
/i ncludest hedefinitionss howni nt hee xampleo f 8§5.1.4. 1:
#i nclude" driv_defs. h"

re gi ster_access<Port A1l_T,P | atforned evSt at us;
re gi ster_access<Port A2_T,P latfornrd evQut;
constu int8 ts tatusBusy=0 x4;

uint8 tc h=""

/I'W aitu ntilc ontrolleri sn ol ongerb usy:
whi |l e ( devStatus&s tatusBusy)
;/ /d on othing

/IW rites onmevaluet ocontroller:
devQut=c h;

Besides simple read and write operations, three read-modify-write operations are
supported, corresponding to the bit-wise logical operations AND, OR, and XOR.
Again, these ae defined as functions in the <iohw.h> interface ad as overloaded
operatorsin the <hardware> interface

5.1.9 Hardware Register Buffers

Besides individual hardware registers, a hardware register designator may also
designate a hardware register buffer, which is essentially an array of hardware
registers. As with a C array, an index of unsigned integer type must be supplied to
access a specific register in a hardware register buffer.

The <iohw.h> healer declares all the same functions for buffers as for single
registers, with a different name and an additional index parameter, for which the
ioindex_t  type is defined.

The <hardware> header defines for this purpose a spedal class template
register_buffer that defines an operator[], which in turn returns a reference to a
normal register_access instantiation, so al the operations defined for single
registers can be used on the result of the index operator.

Example using <iohw.h> :
If ctrl_buffer isdefined inthefile "ctrl_regs.h " asahardware register
designator for ahardware register buffer, the following is possible valid code:

#i ncl ude < i ohw. h>
#include" ctrl _regs. h" //P latformspecifi c designator
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/1d efinitions.
unsi gned c harb uf [ CTRL_BUFSI ZE] ;

/1C opyb ufferc ontents.
for( inti=0 ;i<C  TRL_BUFSI ZE;i ++)
buf[i]=i ordbuf(ctrl_buffer,i );

Esentially the same example using <hardware> :
The "middle layer" is not shown here; it is assumed to be the same &s for the previous
examples.

#i ncl ude < har dwar e>

consts ize_tb ufSize=1 0;
intm ain()

unsi gned ¢ har m ybuf [ buf Si ze];
re gi ster_buffer<Port A2_T,P latfornmep 2;
for( size_ti=0 ;i! =bufSize;+ +i)

mybuf[i]=p 2[i];

returnoO;

}

Two hardware register buffer indexes index and indext1 refer to two adjacent
hardware register locations in the hardware device. Note that this may be different
from adjacent address locdions in the underlying datform. See 8B.2.2 for a more
detail ed discussion.

Asinanordinary array alarger index refersto a platform locaion at a higher address

Unlike an ordinary array, the valid locations within a hardware register buffer might
not be “dense”; any index might not correspond to an adtual hardware register in the
buffer. (A programmer should be able to determine the valid indices from
documentation for the hardware device or the machine.) If a hardware register buffer
accesses an “empty” location, the behavior is undefined.

5.1.10 Hardware Groups

A hardware group is an arbitrary collection of hardware register designators. Eacd
hardware group is intended to encompass all the designators for a single hardware
device Certain operations are supported only for hardware groups; these operations
apply to the members of a hardware group as a whole. Whether a hardware register
designator can be amember of more than one group is implementation-defined.

Like hardware registers, a hardware group is ecified by a hardware group
designator. For the identificaion of this designator, the same rules apply as for the
identification of normal hardware register group designators, as explained in 5.1.7,
and are different for <iohw.h> and <hardware> as gecified there.
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5.1.11 Direct and Indirect Designators

Eadh hardware register designator is either dired or indired. An indired hardware
register designator has a definition that does not fully speafy the register or register
buffer to which the designator refers. Before any acesses can ke performed with it,
an indired designator must be mapped to refer to a specific register or register buffer.
A direct hardware register designator, by contrast, has a definition that fully speafies
the register or register buffer to which the designator refers. A dired designator
always refers to the same register or register buffer and cannot be dhanged.

For the <hardware> interface, a dired designator spedficaion consists of two parts,
one defining the platform access properties and one defining the register access
properties. An indired hardware register designator spedfication only has the part
defining the register access properties, and must be cmpleted with the platform
specific part by a mapping.

An indired hardware register designator is mapped by associating it with a dired
hardware register designator. Accessesto the indired designator then occur as though
with the dired designator to which the indired designator is mapped. An indirect
hardware register designator can be remapped any number of times; acesses through
the designator always occur with resped to its latest mapping.

An <iohw.h> implementation is not required to support indired designators. If an
<iohw.h> implementation does support indired designators, it may place abitrary
restrictions on the dired designators to which a specific indirect designator can be
mapped. Typicdly, an indired designator will be defined to be of a cetain “kind,”
cgpable of mapping to some subclass of acess methods. An indired designator can
be mapped to a dired designator only if the dired designator's access method is
compatible with the indired designator.  Such issues are specific to an
implementation.

The <hardware > interface defines sveral methods of mapping that are available in
al <hardware> implementations, which therefore all support indired designators.

5.1.12 Operations on Hardware Groups

5.1.12.1Acquiring Accessto a Har dware Register in a Group

For some platforms, it may be necessary to acquire ahardware register or hardware
register buffer before it can be accesed. What constitutes “aaquiring” a register is
specific to an implementation, but aqquisition performs all the initializaions that are
required before one can accessthat register.

The <iohw.h> header declares two functions, iogroup_acquire and
iogroup_release , ead taking a single dired hardware group designator as an
argument and performing any initializing and releasing adions necessary for all
designatorsin that group.

One purpose of iogroup_acquire isto gve the 1/0 device driver writer control over
when the hardware group designator is initialized, becaise cetain conditions may
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have to be met before this can safely be done. For example, some hardware platform
dependent 1/0 registers may need to be initialized before the given I/O device group
can be safely aaquired and initialized. In an implementation for a hosted environment,
the initialization for a specific hardware register might call the operating system to
map the physicd hardware registers of the group into a block of addresss in the
processs address gaceso that they can be acessed. In the same implementation, the
releasing adion would call the operating system to unmap the hardware registers,
making them inaccessible to the process Therefore hardware group designator
initialization must not be something which happens automatically at program startup;
it should be clled explicitly.

A <hardware> interface implementation may handle any initializing of hardware
group designators using normal C++ constructors and any releasing adions using
normal destructors.

5.1.12.2Mapping Indirect Designators

The <iohw.h> healer declares a function iogroup_map taking an indired and a dired
hardware group cesignator as argument that binds all hardware register designators
from the first group to the respedive hardware register designator of the second.

The <hardware> interface defines several methods of mapping. In the <hardware>
interface, a hardware register designator specification consists of two traits classes,
one of them defining the register-specific ac@ss properties and one of them defining
the platform-specific acessproperties. An indired designator is a designator that has
only the register-specific traits class For it to become a omplete, dired designator a
platform-spedfic traits classmust be added, which is called mapping.

One mapping method is simply the instantiation of a classtemplate that puts together
the register-specific traits class and the platform-specific traits class. If this method is
used for datic designators, it will not introduce any register-specific or platform-
specific data members and any address computations for hardware register accesses
can be completely resolved at compil e-time.

Another method uses a simple dynamic address holder type with which an indirea
designator can be augmented to make a full dired designator. This way, any
dynamically aaquired platform-specific data can be used to map an indired hardware
group.

Example using <iohw.h> :

If "dev_hw. h" defines two indired /O register designators, dev_config  and
dev_data , an indired 1/O group designator dev_group with both dev_config and
dev_data as members, and two dred I/O group designators devl_group and
dev2_group , the followingis possible valid code:

#i ncl ude < i ohw. h>
#i ncl ude" dev_hw. h" /1P latformspecificde si gnator
/1d efinitions.
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/[P ortabledevicedriverf unction.
uint8 tg et_dev_data(void)

i ow (dev_config,0 x33);
returni ord(dev_dat a);

}

/IR eadd ataf romdevicel.
io group_nap(dev_group,d evl_group);
uint8 td 1=g et_dev_data();

/IR eaddataf romdevice 2.
io group_nap(dev_group,d ev2_group);
uint8 td 2=9g et_dev_data();

Example using <hardware> :
This example is equivalent to the <iohw.h> example, but for demonstration purposes,
it shows the complete "middle layer" defined here in the unnamed namespace:

#i ncl ude < har dwar e>

nanespace

{
// Middle layer (hardware register designator specificaions)

usi ngn amespace s td: : har dwar e;
structP latformA:p latformtraits

{

typedefs tatic_address<0x50>a ddress_hold er;

structP latfornB:p latformtraits

{

typedefs tatic_address<0x90>a ddress_hold er;
3
structD ynPlatform:p latformtraits
{

typedefd ynam c_addressa ddress_hol der;

enum {a ddress_npde=hw_base: : dynamni c_addr ess };
3
structP ortAl_T:r egister_traits
{

typedefs tatic_address<Oxla>a ddress_hold er;
3
structP ortA2_T:r egister_traits
{

typedefs tatic_address<0x20>a ddress_hold er;
3

// Portable devicedriver function using the template gpproad:

te nplate<classP | at f or nSpec>
uint8 tg etDevData(typenane Pl atfornSpec:: addre ss_hol derc onst& addr =
ty penane P | atf or nSpec: : address_hol der())

{
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regi ster_access<PortAl_T,P | atfornSpec> devConfi g(addr);
regi ster_access<Port A2_T,P | atfornSpec> devDat a(addr);

devConfig=0 x33;
returnd evDat a;

} //u nnamedn anmespace

intm ain()

/I static version

/IR eadd ataf romdevice 1:
uint8 td 1=g etDevData<Pl atfornmA>();

/IR eadd ataf romdevice 2:
uint8_ td 2=g et DevData<Pl atfornmB>();

// dynamic version
uint8 td 3=g et DevDat a<DynPl at f or n»(0x40);

uint8 td 4=g et DevDat a<DynPl at f or n»(0x80);

returnoO;

}

In this example, the mapping is done by simply instantiating register access in
getDevData()  using the template parameter of this function template. The first
version shown uses a static goproacd that gives different static platform traits classes
as template aguments. This approach will produce two different instantiations of
getDevData() , but does all the address computations for accessing devConfi g and
devData at compile-time and produces in typical applications absolutely no objed
data for any platform or register object.

The seand version uses a dynamic gpproach and therefore avoids the double
instantiation of getDevData , but in turn produces a data objed containing the given
platform address for ead of the local hardware register designators, devConfig and
devData . Also, the atual addressto accessthese registersis calculated at run-time.

The <hardware> interface deliberately offers both methods, as the adua trade-off
judgment can only be done by the driver programmer.

5.2 The <i ohw. h> Interface for C and C++

For the convenience of the realer, this dion duplicates a portion of the Tedchnical
Report ISO/IEC WDTR 18037 “Extensions for the programning languag C to
suppat embedded processors” from JTC 1/SC 22/WG 14. If the description of
hardware acessinterfaces in this report differs from that in ISO/IEC WDTR 18037,
the description there takes precalence.

The header <iohw.h> declares atype and defines macros and/or dedares functions for
accessng implementation-specific 1/0 registers.

The type declared is

io i ndex_t
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which isthe unsigned integer type of an index into an 1/O register buffer.

Any “function” declared in <iohw.h> as described below may alternatively be
implemented as a function-like maao defined in <iohw.h> . (If a function in
<iohw.h> is implemented as a function-like macro, there need not be an adual
function declared or defined as described, despite the use of the word function.) Any
invocaion of such a function-like maao shall expand to code that evaluates eat of
its arguments exadly once, fully protected by parentheses where necessary, <0 it is
generally safe to use abitrary expressions as arguments.

5.2.1 I/O registers

An 1/O register is a storage location that is addressable within some address pace
An 1/O register has a size and an aceess method, which is the method by which an
implementation accesses the register a exeaution time. An 1/O register is accessed
(read or written) as an unsigned integer. An 1/O register may need to be aquired
before it can be acessed. (/O registers are aquired with the iogroup_acquire
function described in 85.2.3.1)

Accessesto an 1/0 register may have unspedfied side eff ects that may be unknown to
the implementation, and an /O register may be modified in ways unknown to the
implementation. Accesses to 1/0O registers performed by functions declared in
<iohw.h> aretherefore treded as side eff eds which respect sequence points™.

An 1/O register buffer is a mllection of 1/0 registers indexed by an integer of type
ioindex_t  and atherwise sharing a mmon size and acessmethod. The set of valid
indices for the 1/0 registers in an I/O register buffer may be any subset of the values
of type ioindex_ t; the set of valid indices need not be @ntiguous and neel not
include zeo.

An 1/0 register designator refers (except as dipulated below) to a specific individual
I/O register or a specific 1/O register buffer. Functions that access1/O registers take
an 1/O register designator argument to determine the register to access An
implementation shall support at least one of the following as a valid 1/O register
designator for any individual 1/O register or 1/O register buffer:

» any ordinary identifier that is not areserved identifier, defined by some
implementation-defined means; and/or

* any objed-like maao name that is not areserved identifier, defined in accordance
with some implementation-defined convention.

An implementation may optionally support other, implementation-defined forms of
I/O register designators.

Eadch /O register designator is either dired or indired. A dired 1/O register
designator refers to a specific 1/0 register or 1/O register buffer as determined by the

27 And therefore 1/0 register access must always be qualified as volatile
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designator's definition. An indired 1/O register designator does not refer to a spedfic
I/0 register or 1/0 register buffer until the designator has been mapped to a dired 1/0
register designator. Once mapped, an indired 1/O register designator cen
subsequently be remapped (mapped again) to the same or a different dired 1/O
register designator. An indirect 1/O register designator refers to the same 1/0 register
or 1/O register buffer as the dired designator to which it was last mapped. (1/0
register designators are mapped with the iogroup_map function described in
85.2.3.2))

An indired 1/0 register designator is compatible with a dired 1/O register designator
if it is possible to map the indired designator to the dired designator. An 1/O register
designator that refers to an individual 1/O register is not compatible with an 1/0O
register designator that refers to an 1/O register buffer, and vice versa. Otherwise,
whether a specific indired |/O register designator is compatible with a specific dired
I/0 register designator is implementation-defined.

An implementation nead not suppat a means for indired 1/O register designators to
be defined.

An 1/O register designator covers an 1/O register if it refers to the 1/O register or it
refersto an 1/O register buffer that includes the register.

5.2.2 /O groups

An 1/O group is a mllection of I/O register designators. It is intended that eat 1/0
group encompassall the designators for a single hardware @ntroller or device

The members of an 1/0 group shall be either all dired designators or al indirea
designators. Anl/O groupisdired if its members are dired. An 1/O group isindired
if its members are indired.

An 1/O group shall not have a members two or more /O register designators that
cover the same 1/0 register. Whether an 1/0 register designator can be amember of
more than one 1/O group at the same time is implementation-defined.

An 1/O group designator spedfies an 1/0 group. An implementation shall support at
least one of the following as avalid 1/0O group designator for any supported 1/O group:

« any ordinary identifier that is not areserved identifier, defined by some
implementation-defined means; and/or

* any objed-like maao name that is not areserved identifier, defined in accordance
with some implementation-defined convention.

5.2.3 1/0O group functions

5.2.3.1 Thei ogroup_acquire andi ogroup_r el ease functions
Synopsis

#i ncl ude < i ohw. h>
voidi ogroup_acquire( iogroup_designator );
voidi ogroup_rel ease( iogroup_desi gnator );
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Description

The iogroup_acquire function aquires a oolledion of 1/0 registers, the
i ogroup_r el ease function releases a wlledion of /O registers. Releasing an /0O
register undoes the a¢ of aoquiring the register. The functions aaquire or release all
the 1/O registers covered by the I/O register designators that are members of the 1/0
group designated by i ogr oup_desi gnat or. If the I/O group is indirect, the behavior
is undefined.

An /O register is only sad to be aquired between an invocaion of
i ogroup_acqui re that acquires the register and the next subsequent invocation of
i ogroup_r el ease, if any, that releases the register. If iogroup_release releases an
I/O register that is not at the time aquired, or if iogroup_acquire aqquires an /0O
register that is at the time already aaquired, the behavior is undefined.

Acquiring or releasing an 1/O register is treated as a side effect which respeds
sequence points.

If an implementation can acessa particular 1/O register without needing it to be first
aquired, the ad¢ of aauiring and the ad of releasing the register may have no real
effed.

5.2.3.2 Theiogroup_map function
Synopsis

#i ncl ude < i ohw. h>
voidi ogroup_map( iogroup_desi gnator, iogroup_designator );

Description

Theiogroup_map function maps the indired 1/0 register designatorsin the I/O group
designated by the first iogroup_designator to corresponding direct 1/O register
designators in the 1/0O group designated by the second iogroup_designator . The
first 1/0 group shall be indired, and the second 1/0O group shall be dired. The
correspondence between members of the two /O groups is implementation-defined
and shall be one-to-one. If an indirect 1/O register designator is mapped to a dired
I/O register designator with which it is not compatible, the behavior is undefined.

5.2.4 1/0O register access functions

If a register is acassed (read or written) when it is not acquired, the behavior is
undefined. If an indirect 1/0 register designator is given as an argument to one of the
functions below and the designator has not been mapped, the behavior is undefined.

5.2.4.1 Thei or d functions
Synopsis

#i ncl ude < i ohw. h>
unsi gnedi nti ord( ioreg_designator );
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unsi gned| ongi ordl ( ioreg_designator );

Description

The functions iord and iordl  real the individual 1/O register referred to by
ioreg_designator and return the value read. The I/O register isreal as an unsigned
integer of its size; the real value is then converted to the result type, and this
converted value is returned.

5.2.4.2 The i or dbuf functions
Synopsis

#i ncl ude < i ohw. h>
unsi gnedi nti ordbuf( ioreg_designator,i oindex_ti x)
unsi gned| ongi ordbufl ( ioreg_designator,i oi ndex_ti Xx)

Description

The functionsiordbuf  and iordoufl  read one of the 1/0O registers in the 1/O register
buffer referred to by ioreg_designator and return the value read. The functions are
equivalent toiord andiordl , respedively, except that the 1/0 register read is the one
with index ix inthe /O register buffer referred to by ioreg_designator . Ifix isnot
avalid index for the I/O register buffer, the behavior is undefined.

5.2.4.3 Thei ow functions
Synopsis

#i ncl ude < i ohw. h>
voidi ow (i oreg_designator,u nsignedi nta );
voidi owl (i oreg_designator,u nsignedl ong a );

Description
The functions iowr and iowrl  write the individual 1/O register referred to by
ioreg_designator . The unsigned integer a is converted to an unsigned integer of

the size of the I/O register, and this converted value is written to the 1/O register.

5.2.4.4 Theiowrbuf functions
Synopsis

#i ncl ude < i ohw. h>
voidi owbuf (i oreg_designator,i oindex_ti x, unsignedi nta)
voidi owbufl (i oreg_designator,i oindex_tix , unsignedl onga);

Description

The functionsiowrbuf and iowrbufl  write one of the 1/0 registersin the I/O register
buffer referred to by ioreg_designator . The functions are equivalent to iowr and
iowrl , respedively, except that the 1/0 register written is the one with index ix in the
1/0 register buffer referred to by ioreg_designator. If ix isnot avalid index for
the I/O register buffer, the behavior is undefined.
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5.2.45 Thei oor, i oand, and i oxor functions
Synopsis

#i ncl ude < i ohw. h>

voidi oand(i oreg_designator,u nsignedi nta );
voidi oor(i oreg_designator,u nsignedi nta );
voidi oxor(i oreg_designator,u nsignedi nta );

voidi oorl (i oreg_designator,u nsignedl ong a );
voidi oandl (i oreg_designator,u nsignedl ong a );
voidi oxorl (i oreg_designator,u nsignedl ong a );

Description
The functionsioand , ioandl , ioo r,ioor |, ioxor , andioxorl modify the individual
I/0 register referred to by ioreg_designator . The function ioand has a behavior
equivalent to

iow (i oreg_designator,i ord(i oreg_designator )&a)
except that the ioreg_designator is not evaluated twice (asuuming it is an
expresgon).

Likewise, the functionioor has abehavior equivalent to

iow (i oreg_designator,i ord(i oreg_designator )|a)

and the functionioxor has a behavior equivalent to

iow (i oreg_designator,i ord(i oreg_designator )"a)

Corresponding equivalencies apply for ioandl , ioorl , and ioxorl , but with the
unsigned long functionsiordl and iowrl replacingiord and iowr .

5.2.4.6 Theioorbuf ,ioandbuf , andioxorbuf functions

Synopsis
#i ncl ude < i ohw. h>
voidi oandbuf( ioreg_designator,i oindex_tix , unsignedi nta)
voidi oorbuf( ioreg_designator,i oindex_ti X, unsignedi nta)
voidi oxorbuf( ioreg_designator,i oindex_tix , unsignedi nta)

voidi oandbufl ( ioreg_designator,i oindex_t ix,u nsignedl onga)
voidi oorbufl ( ioreg_designator,i oindex_tix , unsignedl onga);
voidi oxorbufl ( ioreg_designator,i oindex_t ix u nsignedl onga)

Description

The functionsioandbuf , ioorbuf , ioxorbu f, iocorbufl ,ioandbufl , and ioxorbufl
modify one of the 1/O registers in the 1/O register buffer referred to by

ioreg_designator . The functions are ejuivalent to ioand , ioandl , ioor , ioorl
ioxor , and ioxorl , respedively, except that the 1/0 register modified is the one with
index ix in the 1/O register buffer referred to by ioreg_designator . Ifix isnota

valid index for the 1/O register buffer, the behavior is undefined.
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5.3 The <har dwar e> Interface for C++

The programming model behind these definitions is described in 85.1.4. The healer
<hardware> defines an interface for two layers of that model, the top layer for the
portable source code and parts of the middle layer for the device register definitions.
Thisis notably different to the C interface<iohw.h> described in §5.2.

The header <hardware> declares sveral types, which together provide adata-type-
independent interface for basic iohw addressng.

Header <har dwar e> Synopsis:

nanmespaces td {
nanespace h ardwar e {
#i nclude" stdint.h" /ls ee 85.3.3

structh w base{. ..}

//r equiredaddressh ol dert ypes
tenpl ate < hw_base: : address_typev al >
structs tatic_address;

structd ynam c_address;
//[ othersmayb eprovidedbyani npl enentation]

structp latformtraits;
structr egister_traits;

tenplate<classRegTraits,c lassPlatfornfraits>
cl assr egi ster_access;

tenplate<classRegTraits,c lassPlatfornfraits>
classr egister_buffer;
} //n anmespace h ar dware
} //n anespaces td
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5.3.1 The Class Template r egi st er _access
Synopsis

tenplate<classRegTraits,c lassP latforniraits >
cl assr egi ster_access

1
publ i c:
typedeft ypenane RegTraits::value_typeva lu e_type;

//c onstructors
regi ster_access
(typenane RegTraits::address_hol der const& r Addr,
typenane Pl atformlraits:: address_hol derc onsté& pAddr);
regi ster_access
(typenane Pl atfornilrai ts:: address_hol derc onst& pAddr);
regi ster_access();

/1o peratori nterface

operatorv alue_type()c onst;
voido perator=  (value_typev al);
voido perator| =( value_typev al);
voido perator& =( value_typev al);
voido perator™ =( value_typev al);

//F unction-stylei nterface
val ue_typer ead()c onst;
voidwrite(val ue_typev al);
voido r_with(val ue_typev al);
voida nd_with(value_typev al);
voidx or_with(value_typev al);

h
Description
class register_access<...>
* Providesdired accessto hardware registers. This defines the interfacefor the
top layer as described in §85.1.4.

typename RegTraits
* The agument to the first template parameter RegTraits must be aclassor
instantiation of a class template that is a derived class of register_traits
and spedfy the register-specific acessproperties of the hardware register.

typename PlatformTraits
* The agument to the seaond template parameter PlatformTraits must be a
class or instantiation of a class template that is a derived class of
platform_traits and specify the platform-specific acess properties of the
hardware register.

An implementation may add additional template parameters with default values.

typedef value_type
 Namesthevalue type of the RegTraits

Congtructors:
register_access

(typename RegTraits::address_holder const &rAddr,
typename PlatformTraits::address_holder const &pAddr);
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register_access
(typename PlatformTraits::address_holder const &pAddr);

register_access();

» The mnstructors take references to the respedive aldress holder classes of the
access pecification traits template parameters. If an addressholder is marked
as is_static in its traits class the respedive wnstructor argument shall not
be given.

operator value_type() const
value_type read() const
* Providesreal access to the hardware register.
void operator = (value_type val)
void write(value_type val)
* Writesthevalue_type argument val to the hardware register.
void operator |= (value_type val)
void or_with(value_type val)

» Bitwise ORsthe hardware register with the value_type  argument val .

void operator &= (value_type val)
void and_with(value_type val)

» Bitwise ANCs the hardware register with the value_type  argument val .

void operator "= (value_type val)
void xor_with(value_type val)
* Bitwise XORs the hardware register with the value_type  argument val .

Note: The return type for all assignment operators is void to prevent assignment
chaining that could inadvertently cause ansiderable harm with device registers.

Note: The dassinterface provides both member functions and overloaded operators
to perform READand WRITE access to the register. The redundancy is intentional, to
acommodate different programming styles. One set of operations can trivially be
implemented in terms of the other.
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5.3.2 The Class Template register_buffer
Synopsis

tenplate<classRegTraits,c lassP latforniraits >
cl assr egi ster_buffer

{
publ i c:
typedefr egi ster_access<RegTraits,P latformTraits>r ef _type;
typedeft ypenane RegTraits::value_typeva lu e_type;
//c onstructors
regi ster_buffer
(typenane RegTraits::address_hol der const& r Addr,
typename Pl atforniraits::address_hol derc onst& pAddr);
regi ster_buffer
(typenane Pl atfornilrai ts:: address_hol derc onst& pAddr);
regi ster_buffer();
/1o peratori nterface
ref _typeo perator[](size_ti ndex)c onst;
//f unction-stylei nterface
ref _typeg et _buffer_el ement(size_ti ndex);
3
Description

class register_buffer<...>
* Provides dired accessto hardware register buffers. This defines the interface
for thetop layer as described in 5.1.4.

typename RegTraits
* The agument to the first template parameter RegTraits must be aclassor
instantiation of a class template that is a derived class of register_traits
and spedfy the register-specific acessproperties of the hardware register.

typename PlatformTraits
* The agument to the seand template parameter PlatformTraits must be a
class or instantiation of a class template that is a derived class of
platform_traits and specify the platform-specific acess properties of the
hardware register.

An implementation may add additional template parameters with default values.

typedef ref_type
» Names the return type of the index operator which is equivalent to the
corresponding register_access class (It might be anested class that can be
used like the corresponding register_access class)
typedef value_type
 Namesthevalue type of the RegTraits

Congtructors:
register_buffer

(typename RegTraits::address_holder const &rAddr,
typename PlatformTraits::address_holder const &pAddr);

register_buffer
(typename PlatformTraits::address_holder const &pAddr);
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register_buffer();

» The mnstructors take references to the respedive aldress holder classes of the
access pecification traits template parameters. If an addressholder is marked
as is_static in its traits class the respedive @nstructor argument shall not
be given.

ref_type operator [] (size_t index)
ref_type get_buffer_element(size_t index)

* Returnsthe equivalent of areference to the location specified by index inside
of the deviceregister. The return value @n be used like aregister_access
objed, i.e. it can be written or real, and the bitwise OR ANDand XORcan ke
applied to it.

Note: The purpose of providing both operator[] and a member function
get_buffer_element is to accommodate different programming styles. One
can be implemented in terms of the other.

5.3.3 Header "stdi nt. h"

The header <stdinth>  is gecified by C99 (IS 989319), and is not part of the
C++ Standard (ISO/IEC 1488:2003 (Seoond Edition)). Instead, some
implementation specific mechanism introduces the fixed size integer types described
by <stdinth>  of the C standard into namespace std::hardware as if the header
<stdinth>  wereincluded by <hardware> .

No names are introduced into global namespace.

5.3.4 The struct hw base
Synopsis

nanmespaces td {
nanespace h ardwar e {
structh w_base

{
enum access_node {r andomr ead_write,write,r ead} ;
enumdevi ce_bus {d evice8, devic els6,
devi ce32,d evic e64};
enum byt e_order {msb_lowmsb_high}; //p ossiblymore

enum processor_bus{b us8,b usl6, bus32,b us64} ;

/1i dentifiersf orb ust ypesa sty pen anes

enumdata_bus{ };

enumi o_bus{ };

/1o nlyi dentifierss houldbepresent thata res upported
/b yt heunderlyingi nplenentation -- diagnosticr equired
enum address_kind{i s_static,i s_dynanic}

typedef i nplenmentation-defined addre ss_type;

} //n’ anmespace h ar dware
} //n anespaces td
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Description
struct hw_base
* Provides the names for the supported herdware dharaderistics. Only those
names that are suppated by the hardware shall be present. Additional names
that define alditional or different functionality may be defined by an
implementation.

enum access_mode
» Definesthe possible modes for accessing a deviceregister.

enum device_bus
» Defines the names for the width of the hardware register device bus as sen
from the processor.

enum byte order
» Defines the names for the endianness of the device register. An
implementation may define additional byte orders.

enum processor_bus
» Defines the names for the width of the processor bus.

enum data_bus, io_bus

» Defines a type name for ead lus a which accessble devices can be
conrected. data_bus spedfies a bus that addresses attached devices like
normal memory cels (memory-mapped). io_bus Specifies a bus that
addresses attached devices by using spedal instructions (e.g. infout ~ or port
instructions).  An implementation may define alditional type names for
additional buses. Only names shall be defined in an implementation for which
arespedive bus adually exists in the underlying hardware achitecture.

enum address_kind
» Defines the names is_static and is_dynamic to mark address holders in
register and platform traits. An address holder that is marked as is_static
holds an address that is known at compile time. An address holder that is
marked asis_dynamic  holds an addressthat might only be known at run-time.

address_type
* Isatype spedfied by the implementation to hold a hardware aldress |If the
underlying hardware platform supports it, thistype shall be an integral type. If
the underlying hardware platform supports more than one type of hardware
address (as is usualy the cae where more than one bus exists), an
implementation shall define alditional types for those aldreses with
implementation defined names.

An implementation may define alditional names and types in hw_base .

5.3.5 Common Address Holder Types

This Technicd Report defines the names and properties for the two addressholder
types static_address and dynamic_address . Animplementation may define
additional addressholder types.
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5.3.5.1 TheClassTemplatest ati c_address
Synopsis

te npl at e < hw_base: : address_t ypev al >
st ructs tatic_address

{
enum{v alue_=val} ;
hw_base: : address_typev alue()c onst;

h
Description

static_address
» Holds an address known at compile time.

hw_base::address_type val

* Provides the statically known address. If in an implementation
hw_base::address_type is not a basic type, the implementation can define
different template parameters.

value

* Provides the aldress value through a name. If in an implementation
hw_base::address_type is not an integral type, the implementation must
provide the aldress by the name value_ using a different mechanism than
enum.

hw_base::address_type value()
* Providesthe aldressvalue through a function.

5.3.5.2 The Classdynami c_addr ess
Synopsis

st ructd ynam c_address

{
dynam c_addr ess( hw_base: : address_t ype a ddr) ;
hw_base: : address_typev alue()c onst;
hw_base: : address_typev al ue_;

h
Description

struct dynamic_address
* Holdsan addressthat can be set at run-time.

dynamic_address (hw_base::address_type addr)
* A (converting) constructor to set the aldress

hw_base::address_type value()
* Providesthe aldressvalue through a function.

value
* Providesthe aldressvalue through a name.
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5.3.6 Basic Hardware Register Designator Traits Classes

An implementation shall provide & least one traits class for the platform-specific
access properties and one traits class for register-specific acess properties for
hardware registers (see 85.1.3). These traits classes gecify the most common acaess
properties for a given implementation. If there is no most common case, the
implementation shall provide respedive traits classes for all common cases.

The traits classes must be provided in a way that they can easily be used as base
classs where all names that are not overridden in the derived class are inherited from
the base class

5.3.6.1 TraitsClassplatformtraits
Synopsis

structp latformtraits

{

typedef inpl ementation-defined address_hold er;
typedef inpl ementation-defined processor_ bus;
enum

{
addr ess_node,
processor _endi anness,
processor_bus_wi dth

h

Description
struct platform_traits
* Provides names that specify the most common platform-specific acess
properties for an implementation.

* Names that are not meaningful in an implementation shall be omitted. An
implementation can also define alditional names that spedfy additional access
properties that are meaningful for that implementation.

typedef address_holder
» Specifies the type for the aldressthat is part of the platform-spedfic acess
properties (e.g. the base aldress of a hardware group, see 85.1.10). [Note:
This can be the static_address<0> where there is no platform-specific
addressand will probably be dynamic_address  for group base aldresses to be
initialized at run-time).]
typedef processor_bus
» Specifiesthe bus where hardware registers are attached. The choice of the bus
for an implementation can be abitrary, but shall be one of the bus type names
in hw_base. If an implementation provides only one bus where hardware
devices can be dtaded, this name @an be omitted.

address_mode

e One of the values from hw_base::address_kind . Spedfies whether the
addressheld by address_holder  is known at compile-time or only known at
run-time.
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processor_endianness
e One of the values from hw_base::byte_order . Spedfies the endianness of
the processor or processor_bu  s.

processor_bus_width
e One of the values from hw_base::processor_bus . Spedfies the width in
bytes of the processor_bus

5.3.6.2 TraitsClassregi ster _traits
Synopsis

st ructr egister_traits

{

typedef inplenmentation-defined val ue_type;
typedef inpl ementati on-defined address_hold er;
enum

{

addr ess_node,
access_node,

endi anness,

devi ce_bus_wi dth

h

Description
struct register_traits
* Provides names that specify the most common register-specific acces
properties for an implementation.

» Names that are not meaningful in an implementation shall be omitted. An
implementation can also define alditional names that spedfy additional access
properties that are meaningful for that implementation.

typedef value_type
» Specifies the type of the hardware register. This $all be an Assignable and
CopyConstructible type.

typedef address_holder

» Specifies the type for the aldress of the hardware register. [Note: If the
address (offset) of the register is known at compile-time (as is usually the
case), this can be omitted, as wusers will override this with
static_address<register_addr> in the register-specific derivation. If the
register address is to be specified at run-time, which sometimes might be
useful even if it is known a compile-time, this will probably be
dynamic_address ]

address_mode

* Orne of the values from hw_base::address_kind . Spedfies whether the
addressheld by address_holder  is known at compile-time or only known at
run-time.

access_mode
* One of the values from hw_base::access_mode . Spedfies what access
operations (read/write) are dlowed on the hardware register.
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endianness
e One of the values from hw_base::byte_order . Spedfies the endianness of
the device bus where the hardware register is attached.
device_bus_width
* One of the values from hw_base::device_bus . Spedfies the width in bytes
of the device bus where the hardware register is attached.
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Appendix A: Guidelineson Using the
<har dwar e> Interface

A.1 Usage Introduction
The design of the C++ <hardware> interface follows two lines of separation between:

» The definition of hardware register designator spedficaions and the device
driver code

* What isknown at compile-time and what is known only at run-time

Unfortunately, these two lines of separation are neither orthogonal nor identical; for
example, a dynamic_address  is only known at run-time, but is part of the hardware
register designator specifications.

As C++ is a typed language, the differences for the interface ae in the type system,
and therefore the main separation line for the interface definition itself is between
what is gatically known at compile-time (which becomes type names or enum
constants in traits classes) and what is only known at run-time (which becomes
function (especially constructor) arguments or operator operands to the interface of
register_access and register_buffer ).

A.2 Using Hardware Register Designator Specifications

Hardware register designator spedfications gecify how a given deviceregister can be
accessed. These specifications are separated into two parts: the register-specific part
and the (hardware) platform-spedfic part. Both parts are defined as traits classes in
the middle layer of the dstract model (85.1.4). These traits classes are then used as
template parameters to the dass templates register_access and register_buffer

The adual details of these traits classes are mainly implementation defined, as these
specify aacess details that can vary widely over different platforms. An
implementation provides at least two generic traits classes: platform_traits and
register_traits . These traits clases gecify which definitions and names are
required for a platform and give meaningful default values for them. So, these
implementation provided traits classes can be used as a guide to what information
must be provided, and they also serve & base clases sich that only those names
which differ from the default must be (re-)defined in the user's own traits classes.

Though the detail s of these traits classes are implementation defined by nature, there
are some agpectsthat these traits classes have in common:

e platform_traits and register_traits contain the typedef  address_holder
that adtually holds the hardware address The address_holder ~ for the register
often holds an off set addressthat specifies the off set of this gecific register inside
ahardware device. To form the final address this offset is added to the base
addressof the hardware devicethat is gedfied in the respedive
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platorm _traits  class. But for Smpler cases, the address_holder  for the
register simply holds the final addressof the register and the respedive aldress
holder of the platform _traits  class holds a null address.

* address_holder  can hold either an addressthat is gatically known at compil e-
time or an addressthat is initialized at run-time. What kind of address the
address_holder  adualy holdsis ecified by the value of the enum constant
address_mode and can either be hw_base::is_static or
hw_base::is_dynamic

e register _traits  contains atypedef value_type that specifies the type of the
data held in that register.

e register _traits containsan enum constant access_mode that contains a value
from hw_base::access_mode  and spedfies whether aregister isread-only, write-
only or read/write.

Other information that must be specified in the platform _traits class often
includes:

e A typedef processor_bus that spedfiesto which bus the deviceis conneded if
aprocesor has more than one bus.

* Anenum constant processor_bus_width if that cen vary for a given platform.

* Anenum constant processor_endian  ness to spedfy the order of bytes for
multiple byte bus widths.

Other information that must be specified in the register _traits class often
includes:

* Anenumconstant endian ness to specify the order of bytes for multiple byte wide
registers.

* Anenum constant device_bus_width  to specify width of the device busto which
the register is conneded.

As dready said, the adua requirement detals of platform _traits and
register _traits  are platform dependent and can vary widely for more exotic
platforms. It isthe purpose of the middle layer of the abstrad model (85.1.4) to cope
with such requirements and to isolate them from the devicedriver code.

A.21 Using addr ess_hol ders

An implementation typically provides two pre-defined address_holder  definitions: a
class static_address and a class dynamic_address , to hold address information
known at compile-time and address information that can be initialized at run-time,
respedively.

For addresses that are known at compile time, the class template static_address
defines the adual addressthrough a template agument (there can be more than one
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template parameter if the aldressis not asimple scalar value). A simple offset address
of aregister might be specified as static_address<0x0b>

For address information that must be initialized a run-time, the class
dynamic_address  is provided. This class provides a constructor that accepts as many
arguments as necessary for a platform.

For more complex cases it might be neaessary to provide a user-specified
address_holder  class. This class must provide apullic member function value()
with the return type hw_base::address_type (or something similar, if an
implementation provides more than one aldresstype in hw_base ). If the aldressis
known at compile-time (and therefore marked is_static in its traits clas9y, this
member function must be static

For example, an implementation might provide ageneral_address  for which the
dynamic data type is unsigned long . Then the user can provide a ©rresponding
class

st ruct D ynAddr essPort DA

{
DynAddressPort DA():v al (gl obal Base+0x120) {}

unsi gned| ongv al ue()c onst{ /s omeco mdicated cal culation
//b ased on thec urrentm odeo f
/1t heprocessor

}

unsi gned! ongv al;

h

Here the initialization of the addressinformation is provided by some global variable.
In a different case, the @nstructor might require an argument, and therefore some
initialization code must provide that argument. But the mechanics of the initialization
are always left to the user to choose the most suitable method.

A.2.2  Traits Specifications

As adlready said, the adual requirements detail s of the register and platform traits are
implementation defined by nature. But as the classes register_traits and
platform_traits are provided, in most cases it is quite eay to define the traits for a
specific goplicaion. Sometimes the platform_traits can even be used diredly,
without any modifications. More often, the provided platform_traits isused as a
base class with overrides gecific to the goplicaion:

structD ynMM:p latformtraits
{

typedefd ynam c_addressa ddress_hol der;
typedefh w_base::data_busp rocessor_bus;
enum {a ddress_node=hw _base::is_dynam c }

h

In this example, the derived class uses a dynamic base aldress and the (memory
mapped) data bus of the processor.

Here is another example, using the DynAddressPortDA  addressholder from above:
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st ructM ySpecial Dyn:p latformtraits

typedef D ynAddr essPort DA a ddr ess_hol der;
enum {a ddress_node=hw _base: :is_dynam c };

h
Register traits nealy always have a static address, so it is often useful to provide class
templates to cover common cases:

te npl ate < typenaneV al Type, h w_base: : address_ty pe a ddr>
structD evl6Reg:p ublicr egister_traits

{
typedefV al Typev al ue_type;
typedefs tatic_address<addr>a ddress_hold er;
enum
{
addr ess_node=hw _base::is_static,
access_node=hw_base: : random
endi anness=hw_base: : nsb_hi gh,
devi ce_bus_wi dt h=hw_base: : devi cel6
s
3

It isthen simple to use this class to define traits for concrete registers:
ty pedefD evl6Reg<uint8_t,0 x04>Control Port;

A.3 Hardware Access

All hardware accss is provided through the class templates register_access and
register_buffer . For access traits that require no dynamic information the
respedive register_access objeds contain o data and therefore ae optimized
completely out of existence by most compilers. A typicd usage might be:

/Id efinedr egistert raitswithValueType= uint8_t:

I InPort,O utPorta ndControl Port
re gi ster_access<InPort,p latformtraits> ip;
re gi ster_access<QutPort,p latformtraits> op;

re gi ster_access<Control Port,p latformtraits> ctl_p;

uint8_ tt np=i p; /[lr eadf roml nPort, uses

/lr egister_access::operatorv alue_type();
op =0 x12; //writet oOutPort, uses

/lr egister_access::operator=(val ue_type);
ctl_p| =0 x34; /ls etb its5,4a nd 2 inControl Port

Because the register_access objed is empty, there is no red need to define these
objeds, as it is possible to use temporary objeds creded on the fly. The example
above would then become:

/Id efineda ccess-specificationswithValueType=u int8_t:

I InPort,O utPorta ndControl Port
ty pedefr egi ster_access<InPort,p latformtraits > ip;
ty pedefr egister_access<QutPort,p latformtrait s> op;

ty pedefr egi ster_access<Control Port,p latform_traits>ctl _p;
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uint8_tt mp=i p(); /It eadf romlnPort, uses

/lr egister_access::operatorv alue_type();
op() = 0x12; //writet oOutPort, uses

/lr egister_access::operator=(val ue_type);
ctl_p()| =0 x34; /ls etb its5,4a nd 2 inControl Port

But this is a rather unnatural syntax and is generally not necessary, as compilers are
usually smart enough to optimize avay the objeds from the first example.

A.3.1 Indexed Access

A register_buffer is used to access a block of hardware registers, rather than a
single register. In this case the value_type  definition of the register _traits
denotesthe type of asingle register and the aldressis the base aldress (index 0). The
registersin the block can then be aldressed through the subscript operator:

/la ssuner egisterb lockP ortBufferwithr andomaccess

/la ssuneplatformtraitsl Cousf orad evice ont hel /O bus

re gi ster_buffer<PortBuffer,| Cbus>p ortBuf;
uint8 tb uf[sz];

portBuf[ 0] & =0 x03;
port Buf[ 1] = sz -2,

for( inti =2;i! =sz;+ +i)
buf[i]=p ortBuf[i];
If afull register block is always to be accesed as a unit, an appropriate value_type
can be defined:

structB uffer32{u int8_td ata[32];} ;
structX YBlock:p ublicr egister_traits

{
typedefB uffer32v al ue_type;
typedefs tatic_address<0x35800>a ddress_hol der;
enum
addr ess_node=hw_base::is_static
s
3

re gi st er _access<XYBl ock,| Cbus>b | ockBuf;
Buf f er 32t npBl ock;

tmpBl ock=b | ockBuf; /lr eadwholeb lockat once

The binary layout of the value_type  must match the register block, which is
normally only guarantead for PODs. If the register block has a complex layout (e.g. a
mix of different data types), the value_type can be a ©rrespondingly complex
struct

A.3.2 Initialization of r egi st er _access

For accesstraits with static address _holder sthat are fully spedfied at compile-time,
register_access and register_buffer provide only a default constructor (in these
cases there is nothing to congtruct). But if one of the traits contains an
address_holder  with dynamic data, this must be initialized at run-time. For those

Versionfor PDTR approval ball ot Page 1190f 189



Technical Report on C++ Performance PDTR 18015

Cases, register_access and register_buffer provide a ©nstructor that takes a
respedive address_holder ~ objed as argument. How the address_holder  type is
initialized is under control of the user, as explained above. As there ae two traits
arguments for register_access and register_buffer, in theory there @an be two
dynamic address_holder s, though in pradice the address_holder of the
register _traits IS nealy always gsatic. So, regarding the examples from above,
theinitialization can be:

/lu singdefaultc onstructoro fD ynAddressPort DA
re gi st er_access<Control Port, M ySpeci al Dyn>po rt A(DynAddr essPort DA() );

or in very spedal cases.

/lu singc onversionc onstructorso ft her espectivea ddress_hol ders
re gi st er _access<Speci al DynReg, D ynBase>
port DB(0x1234, /1d ynanicr egister offset
0xa0b165); /1d ynam cb asead dress
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Appendix B: Implementing the
lohw | nterfaces

B.1 General Implementation Considerations

The <hardware> healer defines a standardized syntax for basic hardware register
addressing. This header should normally be aeaed by the compiler vendor.

While this gandardized syntax for basic hardware register addressing provides a
simple, easy-to-use method for a programmer to write portable and hardware-
platform-independent hardware driver code, the <hardware> header itself may require
careful consideration to achieve an efficient implementation.

This sdion gives ©me guidelines for implementers on how to implement the
<hardware> header in arelatively straightforward manner given a specific procesor
and bus architedure.

B.1.1 Recommended Steps
Briefly, the reacommended steps for implementing the <hardware> header are:

« Get an overview of all the possible and relevant ways the hardware device is
typically conneded with the given bus hardware achitectures, plus an
overview of the basic software methods typically used to address sich
hardware registers.

» Define specializations of register_access and register_buffer which
support the relevant hardware register access methods for the intended
compiler market.

» Provide platform_traits and register_traits as away to select the right
register_access and register_buffer specializations at compile time and
generate the right machine @de based on the hardware register access
properties related to the hardware register designators (the traits classes).

B.1.2  Compiler Considerations

In pradice an implementation will often require that very different machine wde is
generated for different hardware register access cases. Furthermore, with some
procesor architedures, hardware register accesswill require the generation of special
machine instructions not typically used when generating code for the traditional C++
memory model.

Seledion between different code generation alternatives must be determined solely
from the hardware register designator definition for ead hardware register.
Whenever possible, this acess method seledion should be implemented such that it
may be determined entirely at compile-time in order to avoid any run-time or machine
code overheal.
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For a compiler vendor, selection between code generation alternatives can always be
implemented by supporting different intrinsic accas ecificaion types and keywords
designed specially for the given procesor architedure, in addition to the standard
types and keywords defined by the language. Alternatively, inline assembler can be
used to producethe required machine instructions.

With a conforming C++ compiler, an efficient, al-round implementation of both the
<iohw.h> and <hardware> interface healers can usually be achieved using C++
template functionality (seealso 8Appendix C:). A template-based solution allows the
number of compiler specific intrinsic hardware accss types or intrinsic hardware
access functions to be minimized or even removed completely, depending on the
procesor architedure.

B.2 Overview of Hardware Device Connection Options

The various ways of conneding an external device's register to procesor hardware
are determined primarily by combinations of the following three hardware
charaderistics:

* The bit width of the logical device register
* The bit width of the data bus of the device
* The bit width of the procesor bus

B.2.1  Multi-addressing and Device Register Endianness

If the width of the logicd deviceregister is greaer than the width of the device data
bus, a hardware acess operation will require multiple cnseautive aldressng
operations.

The device register endianness information describes whether the most significant
byte (MSB) or the least significant byte (LSB) byte of the logical hardware register is
locaed at the lowest procesor bus address (Note that the hardware register
endianness has nothing to do with the endianness of the underlying processor
hardware achitecture).

[Note: while this sdion ill ustrates architedures that use 8-bit bytes and word widths
that are factorable by 8, it is nat intended to imply that these are the only possble
architedures.]
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TableB-1: Logical hardwar e register / har dwar e device addressng owverview?®

Device buswidth

L ogical L L L L
register width 8-bit device bus 16-bit device bus 32-bit device bus 64-bit device bus
LSB-MSB MSB-LSB LSB-MSB MSB-LSB LSB-MSB MSB-LSB LSB-MSB MSB-LSB

8-hit register Direct n/a n/a n/a

16-hit register | r8{0-1} r8{ 1-0} Direct n/a n/a

32-bitregister | r8{0-3} r8{3-0} | ri6{0-1} | r16{1-0} Direct n/a

64-bit register | r8{0-7} | r8{7-0} | r16{0-3} | r16{3-0} | r320-1} | r32{1-0} Direct

(For byte-aligned address ranges)

B.2.2 Address Interleave

If the size of the device data bus is less than the size of the procesor data bus, buffer
register addressing will require the use of addressinterleave

For example, if the procesor architedure has a byte-aligned addressing range with a
32-hit procesor data bus, and an 8-bit device is conneded to the 32-bit data bus, then
three aljacent registersin the device will have the procesor addresses:

<addr+0 >,< addr+4 >,< addr+8 >

This can also be written as
<addr+ interleave*0> < addr+ interleave*1> <addr+ interleave*2>

where interleave= 4.

Table B-2: Interleave overview: (busto businterleave relationship)

Procesgor buswidth
Device buswidth
8-bit bus 16-bit bus 32-bit bus 64-bit bus
8-bit device bus interleave 1 interleave 2 interleave 4 interleave 8
16-bit device bus n/a interleave 2 interleave 4 interleave 8
32-bit device bus n/a n/a interleave 4 interleave 8
64-bit device bus n/a n/a n/a interleave 8

(For byte-aligned address ranges)

28Thistab|ede£cribe£ some @mmon bus and register widths for 1/0 devices. A given hardware platform may use other register
and tuswidths.
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B.2.3 Device Connection Overview

A combination of the two tables above shows all relevant cases for how device
registers can be mnneded to a given procesor hardware bus:

TableB-3: Interleave between adjacent har dwar e registersin buffer

Devicebus Processor data buswidth
Register No. | Width=8 | Width=16 | Width=32 | Width=64
width LB
Width MSB Oper-
ations. sizel size2 size4d size8
8-hit 8-hit n/a 1 1 2 4 8
LSB 2 2 4 8 16
. 8-hit
16-bit MSB 2 2 4 8 16
16-bit n/a 1 n/a 2 4 8
LSB 4 4 8 16 32
8-hit
MSB 4 4 8 16 32
32-bit LB 2 na 4 8 16
16-bit
MSB 2 n/a 4 8 16
32-hbit n/a 1 n/a n/a 4 8
MSB 8 8 16 32 64
8-hit
LSB 8 8 16 32 64
LSB 4 n/a 8 16 32
. 16-bit
64-bit MSB 4 na 8 16 32
LSB 2 n/a n/a 8 16
32-bit
MSB 2 n/a n/a 8 16
64-bit n/a 1 n/a n/a n/a 8

(For byte-aligned address ranges)

B.2.3.1 Generic Buffer I ndex

The interleave distance between two logically adjacent registers in a device register
array can be alculated fronv®;

* Thesizeof thelogical register in bytes
* The procesor data bus width in bytes
* Thedevice data buswidth in bytes

P eor systems with byte-aligned addressing.
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Conversion from register index to addressoffset can be alculated using the following
general formula:
Address_offset=i ndex*
si zeof (I ogical _register) *
si zeof (p rocessor_data_bus )/
si zeof (d evi ce_data_bus )

Asumptions:

» Bytesare 8-hitswide

* Addressrangeis byte-aligned

» Databuswidths are awhole number of bytes

* The width of the logical_register is greaer than or equal to the width of
the device_data_bus

* The width of the device_data_bus is less than or equal to the width of the
processor_data_bus

B.3 Hardware Register Designators for Different Device
Addressing Methods

A procesor may have more than one aldressing range®*. For ead procesor
addressing range an implementer should consider the following typical addressing
methods:

* Addressisdefined at compile-time:

The aldressisa onstant. Thisisthe simplest case and also the most common
case with smaller architedtures.

 Baseaddressinitialized at run-time

Variable base-address + constant-offset; i.e. the hardware register designator
consists of a platform traits class with a dynamic address (address of base
register) and aregister traits classwith a static address(off set of address.

The user-defined base-address is normally initialized at run-time (by some
platform-dependent part of the program). This also enables a set of driver
functions to be used with multiple instances of the same devicetype.

* Indexed bus addressing:

Also called orthogona or pseudo-bus addressing. This is a @mmon way to
connect alarge number of deviceregistersto a bus, while still occupying only
afew addresses in the processor address pace

Thisis how it works: first the indexaddess(or pseudo-addesy of the device
register is written to an address bus register locaed a a given procesor
address Then the data read/write operation on the pseudo-bus is done via the
following processor address i.e. the hardware register designator must contain
an address pair (the processor address of the indexed bus, and the pseudo-bus

30 procesmrswith as ngle addressing range use only memory mapped /0.
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address (or index) of the device register itself). Whenever possible, atomic
operations should be goplied to indexed bus addressing in order to prevent an
interrupt occurring between setting upthe aldressand the data operation.

This acess method also makes it particularly easy for a user to conned
common devices that have a multiplexed addresgdata bus to a processor
platform with non-multiplexed buses, using a minimum amount of glue logic.
The driver source code for such a device is then automatically made portable
to both types of bus architecure.

e Accessvia user-defined access driver functions:

These ae typicdly used with larger platforms and with small single-chip
procesors (e.g. to emulate an external bus). In this case, the traits classes of
the hardware register designator contain a user-defined address_holder

The acces driver solution makes it possible to connect a given device driver
source library to any kind of platform hardware and platform software using
the gopropriate platform-specific interfacefunctions.

In general, an implementation should always support the simplest addressing case.
Whether it is the constant-address or base-addressmethod that is used will depend on
the procesor architedure. Apart from this, an implementer is free to add any
additional cases required to satisfy a given domain.

To adapt to the different requirements and interface properties of the different
addressing modes, the <hardware> interface uses different combinations of platform
and register traits classes in the hardware register designators of the different
addressing methods.

For the <iohw.h> interface it is often convenient for the implementer of the iohw
middle layer to provide definitions for ead of the different addressing methods using
templates also, therefore implementing the C-style interface on top of the C++
implementation (see8Appendix C:). This allows the implementer to share a ©mmon
implementation between both interfaces, while also providing geaer type safety than
the maao-based implementation can provide.

B.4 Atomic Operation

It is a requirement of the iohw implementation that in each iohw function a given
(partial®') deviceregister is addressed exadly once during a READOr a WRITE operation
and exadly twice during a REABmModify-WRITE operation.

It is recommended that ead access function in an iohw implementation be
implemented such that the device acess operation becomes atomic whenever
possible. However, atomic operation is not guaranteed to be portable acossplatforms
for the logicd-write operations (i.e. the OR AND, and XORoperations) or for multi-
addressing cases. The reason for this is simply that many procesor architedures do
not have the instruction set fegures required for assuring atomic operation.

31 A 32-bit logical register in a device with an 8-bit data bus contains 4 partial 1/0 registers.
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B.5 Read-Modify-Write Operations and Multi-Addressing

In general REABModify-WRITE operations should do a complete READof the hardware
register, followed by the operation, followed by a cmplete WRITE to the hardware
register.

It is therefore recommended that an implementation of multi-addressing cases should
not use READModify-WRITE machine instructions during partial register adadressing
operations.

The rationale for this restriction is to use the lowest common denominator of multi-
addressing hardware implementations in order to suppat the widest possible range of
hardware register implementations.

For instance, more alvanced multi-addressing cevice register implementations often
take a snapshot of the whole logical device register when the first partial register is
being real, so that data will be stable and consistent during the whole read operation.
Similarly, write registers are often “double-buffered”, so that a consistent data set is
presented to the internal logic a the time when the acess operation is completed by
the last partial write.

Such hardware implementations often require that ead acessoperation be cmmpleted
before the next accessoperation is initiated.

B.6 Initialization

Some parts of hardware register designators may require some initalization at run-
time, which is done using normal C++ constructors. But quite often, the compiler-
known lifetime of such objeds is not identical with the logical lifetime that is
important for initialization and de-initialization. In such cases, the onstructor
(through placement new syntax) and destructor must be alled explicitly.

With resped to the astrad model in 85.1.4, it is important to make aclear distinction
between hardware (device) related initialization, and platform related initialization.
Typically, three types of initializaion are related to hardware device register
operation:

» hardware (device) initialization
» device &cessinitializaion of hardware register designators

» deviceseledor (or hardware group) initialization® of platform traits

321 for ingtance the acces method is implemented as (base_addres s + constant_offset ) then "device selector
initialization" refersto assgnment of the base_addres s value.
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Here only device acess initializaion and device selector initialization is relevant for
basic hardware register addressing:

hardware initialization: Thisisanatural part of a hardware driver, and
should always be @mnsidered part of the devicedriver applicaion itself. This
initialization is done using the standard functions for basic hardware
addressing. Hardware initiali zation is therefore not atopic for the
standardization process

deviceaccessinitialization: This concernsthe definition of hardware register
designator objeds. The adual functionality of thisinitialization is inherently
implementation-defined. It depends both on the platform and processor
architedure and also on which underlying acessmethods are supported by the
<hardware> implementation. While the functionality is implementation-
defined, the syntax for thisinitialization isthe normal C++ syntax of objed
constructors.

If runtime initiali zation is needed, this can easily be done by providing a
platform traits classwith a dynamic address_holder . The register traits class
canin most cases gill use adtatic address_holder

deviceselector (or hardware group) initialization of platform traits. This
isused if the platform-specific part of the aldressinformation is only available
at run-time. Inthis casethe platform traits classcontains a dynamic
address_holder , which must be initialized using normal C++ constructors.

This can also be used if, for instance, the same hardware devicedriver code
neals to service multiple hardware devices of the same type. But if the
addresses of the different hardware devices are known at compile time, it isalso
possible to implement the hardware device driver code & a function template

on the platform_traits class and call this function with different platform
traits with static address_holder . Hereis an example that demonstrates both
options:

#i ncl ude < har dwar e>

nanespace

{

// middle layer (hardware register designator specifications):

usi ngn anmespace s td: : hardware;
structD eviceA:p latformtraits
typedefs tatic_address<0Ox50>a ddress_hold er;

structD eviceB:p latformtraits

{

typedefs tatic_address<0x90>a ddress_hold er;

structD ynDevice:p latformtraits
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{
typedefd ynam c_addressa ddress_hol der;
enum {a ddress_npde=hw_base: : dynami c_addr ess };
3
structP ortAl_T:r egister_traits
{

typedefs tatic_address<Oxla>a ddress_hold er;

structP ortA2_T:r egister_traits

{
h

typedefs tatic_address<0x20>a ddress_hold er;

Portable device driver function using the template gproad:

te nplate<classP | at f or mSpec>

uint8 tg etDevData(typenane Pl atfornSpec:: addre ss_hol derc onst& addr =
typenane P | at f or nBpec: : address_hold er())

{

regi ster_access<Port Al_T,P | atfornmSpec> devConfi g(addr);
regi ster_access<Port A2_T,P | atfornSpec> devDat a( addr);

devConfig=0 x33;
returnd evDat a;

} //u nnamedn anmespace

intm ain()
{
static version:

/IR eadd ataf romdevice 1:
uint8_ td 1=g etDevDat a<Devi ceA>();

/IR eadd ataf romdevice 2:
uint8_td 2=g et DevDat a<Devi ceB>();

dynamic version:
uint8 td 3=g et DevDat a<DynDevi ce>(0x40);

uint8 td 4=g et DevDat a<DynDevi ce>(0x80);

returnoO;

}

With most free-standing environments and embedded systems the platform
hardware is well defined, so all hardware group designators for deviceregisters
used by the program can be completely defined at compile-time. For such
platforms run-time device selector initialization is not an issue.

With larger processor systems the base addressof a hardware deviceis often
assigned dynamically at run-time. Here only the register_traits of the
hardware group designator can be defined at compile-time, while the
platform_traits part of it must be initialized at run-time.
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When designing the hardware group designator objed a compiler implementer
should therefore make aclear distinction between the static information in the
register_traits class and the dynamic information in the platform_traits
class; i.e. theregister traits class should contain a static address_holder  that
can be defined and initialized at compil e time, whil e the platform traits class
should contain a dynamic address_holder  that must be initialized at runtime.

Depending on the implementation method and depending on whether the
hardware group designator objects need to contain dynamic information, such
an objed may or may not require an instantiation in data memory. Better
execution performance @n usually be achieved if more of the information is
static.

B.7 Intrinsic Features for Hardware Register Access

The implementation of hardware device acces operations may require for many
platforms the use of special machine instructions not otherwise used with the normal
C/C++ memory model. It is recommended that the compiler vendor provide the
necessary intrinsics for operating on any spedal addressing range supported by the
Processor.

In C++ special machine instructions can be inserted inline using the asm declaration
(81S-7.4) However when using asm in connedion with hardware register access
intrinsic functionality is often still required in order to enable eay load of symbolic
named variables to procesor registers and to handle return values from asm
operations.

The implementation should completely encapsulate any intrinsic functionality.

B.8 Implementation Guidelines for the <har dwar e> Interface

There ae two main design alternatives in implementing register_access and
register_buffer for the different hardware register designators:

» Using the information in the traits classes of the hardware register designators
to implement the register_access and register_buffer functionality (this
isthe gproad chosen in the sample implementation).

» Using the traits classes of the hardware register designators as mere labels that
also hold the aldress information and specializing register_access and
register_buffer for ead of the meaningful combinations of platform and
register traits (this is a useful approad if there ae very few commonalities
between the implementations for the different traits).

In any case, caefully implemented specializations of helper clases used in
register_access and register_buffer together with an optimizing compiler can
provide resulting objed code that only contains the neessry hardware acces
statements and produces absolutely no overhead.
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The ultimate hardware acces gsatements typically will be realized either as inline
assembler or as compiler intrinsics. But this is hidden in the implementation; the user
does not seethem.

B.8.1 Annotated Sample Implementation

The sample implementation implements the <hardware> interfacefor a very simple
8-hit procesor. This procesor supports only 8-bit buses, but has a memory bus and
an 1/0 bus. This simplifies the implementation, but the necessary steps for a more
general implementation are also mentioned. Also, as is typicd for such small
systems, all address information is assumed to be known at run-time; i.e. dynamic
address_holder s are not supported.

A note on the style: as the <hardware> healer belongs in some way to the
implementation of a (non-standard) part of the C++ library and a user of that may
place any maaos before this healer, the header itself should only use symbols
reserved to the implementation, i.e. names beginning with an underscore.

B.8.1.1 Common Definitions— st ruct hw _base

hw_base defines all the mnstants that are necessary in the hardware register
designators traits classes. Of course, this is highly dependent on the specific
hardware, and only those that are used in this implementation are shown here. In
general, there ae two different ways to define @nstants. the standard |0OSreams
library defines constants as gatic. This allows for easier implementation, but has
some space and possibly run-time overheals. For performance reasons, the enum
approadh is chosen here, where all constant values are defined as enumerators.

According to the interface spedfication, an implementation can define alditional
members in hw_base . This implementation defines two tagging types data_bus and
io_bus for use in platform traits classes. Otherwise, as the chosen example platform
is pretty simple, hw_base is quite small:

st ructh w_base

{
enumaccess_node{ randomr ead_wite,wri te,r ead};
enumdevi ce_bus{ devi ce8=1};
enum byt e_order{ nsb_| ow,m sb_hi gh};
enum processor _bus{ bus8=1};

typedef _ ula ddress_type;
enum address_kind{i s_static,i s_dynanmc };

/1t ypenanmesf ord ifferentb ust ypes

enumdata_bus{ };
enumi o_bus{ };

h

_ul is used as shorthand for the type that holds an address and is defined as 16-hit
type:
ty pedefu int16_t_ ul;
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And the other required types are defined as well:

ty pedefu nsignedc haru int8_t;
ty pedefu nsigneds hortu intl6_t;
ty pedefu nsigned!| onguint32_t;

ty pedefu nsignedc hars ize_t;
ty pedefs ignedc harp trdiff_t;

These definitions are inside of std::hardware , SO the size_t and ptrdiff_t types
can be differently defined as the respedive global types.

The width definitions for device_bus and processor_bus  are not redly necessary,
as this platform supports only 8-bit buses. Therfore, any endianness doesn't matter
and the definition of byte_order  could also be omitted. But they are shown here for
demonstration purposes.

B.8.1.2 AccessTraits Classes

In this sample implementation the traits classes of the hardware register designators
hold al necessary acass property information and provide them to the
implementation of register_access and register_buffer. To produce & little
overhead as possible in cases where the aldress information is known at compile-
time, no object datais produced. The addressvalue is kept in the type information of
the address_holder  static_address

template< _ulv al>
st ructs tatic_address

{

enum{v alue_=val} ;
static_ulv alue(){r eturnvalue_; }

h

Asthis platform only supports statically known addresses, only this address_holder
is required. Where dynamically initialized addresses are also suppated, a respedive
dynamic address_holder  isrequired:

/lac lasst oholdaddressi nformati ond ynamically
st ructd ynam c_address

{

dynam c_address(_ul_ addr):v alue_(_addr) {}
_ulv alue()c onst{r eturnv alue_;}
_ulv alue_;

h

The default traits classes dont define much more than the address_holder , as
everything else is fixed for this platform. Only the platform_traits define the 110
bus as the default bus:

structp latformtraits

{

typedefs tatic_address<0>a ddress_hol der;
typedefh w_base::io_busp rocessor_bus;
enum

addr ess_node=hw _base::is_static
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st ructr egister_traits

{
typedefu int8_tv alue_type;
typedefs tatic_address<0>a ddress_hol der;
enum
{
addr ess_node=hw _base::is_static,
access_node=hw_base: : random
s
3

In amore flexible environment, these classes would provide more information:

structp latformtraits

{
typedefs tatic_address<0>a ddress_hol der;
typedefh w_base::data_busp rocessor_bus;
enum
addr ess_node=hw_base::is_static,
pr ocessor _endi anness=hw_base: : nsb_hi gh,
pr ocessor _bus_w dt h=hw_base: : bus32
s
3
st ructr egister_traits
{
typedefu int8_tv alue_type;
typedefs tatic_address<0>a ddress_hol der;
enum
{
addr ess_node=hw_base::is_static,
access_nmode=hw_base: : random
endi anness=hw_base: : nsb_hi gh,
devi ce_bus_wi dt h=hw_base: : devi cel6
s
3
B.8.1.3 The Interfacer egi st er _access andregi ster_buffer
The adual interface for register_access is realized by the class template
register_access . This provides the full interface for single registers. As the

sample platform supportsonly static addresses, only a default constructor is required:

tenplate<class_ RegTraits,c lass_ PlatforniWraits>
cl assr egi ster_access

{
publ i c:
regi ster_access(){ }

typedeft ypenane __ RegTraits::val ue_type val ue_type;

operatorv alue_type()c onst;
voi d o perator=(val ue_type_ val);
voi do perator| =(val ue_type _ val);
voi d o perator&=(val ue_type _ val);
voi d o perator”~=(val ue_type _ val);
/[T unctionali nterfaceonittedf orb revity

h

Versionfor PDTR approval ball ot Page 133 0of 189



Technical Report on C++ Performance PDTR 18015

This template needs no data members, as all addressinformation is held in the type
definitions. If a platform supports dynamic addresses as well, the template would
have to hold respedive data members:

private:

constt ypenane _ RegTraits::address_hol der _addrR;
constt ypenane _ Platfornilraits:: address_hol der _ addr P,

This would not cause ay overhead for datic address holders, as those satic types
have no data members and are simply empty types, which are completely optimized
away by the cmpiler. But there is another problem: register_access instantiations
on traits classes with dynamic address holders require gpropriate wnstructors. One
option is simply to provide all constructors in the same classtemplate:

regi ster_access();

explicitr egister_access
(typename _ RegTraits::address_hold erc onst& _rAddr);

explicitr egister_access
(typename _ Pl atfornifraits::addre ss_hol derc onst& _pAddr);

regi ster_access
(typenane _ RegTraits::address_hol der const& _rAddr,
typename _ PlatfornTraits::address_hold erc onst& _pAddr);

But thiswould allow for construction with two arguments even if both addressholders
are static. To avoid this, a cmmon base class template _RAinterface  can be
introduced with all interface functions. Then the register_access class template
can inherit (privately) from _RAlnterface and import the functions from
_RAlnterface with using-dedarations. The register_access class template is
then specialized on the aldress mode of the traits clases to provide only that
constructor for ead classthat is meaningful:

te mpl ate< class_ RegTraits,c lass_ Platforniraits,
int=_ RegTraits::address_node,
int=_ Platfornfraits::address_node>
cl assr egi ster_access
:p rivate _RAlnterface< RegTraits,_ Platf ornlraits>
{

typedeft ypenane _ RegTraits::address_hold er _ AddressHol der R,
typedeft ypenane _ Platforniraits::address_hol der _ AddressHol der P;
typedef _ RAInterface< RegTraits,_ PlatformTaits>_ Base;
publ i c:
regi ster_access(_AddressHol der Rconst& rAddr,
_Addr essHol der P c onst & pAddr)
_ Base(rAddr,p Addr){ }

usi ngt ypenane _ Base::val ue_type;
usi ng _ Base: : operatorv al ue_type;

usi ng _ Base: : operator=;

usi ng _ Base: : operator| =;
usi ng _ Base: : oper at or &;
usi ng _ Base: : operator”=;
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And the specialization for static addresses for both traits provides only the default
constructor:

/l's pecializationf ors taticplatformandr egistera ddress
tenplate<class_ RegTraits,c lass_ Platforniraits>
cl assr egi ster_access<_RegTraits,_ Platforniraits,
hw_base::is_static,h w_base::is_static>
:p rivate _RAlnterface< RegTraits,_ Platf ornlraits>

{
typedef _ RAInterface< RegTraits,_ PlatformTaits>_ Base;
publ i c:
regi ster_access():_ Base(){ }
I heu singd eclarations...
3

But the sample platform doesn't suppat dynamic_address and therefore
_RAlInterface  can be omitted.

The class template register_buffer has the same problem (and the same or a
similar solution), but the sample platform implementation again is simple. The only
problem is the ref _type definition.  Clealy it is me instantiation of
register_access  , but the problem is that the result of the subscript operator neals
some knowledge about the index to perform the hardware acess to the rrect
address But this index might not be known a compile time, and currently
register_access has no way to hold a dynamic address.

The solution is the same & the one @ove for dynamic aldresses in the traits. an
additional template parameter for the type of the index holder and a data member of
that type (which is empty if there is no index). For the holder of the index itself a
classsimilar to dynamic_address  above is used, but withsize_t asthe value type:

/lac lasst oholdani ndexv alued ynam cally
st ruct _ | dxHol der

_ldxHol der (size_t_ i):v alue_(_i){}
size_tv alue()c onst{r eturnvalue_; }
size_tv alue_;

h

With that, the definitions for register_buffer and register_access can be
completed:
tenplate<class_ RegTraits,c lass_ PlatfornWraits,

class_ I ndexHol der=s tatic_address<0>>
cl assr egi ster_access

L
publ i c:
regi ster_access(){ }
explicitr egister_access(_IlndexHol derc onst& _i):_ idx(_i){ }
typedeft ypename _ RegTraits::val ue_type val ue_type;
operatorv alue_type()c onst;
voi d o perator=(val ue_type_ val);
voi do perator| =(val ue_type _ val);
voi d o perator&=(val ue_type _ val);
voi d o perator”~=(val ue_type _ val);
private:
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_IndexHol der _ i dx;

tenplate<class_ RegTraits,c lass_ PlatforniWraits>
cl assr egi ster_buffer

{
typedefr egi ster_access< _RegTraits,
_Platfornfraits,
_ldxHol der >r ef _type;
publ i c:
regi ster_buffer(){ }

ref _typeo perator[](size_t_ idx)c onst
returnr ef _type(_idx);
3

The nstructor for the index type in register_access can be private, and
register_buffer can be declared as friend, but this is omitted here for brevity.

Instead of diredly implementing the functions in register_access , t0 save some
typing and better separate the different tasks sme helper classes are introduced:
_RAImpl combines the different assignment functions and performs the aldress
calculation, while _AccessHelper is concerned with different specializaions for
register value types that are larger than the wmnneding bus. Finally, _hwRead and
_hwOp provide the adual hardware acess functionality for the different processor
buses.

To combine the different assignment functions (at least for the intermediate steps), an
enumeration for the different assignment operations is defined:

enum _binops{_ wite_op,_ or_op,_ and_op,_x or_op}

Using that, register_acces s can delegate the functionsto _RAImpl :

tenplate<class_ RegTraits,c lass_ PlatfornWraits,
class_ I ndexHol der=s tatic_address<0>>
cl assr egi ster_access

{ typedef _ RAInpl <_RegTraits,_ PlatfornWraits,_ | ndexHol der>_ I npl;
publ i c:

operatorv al ue_type()c onst

{ return_ Inpl:: _read(_idx);

3/oi do perator=(val ue_type _val)

_lnpl::tenplate_op< wite_op>(_idx, _val);

3/oi do perator|=(val ue_type _val)

{ _lnpl::tenplate_ op<_or_op>(_idx,_ val) ;

/le tc.
h
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_RAImpl then performs the adua address calculation and then delegates further to
_AccessHelper:

tenplate<class_ RegTraits,c lass_ Platfornfraits,c |ass_ | ndexHol der>
cl ass_ RAI npl

L
publ i c:
typedeft ypenane_ RegTraits::value_type _Va T,

static_ ul_ addrCal c(_I ndexHol derc onst & i dx)

{
return_ Platfornlraits::address_hol der: : val ue()
+ _ RegTraits::address_hol der:: val ue()
+_idx.value()*s izeof (_RegTrait s::value_type);
}
static_ Val T_read(_I ndexHol derc onst& _i dx)
{
return_ AccessHel per<_Val T,
typenanme _ Pl atfo rmTraits: : processor_bus,
si zeof (_Val T)>
1. _read(_addrCal c(_i dx));
}

tenpl ate < _bi nopsf uncti on>
staticv oid_ op(_I ndexHol derc onst& _idx, _ValT_val)

{
_AccessHel per<_Val T,
typenane _ Pl at f or milr ait s: : processor _bus,
si zeof (_Val T) >
::tenplate_ op<function>(_val,_a ddrCalc(_idx));
}

h

_addrCalc is simple for the sample platform, but is a bit more cmplex in the general
case (see 8B.2.3.1), but all required information is in the traits classes that are ill
template parameters for _RAImpl .

Apart from the aldress calculation, _RAImpl simply delegates further to
_AccessHelper. The purpose of _AccessHelper s to separate the single hardware
accesses from the ones where the register's value type is larger than the @mnneding
bus and therefore multiple acesses are required. For the sample implementation on
an 8-bit platform any aacess to registers with more than one byte requires multiple
accesses, so the specializaion can be done on sizeof(value_type):

/l'g eneralc aset hatu sesaf or-Iloop

te npl ate<typename _ Val T,t ypenane _ BusTag, siz e_t_ s>
st ruct _ AccessHel per

{

static_ Val T_read(_ul_ addr)

{
uint8 tb uffer[_s];
for( uint8_t_ i=0;_ il =_s;+ +_i)

buffer[_i]=_ hwRead<_BusTag>::r( _addr+_i);

}
return* ((_Val T* )buffer);

}

tenpl ate < _bi nops _ func>

staticv oid_op(_Val T_val,_ ul_ addr)

Versionfor PDTR approval ball ot Page 137 of 189



Technical Report on C++ Performance PDTR 18015

{
for( uint8_t_ i=0;_ i! =_s;+ +_i)
_hwOp<_func, _ BusTag>
of(_addr+_i,( (uint8_t* Y& val)[_i]);
}
}

h

/Ih eret hes pecializationf ors ize==1
te npl ate<typenanme _ Val T,t ypenane _ BusTag>
st ruct _ AccessHel per< Val T, _ BusTag, 1>

{ static_ Val T_read(_ul_ addr)
return( _Val T) _hwRead<_BusTag>::r(_addr);
%enpl ate < _bi nops_ func>
staticv oid_op(_Val T_val,_ ul_ addr)
_hwOp<_func, _ BusTag>::f(_addr,( uint8_t)_val);
h }

For a more flexible platform, _AccessHelper must be specialized for ead valid pair
matching the size of the value type and the width of the device bus, with additional
specializaions for different endiannesses. To achieve that, _AccessHelper needs the
complete traits classes as template aguments.

The final separation is done on the procesor bus type: different access instructions
are necessry for the (memory mapped) data bus than for the I/O bus. This is done by
a specialization on _hwRead and _hwOp based on the bus.

B.8.14 Actual Accessl mplementation

The adual hardware acess method depends on the processor architedure and the
type of the bus where ahardware device is conneded. For the memory mapped case
normal C++ expressions together with some (completely machine-dependent) casts
can do the acces:

The general declaration:

te npl ate < typenanme _ BusTag>s truct_ hwRead;

te npl ate < _bi nops,t ypenane _ BusTag>s truct _hwOp;
The cast:

te npl ate < _binops_ op>s truct_ hwOp<_ op,h w_base: :data_bus>

{

staticv oidf (_ul_ addr,u int8_t_ rhs)

_hwOp_dat a<_op>
::f(*const _cast<uint8_ tv olatile *>
(reinterpret_cast<uint8_t *>(_addr)),
_rhs);
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The aldress (which is of integer type) is first cast to a pointer (to uint8_t

sample cae, in the more general case the value_type

in the

must be transferred as a further

template agument), and that pointer is then cast to a pointer to volatile to tell the
compiler not to make any assumptions on the memory cell. That cast done, the accss

isacomplished by a specialization of yet another helper class

/I'h elperc |assd eclaration
te npl ate < _bi nops>s truct_ hwOp_dat a;

/la ndones pecializationf ore acho perati on:

st ruct_ hwQp_dat a<_write_op>

{
staticv oidf (uint8_ tv olatile& |hs,u int8 _t_
_lhs=_ rhs;
}
3
st ruct _ hwQp_dat a<_or _op>
{
staticv oidf (uint8_ tv olatile& lhs,u int8 _t_
_Ihs| =_rhs;
}
3
st ruct _ hwQp_dat a<_and_op>
{
staticv oidf (uint8_ tv olatile& |hs,u int8 _t_
_Ihs&=_rhs;
}
étruct_ hwQp_dat a<_xor _op>
{
staticv oidf (uint8_ tv olatile& |hs,u int8 _t_
{
_Ihs™ =_rhs;
}
3

And for the read, the same @st sequenceis required:

st ruct _ hwRead<hw_base: : dat a_bus>

r hs)

r hs)

r hs)

r hs)

{

staticuint8_tr (_ulc onst&_ addr)

{

return
*const _cast<uint8_tv olatile*>
(reinterpret_cast<uint8_ t* >(_addr));

}

3

For registers that are attadhed to the 1/O bus, special machine instructions must be
generated. For this, some compiler specific extensions are necessary. The sample

implementation uses the asm extensions of GCC.

Using these extensions, the basic access functions can be defined:

inlineuint8_ti _io_rd(uint8_t_ port)

{

uint8_t_ ret;

asmvolatile( "in%0,%":" =r"( _ret):
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return_ret;

}
inlinevoidi _iow(uint8_t_ port,u int8_t_v al)
{
asmvolatile( "out% 0, 94" ::" i"( _port)y, "r"( _val));
}
inlinevoidi _io_and(uint8_t_ port,u int8_t _val)
{
uint8_t_ tnp;
asmvolatile( "in%O0,%\n\tand %0, %2\ n\to ut % 1, 90"
to=&rt( _tnp):tit( _port )" r"( _val));
}
inlinevoidi _io_or(uint8_t_ port,u int8_t_v al)
{
uint8_ t_ tnp;
asmvolatile( "in%0,%\n\tor%O0, %2\ n\tout %, %"
to=&rt( _tnp):tit( _port )" r"( _val));
}
inlinevoidi _io_xor(uint8_t_ port,u int8_t _val)
{
uint8_t_ tnp;
asmvolatile( "in%O0,%\n\teor% 0, %2\ n\to ut % 1, 90"
o=& " ( _tmp):t it ( _port )" r"( _val));
}

These basic functions can then be used to implement the specializaions for the 1/0
bus:

st ruct _ hwRead<hw _base: :i o_bus>

{ staticuint8_tr (_ulc onst&_ addr){r eturni _io_rd(_addr);}

}s,t ruct_ hwQp< wite_op,h w_base::io_bus>

{ staticv oidf (_ul_ addr,u int8_t_rhs){ i_io_w(_addr,_rhs);}
}s,t ruct_ hwQp<_or _op,h w_base::io_bus>

{ staticv oidf (_ul_ addr,u int8_t_rhs){ i_io_or(_addr,_ rhs);}
}s,t ruct_ hwQp<_and_op, h w_base::i o_bus>

{ staticv oidf (_ul_ addr,u int8_t_rhs){ i_io_and(_addr,_rhs); }
}s,t ruct_ hwQp<_xor_op,h w_base::io_bus>

i staticv oidf (_ul_ addr,u int8_t_rhs){ i_io_xor(_addr,_rhs); }

B.8.1.5 Usage and Over head
Using that implementation, the <hardware> interface @n be used as gecified:

nanespace

/I'm iddlel ayer( hardwarer egisterd esignators)
usi ngn amespace s td: : har dwar e;

ty pedefp latformtraitsl Obus;
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structM Mous:p latformtraits

typedefh w_base::data_busp rocessor_bus;

te npl ate<typenaneV al Type,s td::hardware::si ze_ta ddr>
structS taticReg:p ublicr egister_traits

{
typedefV al Typev al ue_type;
typedefs tatic_address<addr>a ddress_hold er;
enum
{

addr ess_node=hw _base::is_static

s

3

} //a nonynousn anmespace

/It est

intm ain()

registeru int8_tv ,i ;

regi ster_access<StaticReg<uint8 t,0 x23>, |GCous>portl;

i=p ortl; 11 1)

regi ster_access<StaticReg<uint8 t,0 x24>, |GCbhus>p ort?2;
port2 & =0 xaa; 11( 2)

regi ster_access<StaticReg<uint8 t,0 x25>, |GCbhus>p ort3;
port3=0 x17; 11( 3)

regi ster_access<StaticReg<uint8_t,0 xab>, Mvbus>ment,;
v=m ent; 11( 4)

menil & =0 x55; [1( 5)

menl=v ; [1( 6)

regi ster_buffer<StaticReg<uint8_t,0 x0a> Mbus>menBuf;
v=m enBuf[i]; 11 7)
menBuf [4] & =0 x03; //( 8)

returnQO;

}

The compiler output for this small program looks very different depending on the
optimization level. Without optimization, the generated code is horrible & none of
the many intermediate functions is inlined. The result is lots of function calls (and
related stadk handling).

With low optimization (-O1) the resulting code is essentially what one could exped:

(1) results in two machine instruction, one for the port read and one to store the result
in a separate register).

C++:
i =portl; [1( 1)

Asembler:
ba: 83b 5 in 24,0 x23 ; R24i su sedasa ccumul at or
5c: 48 2 f mov r20,r 24 ; r20i s' i'v ariable
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(2) results in four machine instructions, one register load and the in /and/out
sequence

C++:
port2 & =0 xaa; 11( 2)
Asembler:
5e: 8ae a Idi 24,0 xAA
60: 94b 5 in r25,0 x24
62: 982 3 and 25, r 24
64: 94b d out 0x24,r 25

(3) results in two machine instructions, one register load and the out instruction.

C++:
port3=0 x17; 11( 3)
Assembler:
66: 87e 1 Idi 24,0 x17
68: 85b d out 0x25,r 24

(4) results in two machine instruction, one accss to the memory and one register
move for the resulting v.

C++:
v =ment; e 4
Asembler:
6a: 8091ab00 Ids r2 4,0 x00AB
6e: 282 f mov r18,r 24
70: 3327 eor rto,r 19 ; superfluousnullingofR 19

(5) results in three machine instructions, again one real access to the memory (that
was declared asvolatile ), theand, and a store to the memory.

C++:
menil & =0 x55; [1( 5)

Asembler:
72: 809 1ab00 Ids r2 4,0 x00AB
76: 8575 andi r24,0 x55
78: 8093ab00 sts Ox00AB, r 24

(6) results in one machine instruction, the value of v that is gill in a register is gored
to the memory.

C++:
menl=v ; [1( 6)
Asembler:
7c: 2093ab00 sts Ox00AB,r 18

(7) takes a number of machine instructions, as the aldress calculation is in 16-bit,
which takes sveral instructions on an 8-bit procesor.

C++:
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v =menBuf[i]; 11 7)

Asembler:
80: 8ae 0 Idi r24,0 x0A ; loadingb asea ddressL SB
82: 90e 0 Idi r25,0 x00 ; loadingb asea ddress MSB
84: fo2 f mov r31,r 25 ; novet oaddressr egister
86: e82 f mov r30,r 24
88: e40 f add r30,r 20 ; addt hei ndex
8a: fi1 d adc r31,rl ; add0a s MSB
8c: 208 1 Id r18,z ; loadu singa ddressr egister

(8) finally takes six machine instructions, two for the move of the 16-bit base aldress
(Ox0a, till in the register), one for the add of the index, one for the load of the
memory value, one for the and and alast one for the store bad to the memory.

C++:
merBuf [4] & =0 x03; //( 8)

Asembler:
8e: fo2 f mov r31,r 25; ; baseaddresss tilli nR24/25
90: e82 f mov r30,r 24
92: 349 6 adiw r30,0 x04 ; addi ndex( asl1l 6-bitv al ue)
94: 808 1 Id 24,7 ; loadu singaddressr egister
96: 8370 andi r24,0 x03
98: 808 3 st Z,r 24 ; storeusingaddressr egister

The most annoying case is (8), as the base aldressand the index are both known at
compile-time, but the cmputation is done & run-time.

But with optimization one level higher (-O2) that is also solved:
(7) knows the base aldress from compile-time and comes down to four machine

instructions.

Assembler:
80: e92f mov r30,r 25 ; nove' i't oaddressr egister
82: ff2 7 eor r31,r 31; ; zeorM SBofa ddressr egister
84: 3a9 6 adiw r30,0 x0a ; add b asea ddress
86: 808 1 Id 24,7 ; loadu singaddressr egister

(8) comes down to threemachine instructions as the final address OxOe is completely
computed at compile-time and therefore does only one load, the and and the store.

Assembler:
88: 80910e00 Ids r24,0 x000E ; loadf inala ddress
8c: 8370 andi r24,0 x03
8e: 80930e00 sts Ox000E,r 24 ; storeusingR24asa ddress

So for this platform and for optimization level -O2 the goa of a non-overhead
implementation is readed.
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Appendix C: A <har dwar e>
| mplementation for the
<i ohw. h> Interface

The implementation of the basic <iohw.h> hardware register accessinterface on top
of the <hardware> interface is mainly straightforward. This sction provides an
example of how such an implementation can be atieved.

The purpose of using C++ & the lowest level is to take alvantage of compile-time
evaluation of template adeto yield objed code spedalized for specific hardware. For
a good implementation of the basic templates that perform the lowest-level hardware
access operations, this approach typically leads to code that maps diredly to machine
instructions as efficient as code produced by an expert programmer. Additionally, the
type safety of the C++ interfaceminimizes debuggng and errors.

The sample implementation presented here uses the sample <hardware>
implementation presented in 8B.8.

C.1 Implementation of the Basic Access Functions

The sample implementation here avoids the aeaion of unrecessary objeds and
instead generally passes ioreg-designaor arguments in the form of (properly typed)
null pointers. But it would also be possible to passthem as normal objeds, as long as
they contain o data members, as the cmpiler typicdly optimizes them away.
Though the null pointer is syntacticaly de-referenced in the acces functions, it is
never adually de-referenced, as the objeds do not contain any data members.

The accss functions are implemented as function templates on the ioreg-designaor,
which must be an instantiation of register_access

te npl at e < t ypenane _ RegAcc>
in linet ypenane _ RegAcc: : val ue_t ype
io rd(_RegAcc*_ reg)

returns tatic_cast <typenanme _ RegAcc: :valu e_type>(*_req);
}
te npl at e < t ypenane _ RegAcc>
inl'i nev oid
iow (_RegAcc*_ reg,t ypenane _ RegAcc: :val ue_ty pe_ val)

{

}

te npl at e < t ypenane _ RegAcc>

inl'i nev oid

io or (_RegAcc*_ reg,t ypenane _ RegAcc: :val ue_ty pe_ val)

* _reg=_ val,

* reg| =_val;

/le tc.
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The iord implementation calls the @nversion operator of register_access
explicitly by using astatic_cast , but thisisnot really necessary.

This can be used by providing a middle layer that is esentialy the same & for the
<hardware> interface & presented in the previous chapter:

ty pedefp latformtraitsl Obus;

te npl ate<typenaneV al Type,s ize_ta ddr>
structD evBReg:p ublicr egister_traits

{
typedefV al Typev al ue_type;
typedefs tatic_address<addr>a ddress_hold er;
enum

addr ess_node=hw_base::is_static,
access_node=hw_base: : random
devi ce_bus_wi dt h=hw_base: : devi ce8
s
3

re gi st er _access<Dev8Reg<uint8_t,0 x06>,1 GCbus >* myPortl=0;

The only difference to the middle layer of the <hardware> interfaceis that the final
designator is defined as a pointer (and initialized to null).

The device driver code itself refers only to functions named in the <iohw.h>
interface

uint8 tv al8;

val 8=i ord(nyPortl);/ /r eadsingler egister
iow (nyPort1,0 x9);/ /writesingler egister

C.2 Buffer Functions

The buffer functions are analogous to the single register functions. They are aso
implemented as function templates and their template agument must be a
instantiation of register_buffer

te npl at e < t ypename _ RegBuf>
inlinet ypenane _ RegBuf: :val ue_t ype
io rdbuf (_RegBuf*_ reg,i oindex_t_ idx)

return( *_reg)[_idx];
}
te npl at e < t ypenane _ RegBuf>
inl'i nev oid
io wbuf (_RegBuf*_ reg,i oindex_t_ idx,t ypenane _ RegBuf::value_type
_val)

(*_reg)[_idx]=_ wval,
te npl at e < t ypenane _ RegBuf>
inl'i nev oid
io orbuf (_RegBuf* _ reg,i oindex_t_ idx,t ypenane _ RegBuf::value_type
_val)

(*_reg)[_idx]|] =_val;
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Here, theiordbuf  implementation uses the @nversion operator of register_access
implicitly.

Again, the respedive middle layer is similar to the middle layer of the <hardware>
interface

structM Mous:p latformtraits

{
b

te npl ate<typenaneV al Type,s ize_ta ddr>
structD evBReg:p ublicr egister_traits; // asa bove

typedefh w_base::data_busp rocessor_bus;

re gi st er _buf f er<Dev8Reg<ui nt 16_t,0 x04>, M Mous >* nyBuf=0

And again, the devicedriver code uses only <iohw.h> functionality:

uint16_tb uffer[10];
uint8 tv al8;

for( ioindex_ti=0 il =10+ +i)
buffer[i]=i ordbuf(nyBuf,i );/ /r eadre gistera rray
i ow buf (nmyBuf,i ,b uffer[i]);/ /writere gistera rray

i oor buf (nmyBuf,v al 8, b uffer[i]);/ /o rre gistera rray

C.3 Group Functionality

Up to this point, the implementation of <iohw.h> has used only the interface of
<hardware> , not its implementation. However, this might not be possble for the
grouping functionality of <iohw.h> . The sample implementation here uses the
internal implementation of the <hardware> interface but it does not require ay
changes to that implementation.

While “normal” hardware register designators always use the wmbination of register
traits and platform traits together, for hardware register groups these ae separated.
The indired designators contain only the register traits, while the direct designators
contain the platform traits. Only through a @l to iogroup_map are they combined to
make afully usable designator. But when working with groups, the device driver
code syntadically uses the indired designators for the accesfunctions, so they need
to know which direct designator is currently mapped to them. And the acces
function must combine the address information from both designators to form the
final addressthat is aacessed.

The adual designators for indired groups must be an instantiation of the class
template _IOGroupRegister . Thisisjust atype holder for the used register traits and
the dired designator that can be mapped to this group:

tenplate<class_ RegTraits,c | ass_ G pBase>
st ruct_ |1 OG oupRegi ster{ };

The _GrpBase template agument must be an instantiation of a platform traits class
with a special address_holder  that provides a static value_. member that can be
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modified and the value()  function must also be static . That way, the class
_lOGroupRegister  does not need a pointer to keg the wnnedion to the mapped
dired designator. Such a pointer would introduce amajor overhead in spaceand time
for the hardware acceses. The implementation provides such an address holder
_BaseAddress as a dass template that can be used by the middle layer of an
application to define respedive platform traits:

tenmplate<int_ id>

st ruct _ BaseAddr ess

{

static_ulv alue(){r eturnvalue_; }
static_ ulv al ue_;

3

tenmplate<int_ id>

_ul_ BaseAddress<_id>::val ue_;

The _id template parameter serves to dfferentiate the different dired designators if
more than one is used in an application. Such an address holder can till be declared
as is_static in the traits where it is used, as it offers exadly the same interfaceas
"normal” compile-time static_address holders.

The acces functions of <iohw.h> must be redefined for indired designators, through
a set of overloads. For the purpose of implementation, the overload set presented here
uses the _RAImpl helper classpresented in §B.8.1.3*:

tenplate<class_ RegTraits,c | ass_ G pBase>

inlinet ypenane _ RegTraits::value_type

io rd(_1 O&G oupRegi ster<_RegTraits, _ G pBase> _req)
{

}

tenplate<class_ RegTraits,c | ass_ G pBase>

inl'i nev oid

io w (_1 O& oupRegi ster<_RegTraits, _ G pBase> _reg,
typenane _ RegTraits::value_type_ val)

{

}

/le tc.

return_ RAInmpl <_RegTraits,_ G pBase>:: _re ad(0);

_RAInmpl <_RegTraits,_ GpBase>: :tenplate _op< wite_op>(0,_ val);

Internally _RAImpl uses _GrpBase::address_holder::value() , Which is exadly
the interfaceprovided by _BaseAddress .

The implementation for the buffer functions is quite similar to that of the basic acess
functions:. an empty class template _IOGroupBuffer IS defined to provide the
necessary type information, and that is used to instantiate _RAImpl and call its
member functions diredly:

tenplate<class_ RegTraits,c | ass_ G pBase>
st ruct_ |1 OG oupBuffer{ }

tenplate<class_ RegTraits,c | ass_ G pBase>

* The _RAImpl template has been dightly modified in this implementation for typing convenience: the _IndexHolder
template parameter isassumed to have adefault argument of _ldxHolder
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inlinet ypenane _ RegTraits::value_type

io rdbuf (_I OG oupBuffer< RegTraits, G pBase> _reg,
i oi ndex_t_ i)

{

}

tenplate<class_ RegTraits,c | ass_ G pBase>

inl'i nev oid

io w buf (_I OG oupBuffer<_RegTraits,_ G pBase> _reg,
typenanme _ RegTraits::val ue_type_ val,
i oi ndex_t_ i)

return_ RAInpl <_RegTraits,_ GpBase>::_read(_i);

{
}

_RAInmpl <_RegTraits,_ G pBase>: :tenplate _op< wite_op>(_i,_ val);

The middle layer in this implementation is similar to the middle layer for the
<hardware> interface
/It heplatformtraitst obeusedf org roup desi gnators

template<intb aseld>
structD ynMM:p latformtraits

{
typedef _ BaseAddr ess<basel d>a ddress_hold er;
typedefh w_base::data_busp rocessor_bus;
enum {a ddress_npde=hw _base::is_static}

3

/It hed esignators

ty pedef D ynMW1> D evG oupT,;

_1 OGr oupRegi st er <Dev8Reg<ui nt8_t,0 x00>, D evGro upT>d evConfi g;
_1 OGr oupBuf f er <Dev8Reg<ui nt8_t,0 x04>,D evGo upT>d evDat a;

DevG oupT * devG oup=0 ;

devConfig and devData are the indirect designators to be used as arguments to the
access functions. devGroup oOr DevGroupT is not redly a dired designator; it is
merely a placeholder to define the group. The adual direct designators must provide
the functionality to be used in the group functions of <iohw.h> , which are
iogroup_acquire() , iogroup_release() and iogroup_map() . Therefore the red
dired designators must provide the member functionsinit() ~ and release()  and the
data member value that has the same type @ the value_. member of the aldress
holder for the group. Not every dired designator needs non-trivial initialization and
release functions, so a helper class is provided for convenience to save defining
unnecessary functions:

st ruct_ Enpt yG oup
{
voidi nit(){ }
voidr el ease(){}

h

Using that, the middle layer can provide the dired designators for the group:
structD ev1lGoupT:_ EnptyQ oup

{
voidi nit(){v alue=0 x0020; }
hw_base: : address_t ypev al ue;

} devlG oup;
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st ructD ev2G oupT:_ EnptyQ oup

{
voidi nit(){v alue=0 x0120; }
hw_base: : address_t ypev al ue;

} dev2G oup;

Of coursg, for red life gplicaions the init)  function will typicaly be abit more
complex.

Based on that interface the implementation of the group functionsis easy:

template<class_ G p>
inlinev oidi ogroup_acquire(_Gp&_9)

_g.init();

template<class_ G p>
inlinev oidi ogroup_rel ease(_Gp&_0)

{

}

te npl ate<class_ G pBase,c lass_ G p>

inlinev oidi ogroup_nmap(_GrpBase* ,_ Gpconst & Q)
{

}

_g.rel ease();

_GrpBase: : address_hol der::value_=_ g.val ue;

The device driver code again uses only <iohw.h> functionality:

uint8 tg et_dev_data(void)

{
i ow (devConfig,0 x33);

returni ordbuf (devData, 3 );
}

n. ..

io group_acqui r e(devlG oup);

/IR eadd ataf romdevicel

io group_nmap(devG oup,d evlG oup);
uint8 td 1=g et_dev_data();

io group_rel ease(devlG oup);

io group_acqui r e( dev2G oup);

/IR eaddataf romdevice?2

io group_nmap(devG oup,d ev2G oup);
uint8 td 2=g et_dev_data();

io group_rel ease(dev2G oup);

C.4 Remarks

The implementation here does not completely conform to the <iohw.h> interfacein
WDTR 18037 That definition requires a value type for the acces functions of
unsigned int and a seoond set of acass functions with the suffix " with a value
type of unsigned long . That is not only unnecessarily constraining (in general, the
iohw interface allows transfers of non-integer number types as well as any POD
struct  type), but also introduces a mgjor overhead for many real-life devices where
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registers are only 8 bitswide. Therefore this implementation allows for generic value
types.
In general, using C++ for the implementation of <iohw.h> introduces no overhea,

but allows for a common implementation of the <iohw.h> interface and the more
generic <hardware> interface

The implementation summarized here is not the only possible C++ implementation.
Complete wde for this implementation and some dternatives can be found on the
WG21 web site, www.dkuugdk/jtcl/sc22/wg21
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Appendix D: Timing Code

D.1 Measuring the Overhead of Class Operations
Thisis the sample program discussd in 2.3.2 and following.

/*
Si npl e/ nai ve measurenentst ogivear ough ideaoft her elative
costo ff acilitiesr elatedt o OOCP.
Thisc ouldb ef ooled/foiledbyc | evero ptimizersa ndhby
cachee ffects.
Runatl eastt hreet imest oensuret hat resultsarer epeatable.
Test s:
virtualf unction
gl obalf unctionc alledi ndirectly
nonvi rtualm enberf unction
gl obalf unction
inlinemenberf unction
nacro
1stb rancho fM I
2ndb rancho fM |
callt hroughvirtualb ase
callo fv irtualb asef unction
dynam c c ast
two- | eveld ynam cc ast
typei d()
callt hroughp ointert omenber
call -by-reference
cal | - by-val ue
passa sp ointert of unction
passa sf unctiono bject
noty et:
co-variantr eturn
Thec osto ft hel oopi sn otmeasurableat thisp recision
seei nlinet ests
Byd efaultd o1 000000i terationst oc out
1sto ptionala rgument:n unbero fi teratio ns
2ndo ptionala rgument:t argetf ilename
*/

/Il intb ody(inti ){r eturni *(i+1)*(i+2); }
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cl ass X {
intx ;
statici nts t;
publ i c:
virtualv oidf (inta );
voidg (inta );
staticv oidh (inta ),
voidk (inti ){x +=i;} [1i nline

h

st ruct S{
intx ;
k

intg | ob=0;

externvoidf (S*p ,i nta);
externvoidg (S*p ,i nta ),
externv oidh (inta );

ty pedefv oid( *PF) (S*p ,i nta );
PFp[10]={g,f};

/I'i nlinevoidk (S*p,i ){p ->x+=i;}
#defineK(p,i) ((p)->x+=(i))

st ructT{
constc har*s ;
doubl eft;

T(constc har*s s,d oublet t):s (ss),t (ttH{ }
TO:s (0),t (0)§

h
st ruct A{
intx ;
virtualv oidf (int)=0
voidg (int);
h
st ructB{
intx x;
virtualv oidf f(int)=0;
voidg g(int);
h
structC:A ,B {
voidf (int);
voidf f(int);
h
structC C:A ,B{
voidf (int);
voidf f(int);
h

voidA::g(inti ) {x +=i ;
voidB::gg(inti ) {x x+=i;
voidC::f(inti ) {x +=i ;
voidC::ff(inti ) {x x+=i;
voidCC :f(inti ) {x +=i ;
voidCC :ff(inti ){x x+=i;

e e e e
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tenplate<classT ,c lassT2>i nlineT*c ast(T* p, T 2*q)

gl ob++;
returnd ynani c_cast <T*>(q);
}
structC 2:v irtualA{ /In ote:v irtualb ase
h
structC 3:v irtualA {
h
structD:C 2,C3{ //n ote:v irtualb ase
voidf (int);
h
voidD::f(inti ) {x +=i; }
st ructP{
intx ;
inty ;
h

voidby ref(P&a){a .x++a .y++; }
voidby val(Pa) {a .x++a .y++ 1}

te npl ate<classF ,c lassV>i nlinevoidoper(F f,Vvv al){f (val); }

structF O {
voido perator( )( inti ){g lob+=i; }
h

#include<stdlib.h> //o r< cstdlib>
#i ncl ude < i ost ream>

#i ncl ude < fstreane

#i nclude<tine. h> /lo r< ctine>
#i ncl ude < vect or>

#i ncl ude < typei nf o>

usingn anespaces td;

te nplate<classT >i nlineT*t i(T*p )

{

if( typeid(p)= =t ypeid(int*))

p++;

returnp;
}
intmain(inta rgc,c har*a rgv[])
{

inti ; /1l oopv ariableheref ort hebe nefito fn on-conform ng

/1c onpilers

inth=( 1<a rgc)?a toi(argv[1l]):1 0000000; //n unbero f
/11 terations
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of streamt arget;

ostreanto p=& cout;

if( 2<a rgc){ [lp laceoutputi nfile
target.open(argv[2]);
op =& target;

}

ostream&out=* op;

/10 utputc ommandf ord ocunentation:
for( i=0 ;i<a rgc;+ +i)

out< <argv[i]< <"" ;
out< <endl;

X*p x=n ewX;
X X;
S*p s=n ewsS;
S s;

vector<T>v ;
clock tt=c lock();

if( t= =clock_t(-1)) {
cerr< <" sorry,n oc lock"< <e ndl;

exit(1);
}
for( i=0 ;i<n i+
px->f (1);
v. push_back(T("virtualp x->f(1) ",c lock() - t));
t=c lock();
for( i=0 ;i<n i+
p[1] (ps,1 );
v. push_back(T("ptr-to-fctp [1] (ps, 1) ",c lock() - t));
t=c lock();
for( i=0 ;i<n i+
x. (1),
v. push_back(T("virtualx .f(1) ",c lock() - t));
t=c lock();
for( i=0 ;i<n i+
p[1] (&s,1 );
v. push_back(T("ptr-to-fctp [1] (&s, 1) ",c lock() - t));
t=c lock();
for( i=0 ;i<n i+
px->g(1);
v. push_back( T("menberp x->g(1) ",c lock() - t));
t=c lock();
for( i=0 ;i<n i+
g(ps,1 )
v. push_back(T("gl obalg (ps,1) ",c lock() - t));
t=c lock();
for( i=0 ;i<n i+
X. g(1);
v. push_back( T("menberx .g(1) ",c lock() - t));
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t=c lock();
for( i=0 ;i<n i+
9(&s,1 );
v. push_back(T("gl obalg (&s,1) ",c lock() - t));

t=c lock();
for( i=0 ;i<n i+
X h(1);
v. push_back(T("staticX::h(1)

(9]

lock() - t));

t=c 1ock();

for( i=0 ;i<n i+
h(1);

v. push_back(T("gl obalh (1)

(9]

lock() - t));

t=c lock();
for( i=0 ;i<n i+
px->k(1);
v. push_back(T("inlinep x->k(1) ",c lock() - t));

t=c lock();
for( i=0 ;i<n i+
K(ps,1 );
v. push_back( T("macro K (ps, 1) ",c lock() - t));

t=c lock();
for( i=0 ;i<n i+
x. k(1);
v. push_back(T("inlinex .k(1) ",c lock() - t));

t=c lock();

for( i=0 ;i<n i+
K(&s,1 );

v. push_back( T("macro K (&s, 1)

(9]

lock() - t));

Cpc=n e
A*p a=p c;
B*p b=p ¢
t=c lock();
for( i=0 ;i<n i+

pc->g(i);
v. push_back( T("basel menberp c->g(i) ",c lock() - t));

t=c lock();
for( i=0 ;i<n i+
pc->gg(i);
v. push_back( T("base2 menberp c->gg(i) ",c lock() - t));

t=c lock();
for( i=0 ;i<n i+
pa->f (i);
v. push_back(T("baselvirtualp a->f (i)

(@]

lock() - t));

t=c lock();
for( i=0 ;i<n i+
pb->ff(i);
v. push_back(T("base2v irtualp b->ff(i)

(@]

lock() - t));
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t=c lock();
for( i=0 ;i<n i+
cast(pa,p c);
v. push_back(T("baseld own-castc ast(pa,pc) ",c lock()-t ));
t=c lock();
for( i=0 ;i<n i+

cast (pb, p c);
v. push_back( T("base2d own-castc ast(pb,pc) ",c lock()-t ));

t=c lock();
for( i=0 ;i<n i+
cast (pc,p a);
v. push_back( T("baselu p-castc ast(pc, pa) ",c lock()-t ));
t=c lock();
for( i=0 ;i<n i+
cast (pc,p b);
v. push_back( T("base2 u p-castc ast(pc, pb) ",c lock()-t ));
t=c lock();
for( i=0 ;i<n i+

cast (pb, p a);
v. push_back(T("base2c ross-castc ast(pb,pa)" ,c lock()-t ));

CC*p cc=n ewCC;
pa=p cc;
pb=p cc;

t=c lock();
for( i=0 ;i<n i+
cast(pa,p cc);
v. push_back(T("baseld own-cast2c ast(pa,pcc)",c lock()-t ));

t=c lock();
for( i=0 ;i<n i+
cast (pb,p cc);
v. push_back(T("base2d own-cast cast(pb,pcc)",c lock()-t ));

t=c lock();
for( i=0 ;i<n i+
cast (pcc,p a);
v. push_back( T("baselu p-castc ast(pcc, pa) ",c lock()-t ));
t=c lock();
for( i=0 ;i<n i+

cast (pcc,p b);
v. push_back( T("base2u p-cast2c ast(pcc,pb) ",c lock()-t ));

t=c lock();
for( i=0 ;i<n i+
cast (pb,p a);
v. push_back( T("base2c ross-cast2c ast(pa, pb)",c lock()-t ));

t=c lock();
for( i=0 ;i<n i+
cast (pa,p b);
v. push_back( T("baselc ross-cast2c ast(pb, pa)",c lock()-t ));
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pa=p d;
t=c lock();
for( i=0 ;i<n i+
pd->g(i);
v. push_back( T("vbase menberp d->gg(i) ",c lock() - t));
t=c lock();
for( i=0 ;i<n i+
pa->f (i);
v. push_back(T("vbasev irtualp a->f (i) ",c lock() - t));
t=c lock();
for( i=0 ;i<n i+
cast (pa,p d);
v. push_back( T("vbase d own-castc ast(pa,pd) ",c lock()-t ));
t=c lock();
for( i=0 ;i<n i+
cast(pd,p a);
v. push_back( T("vbase u p-castc ast(pd, pa) ",c lock()-t ));
t=c lock();
for( i=0 ;i<n i+
ti (pa);
v. push_back( T("vbaset ypei d(pa) ",c lock() - t));
t=c lock();
for( i=0 ;i<n i+
ti (pd);
v. push_back( T("vbaset ypei d(pd) ",c lock()- t));
void( A:*p nf)(int)=& A :f; [Ivi 1t ual
t=c lock();
for( i=0 ;i<n i+
(pa->*pnf) (i);
v. push_back(T("pnfv irtual( pa->*pnf) (i) ",c lock() - t));
pnf=& A :g; //no n virtual
t=c lock();
for( i=0 ;i<n i+
(pa->*pnf) (i); _
v. push_back(T("pnf( pa->*pnf) (i) ",c lock() - t));
Ppp;
t=c lock();
for( i=0 ;i<n i+
by_ref (pp);
v. push_back(T("cal b y_ref(pp) ", clock() - t));
t=c lock();
for( i=0 ;i<n i+
by_val (pp);
v. push_back(T("cal Ib y_val (pp) ",c lock() - t));
Versionfor PDTR approval ball ot Page 157 of 189



Technical Report on C++ Performance PDTR 18015

FOf ct;
t=c lock();
for( i=0 ;i<n i+

oper(h,g lob);
v. push_back(T("callp tr-to-fcto per(h,glob)",c lock() - t));

t=c lock();
for( i=0 ;i<n i+
oper(fct,g | ob);
v. push_back(T("cal If ct-objo per(fct,glob) ",c lock() - t));

if( clock()==clock_t(-1)) {
cerr< <" sorry,c locko verflow'< <endl ;
exit(2);

out< <endl;
for( i=0 ;i<v .Size();i ++)
out< <v[i].s<<": \t"
<<v [i].t*( doubl e(1000000)/n)/CLOCKS PER SEC
<<"m s"< <end|

if( argc<2 ){ /11 fo utputi sg oing toc out
cout< <" pressanyc haractert of inis h"'< <endl;
charc;
cin >>c; /1t op lacateWindows consol e mode
}
returnO ;
}
int X :st=0;
voidX::f(inta ) {x +=a;}
voidX::g(inta ) {x +=a;}
voidX::h(inta ) {s t+ =a;}

voidf (S*p,i nta ){p ->x+=a;}
voidg (S*p ,i nta ){p ->x+=a;
voidh (inta ) {glob+=a;
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D.2 Measuring Template Overheads
Thisisthe sample cde discussed in §2.5.1.

2
Testp rogramtogivear oughmeasureof" tempgateb | oat."

Ift hemacro" DI FFERENT"i sd efinedatc onpil e-ti me,t his
programcreatesal ist<T*>f orl O0different typeso fT.

Otherwi se,i tc reates1 00i nstanceso fal ist ofas ingle
pointert ype.

A capablec onpilerw illr ecogniset hatt hebi naryr epresentation
of| ist<T*>i st hesanef orallTa ndi tn eed retainonlya
singlec opyo ft hei nstantiationc odei nt he program

#i nclude<|ist>

cl ass xO0;
cl ass x1;
cl ass x2;
cl ass x3;
cl ass x4;
cl ass x5;
cl ass x6;
cl ass x7;
cl ass x8;
cl ass x9;
cl assx 10;
cl assx 11;
cl assx 12;
cl assx 13;
cl assx 14;
cl assx 15;
cl assx 16;
cl assx 17;
cl assx 18;
cl assx 19;
cl assx 20;
cl assx 21;
cl assx 22;
cl assx 23;
cl ass x 24;
cl ass x 25;
cl assx 26;
cl assx 27;
cl assx 28;
cl assx 29;
cl ass x 30;
cl assx 31;
cl assx 32;
cl assx 33;
cl ass x 34;
cl assx 35;
cl ass x 36;
cl assx 37;
cl assx 38;
cl assx 39;
cl ass x 40;
cl assx 41;
cl assx 42;
cl assx 43;
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cl
cl
cl

cl
cl
cl
cl
cl

cl
cl
cl
cl
cl

cl
cl
cl
cl
cl

cl
cl
cl
cl
cl
cl

cl
cl
cl
cl
cl

cl
cl
cl
cl
cl

cl
cl
cl
cl
cl

cl
cl
cl
cl
cl
cl

cl
cl

in

#i

ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass X
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x
ass x

tm ai

44;
45;
46;
47,
48;
49;
50;
51;
52;
53;
54,
55;
56;
57,
58;
59;
60;
61;
62;
63;
64;
65;
66;
67;
68;
69;
70;
71;
72;
73;
74;
75;
76;
77
78;
79;
80;
81,
82;
83;
84,
85;
86;
87,
88;
89;
90;
91,
92;
93;
94,
95;
96;
97,
98;
99;

n()

fd efinedDI FFERENT

std::list<x0*>
std::list<x1*>
std::list<x2*>
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vO;
vl;
v2;

/lc reatel 00l istsof differentp ointert ypes
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std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
std::
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St <x3*> v3;
st <x4*> v4;
st <x5*> vb;
St <x6*> v6;
St <xX7*> V7,
st <x8*> v§;
st <x9*> v9;

st <x10*>v
st<x1l1l*>v
st <x12*>v
st <x13*>v
st <x14*>v
st <x15*>v
st <x16*>v
st <x17*>v
st <x18*>v
st <x19*>v
st <x20*>v
st <x21*>v
St <x22*>v
st <x23*>v
st <x24*>v
st <x25*>v
St <x26*>v
St <x27*>v
st <x28*>v
St <x29*>v
st <x30*>v
st <x31*>v
st <x32*>v
St <x33*>v
St <x34*>v
St <x35*>v
St <x36*>v
St <x37*>v
St <x38*>v
St <x39*>v

10;
11;
12;
13;
14;
15;
16;
17;
18;
19;
20;
21;
22;
23;
24;
25;
26;
27;
28;
29;
30;
31;
32;
33;
34;
35;
36;
37;
38;
39;

st <x40*>v 40;
st <x41*>v 41;
st <x42*>v 42;
st <x43*>v 43;
st <x44*>v 44;
St <x45*>v 45;
St <x46*>v 46;
st <x47*>v 47;
St <x48*>v 48;
st <x49*>v 49;

st <x50*>v
st <x51*>v
st <x52*>v
st <x53*>v
st <x54*>v
st <x55*>v
st <x56*>v
st <x57*>v
st <x58*>v
st <x59*>v
st <x60*>v
st <x61*>v
St <x62*>v
st <x63*>v
St <x64*>v
St <x65*>v

50;
51;
52;
53;
54;
55;
56;
57;
58;
59;
60;
61;
62;
63;
64;
65;
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std::list<x66*>v 66;
std::list<x67*>v 67;
std::list<x68*>v 68;
std::list<x69*>v 69;
std::list<x70*>v 70;
std::list<x71*>v 71;
std::list<x72*>v 72;
std::list<x73*>v 73;
std::list<x74*>v 74;
std::list<x75*>v 75;
std::list<x76*>v 76;
std::list<x77*>v 77,
std::list<x78*>v 78;
std::list<x79*>v 79;
std:: list<x80*>v 80;
std::list<x81*>v 81;
std::list<x82*>v 82;
std::list<x83*>v 83;
std::list<x84*>v 84;
std::list<x85*>v 85;
std::list<x86*>v 86;
std::list<x87*>v 87;
std::list<x88*>v 88;
std::list<x89*>v 89;
std::list<x90*>v 90;
std::list<x91*>v 91;
std::list<x92*>v 92;
std::list<x93*>v 93;
std::list<x94*>v 94;
std::list<x95*>v 95;
std::list<x96*>v 96;
std::list<x97*>v 97;
std::list<x98*>v 98;
std::list<x99*>v 99;
#el se /lc reatel 00i nstanceso f a singlel ist<T*>t ype
std::list<x0*> vO;
std::list<x0*> vli;
std::list<x0*> v2;
std::list<x0*> v3;
std::list<x0*> v4,;
std::list<x0*> vb5;
std::list<x0*> v6;
std::list<x0*> v7;
std::list<x0*> v8;
std::list<x0*> v9;
std::list<x0*>v 10;
std::list<x0*>v 11;
std::list<x0*>v 12;
std::list<x0*>v 13;
std::list<x0*>v 14;
std::list<x0*>v 15;
std::list<x0*>v 16;
std::list<x0*>v 17;
std::list<x0*>v 18;
std::list<x0*>v 19;
std::list<x0*>v 20;
std::list<x0*>v 21;
std::list<x0*>v 22;
std::list<x0*>v 23;
std::list<x0*>v 24;
std::list<x0*>v 25;
std::list<x0*>v 26;
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std::list<x0*>v 27;
std::list<x0*>v 28;
std::list<x0*>v 29;
std::list<x0*>v 30;
std::list<x0*>v 31;
std::list<x0*>v 32;
std::list<x0*>v 33;
std::list<x0*>v 34;
std::list<x0*>v 35;
std::list<x0*>v 36;
std::list<x0*>v 37;
std::list<x0*>v 38;
std::list<x0*>v 39;
std::list<x0*>v 40;
std::list<x0*>v 41;
std::list<x0*>v 42;
std::list<x0*>v 43;
std::list<x0*>v 44,
std::list<x0*>v 45;
std::list<x0*>v 46;
std::list<x0*>v 47,
std::list<x0*>v 48;
std::list<x0*>v 49;
std::list<x0*>v 50;
std::list<x0*>v 51;
std::list<x0*>v 52;
std::list<x0*>v 53;
std::list<x0*>v 54;
std::list<x0*>v 55;
std::list<x0*>v 56;
std::list<x0*>v 57;
std::list<x0*>v 58;
std::list<x0*>v 59;
std::list<x0*>v 60;
std::list<x0*>v 61;
std::list<x0*>v 62;
std::list<x0*>v 63;
std::list<x0*>v 64;
std::list<x0*>v 65;
std::list<x0*>v 66;
std::list<x0*>v 67,
std::list<x0*>v 68;
std::list<x0*>v 69;
std::list<x0*>v 70;
std::list<x0*>v 71;
std::list<x0*>v 72;
std::list<x0*>v 73;
std::list<x0*>v 74;
std::list<x0*>v 75;
std::list<x0*>v 76;
std::list<x0*>v 77;
std::list<x0*>v 78;
std::list<x0*>v 79;
std::list<x0*>v 80;
std::list<x0*>v 81;
std::list<x0*>v 82;
std::list<x0*>v 83;
std::list<x0*>v 84;
std::list<x0*>v 85;
std::list<x0*>v 86;
std::list<x0*>v 87;
std::list<x0*>v 88;
std::list<x0*>v 89;
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std::list<x0*>v 90;
std::list<x0*>v 91;
std::list<x0*>v 92;
std::list<x0*>v 93;
std::list<x0*>v 94;
std::list<x0*>v 95;
std::list<x0*>v 96;
std::list<x0*>v 97;
std::list<x0*>v 98;
std::list<x0*>v 99;
#endi f
returnO;

}
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D.3 The Stepanov Abstraction Penalty Benchmark
Thisisthe sample cde discussed in 2.3.1.

/* KAl's version of Stepanov Benchmark -- Version 1.2

Version 1.2 -- removed some special code for GNU systems that
GNU complained about without -O

To verify how efficiently C++ (and in particular STL) is compiled by
the present day compilers, | composed a little benchmark. It outputs
13 numbers. In the ideal world these numbers should be the same. In
the real world, however, ...

The final number printed by the benchmark is a geometric mean of the
performance degradation factors of individual tests. It claims to
represent the factor by which you will be punished by your

compiler if you attempt to use C++ data abstraction features. | call

this number "Abstraction Penalty."

As with any benchmark it is hard to prove such a claim; some people
told me that it does not represent typical C++ usage. It is, however,

a noteworthy fact that majority of the people who so object are
responsible for C++ compilers with disproportionatly large Abstraction
Penalty.

The structure of the benchmark is really quite simple. It adds 2000
doubles in an array 25000 times. It does it in 13 different ways that
introduce more and more abstract ways of doing it:

0 - uses simple Fortran-like for loop.

1- 12 use STL style accumulate template function with plus function object.
1,3,5,7,9, 11 use doubles.

2,4,6, 8,10, 12 use Double - double wrapped in a class.

1, 2 - use regular pointers.

3, 4 - use pointers wrapped in a class.

5, 6 - use pointers wrapped in a reverse-iterator adaptor.

7, 8 - use wrapped pointers wrapped in a reverse-iterator adaptor.

9, 10 - use pointers wrapped in a reverse-iterator adaptor wrapped in a

reverse-iterator adaptor.
11, 12 - use wrapped pointers wrapped in a reverse-iterator adaptor wrapped in a
reverse-iterator adaptor.

All the operators on Double and different pointer-like classes are

declared inline. The only thing that is really measured is the penalty for data
abstraction. While templates are used, they do not cause any performance degradation.
They are used only to simplify the code.

Since many of you are interested in the C++ performance issues, |
decided to post the benchmark here. | would appreciate if you run it
and (if possible) send me the results indicating what you have
compiled it with (CPU, clock rate, compiler, optimization level). It

is self contained and written so that it could be compiled even with
those compilers that at present cannot compile STL at all.

It takes a fairly long time to run - on a really slow machine it might take a full

hour. (For those of you who want to run it faster - give it a command line argument
that specifies the number of

iterations. The default is 25000, but it gives an accurate predictions even with 500
or a thousand.)

Alex Stepanov

*

#include <stddef.h>
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#include <stdio.h>
#include <time.h>

#include <math.h>
#include <stdlib.h>

template <class T>

inline int operator!=(const T& X, const T& y) {
return !(x ==y);

}

struct Double {
double value;
Double() {}
Double(const double& x) : value(x) {}
operator double() { return value; }

J

inline Double operator+(const Double& x, const Double& y) {

return Double(x.value + y.value);

}

struct double_pointer {
double* current;
double_pointer() {}
double_pointer(double* x) : current(x) {}
double& operator*() const { return *current; }
double_pointer& operator++() {
++current;
return *this;

double_pointer operator++(int) {
double_pointer tmp = *this;
++*this;
return tmp;

double_pointer& operator--() {
--current;
return *this;

double_pointer operator--(int) {
double_pointer t mp = *this;
--*this;
return tmp;

inline int operator==(const double_pointer& X,

const double_pointer& y) {

return x.current == y.current;

}

struct Double_pointer {
Double* current;
Double_pointer() {}
Double_pointer(Double* x) : current(x) {}
Double& operator*() const { return *current; }
Double_pointer& operator++() {
++current;
return *this;

Double_pointer operator++(int) {
Double_pointer tmp = *this;
++*this;
return tmp;

Double_pointer& operator--() {
--current;
return *this;

Double_pointer operator--(int) {
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Double_pointer tmp = *this;
--*this;
return tmp;

inline int operator==(const Double_pointer& x,
const Double_pointer& y) {
return x.current == y.current;

}

template <class RandomAccesslterator, class T>
struct reverse_iterator {
RandomAccesslterator current;
reverse_iterator(RandomAccesslterator x) : current(x) {}
T& operator*() const {
RandomAccesslterator tmp = current;
return *(--tmp);

reverse_iterator<RandomAccesslterator, T>& operator++() {
--current;
return *this;
}
reverse_iterator<RandomAccesslterator, T> operator++(int) {
reverse_iterator<RandomAccesslterator, T> tmp = *this;

++*this;
return tmp;
}
reverse_iterator<RandomAccesslterator, T>& operator--() {
++current;
return *this;
}

reverse_iterator<RandomAccesslterator, T> operator--(int) {
reverse_iterator<RandomAccesslterator, T> tmp = *this;
--*this;
return  tmp;

J

template <class RandomAccesslterator, class T>
inline
int operator==(const reverse_iterator<RandomAccesslterator, T>& X,
const reverse_iterator<RandomAccesslterator, T>& y) {
return x.current == y.current;

}
struct {
double operator()(const double& x, const double& y) {
return x +y;

}

Double operator()(const Double& x, const Double& y) {
return x +y;

}

} plus;
template <class lterator, class Number>
Number accumulate(lterator first, Iterator last, Number result) {

while (first != last) result = plus(result, *first++);
return result;

}

int iterations = 25000;
#define SIZE 2000

int current_test = 0;
double result_times[20];

void summarize() {
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printf("\ntest  absolute additions  ratio with\n");
printf("number  time per second  testO\n\n");
inti;
double millions = (double(SIZE) * iterations)/1000000.;
for (i = 0; i < current_test; ++i)
printf("%2i %b5.2fsec  %5.2fM %.2f\n",
l
result_timesi 1,
millions/result_times]i],
result_timesli)/result_times[0]);
double gmean_times = 0.;
double total_absolute_times = 0.; // sam added 12/05/95
double gmean_rate = 0.;
double gmean_ratio = 0.;
for (i = 0; i < current_test; ++i) {
total_absolute_times += result_times][i]; // sam added 12/05/95
gmean_times += log(result_timesl[i]);
gmean_rate += log(millions/result_timesi]);
gmean_ratio += log(result_times[i]/result_times[0]);

printf(‘mean: %5.2fsec  %5.2fM %.2f\n",
exp(gmean_times/current_test),
exp(gmean_rate/current_test),
exp(gmean_ratio/current_test));
printf("\nTotal absolute time: %.2f sec\n",total_absolute_times);//sam added 12/05/95
printf("\nAbstraction Penalty: %.2f\n\n", exp(gmean_ratio/current_test));
}

clock_t start_time, end_time;
inline void start_timer() { start_time = clock(); }

inline double timer() {

end_time = clock();

return (end_time - start_time)/double(CLOCKS_PER_SEC);
}

const double init_value = 3.;

double data[SIZE];
Double Data[SIZE];

inline void check(double result) {
if (result != SIZE * init_value) printf("test %i failed\n", current_test);
}

void testO(double* first, double* last) {
start_timer();
for(inti = 0; i < iterations; ++i) {
double result = 0;
for (int n = 0; n < last - first; ++n) result += first[n];
check(result);

result_times[current_test++] = timer();

}

template <class lterator, class T>
void test(Iterator first, Iterator last, T zero) {
inti;
start_timer();
for(i = 0; i < iterations; ++i)
check(double(accumulate(first, last, zero)));
result_times[current_test++] = timer();

}

template <class lterator, class T>
void fill(Iterator first, Iterator last, T value) {
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while (first |= last) *first++ = value;

}

doubled =0.;

Double D=0

typedef double* dp;

dp dpb = data;

dp dpe = data + SIZE;

typedef Double* Dp;

Dp Dpb = Data;

Dp Dpe = Data + SIZE;

typedef double_pointer dP;

dP dPb(dpb);

dP dPe(dpe);

typedef Double_pointer DP;

DP DPb(Dpb);

DP DPe(Dpe);

typedef reverse_iterator<dp, double> rdp;
rdp rdpb(dpe);

rdp rdpe(dpb);

typedef reverse_iterator<Dp, Double> rDp;
rDp rDpb(Dpe);

rDp rDpe(Dpb);

typedef reverse_iterator<dP, double> rdP;
rdP rdPb(dPe);

rdP rdPe(dPb);

typedef reverse_iterator<DP, Double> rDP;
rDP rDPb(DPe);

rDP rDPe(DPb);

typedef reverse_iterator<rdp, double> rrdp;
rrdp rrdpb(rdpe);

rrdp rrdpe(rdpb);

typedef reverse_iterator<rDp, Double> rrDp;
rrDp rrDpb(rDpe);

rrDp rrDpe(rDpb);

typedef reverse_iterator<rdP, double> rrdP;
rrdP rrdPb(rdPe);

rrdP rrdPe(rdPb);

typedef reverse_iterator<rDP, Double> rrDP;
rrDP rrDPb(rDPe);

rrDP rrDPe(rDPb);

int main(int argv, char** argc) {
if (argv > 1) iterations = atoi(argc[1]);
fill(dpb, dpe, double(init_value));
fill(Dpb, Dpe, Double(init_value));
testO(dpb, dpe);
test(dpb, dpe, d);
test(Dpb, Dpe, D);
test(dPb, dPe, d);
test(DPb, DPe, D);
test(rdpb, rdpe, d);
test(rDpb, rDpe, D);
test(rdPb, rdPe, d);
test(rDPb, rDPe, D);
test(rrdpb, rrdpe, d);
test(rrDpb, rrDpe, D);
test(rrdPb, rrdPe, d);
test(rrDPb, rrDPe, D);
summarize();
return O;
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D.4 Comparing Function Objects to Function Pointers

2.6 mentions that optimizers work better with function objeds than function pointers.
This program attempts to measure any benefit.

Il
/I This is a program to measure the relative efficiency of gsort vs std::sort
/I and of function objects vs function pointers.

1

/I Optional Arguments: number of iterations to repeat
1 size of array of doubles to sort

1 name of output file

1

/I In all cases, an array of doubles is filled with random numbers.

/I This array is sorted in ascending order, then the same random numbers are
I reloaded into the array and sorted again. Repeat ad libitum.

1

1

/l What is measured:

/I These measurements operate on an array of doubles

/I 1. Using gsort + user-defined comparison function to sort array

/I 2. Using std::sort + a function pointer (not a function object)

/I 3. Using std::sort + user-defined function object, out-of-line code

/I 4. Using std::sort + user-defined function object, inline code

/I 5. Using std::sort + std::less

/I 6. Using std::sort + native operator <

1

/I These measurements operate on an std::vector of doubles

/l instead of a primitive array

1

/I 7. Using std::sort + std::less

/I 8. Using std::sort + native operator <

/I 9. Using std::sort + function pointer from test 2

1

1

/I Since gsort's comparison function must return int (less than 0, O, greater than 0)
/I and std::sort's must return a bool, it is not possible to test them with each
/I other's comparator.

Il
/I struct to hold identifier and elapsed time
struct T {

const char* s;

double t;

T(const char* ss, double tt) : s(ss), t(tt) {}
y T() : s(0), 10) {

/] -=-=mmme- helper functions
/I gsort passes void * arguments to its comparison function,
/I which must return negative, 0, or positive value

int
less_than_function1( const void * Ihs, const void * rhs )
{
int retcode = 0;
if( *(const double *) lhs < *(const double *) rhs ) retcode = -1;
if( *(const double *) lhs > *(const double *) rhs ) retcode = 1;
return retcode;
}
/I std::sort, on the other hand, needs a comparator that returns true or false
bool

less_than_function2( const double Ihs, const double rhs )

if( Ihs < rhs ) return true;
else return false;
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/I the comparison operator in the following functor is defined out of line

struct less_than_functor

J

bool

less_than_functor::operator()( const double& lhs, const double& rhs ) const

}

// the comparison operator in the following functor is defined inline

bool operator()( const double& Ihs, const double& rhs ) const;

return( lhs < rhs? true : false );

struct inline_less_than_functor

bool operator()( const double& Ihs, const double& rhs ) const

return( lhs < rhs? true : false );

I

#include <vector>
#include <functional>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <ctime>
#include <stdlib.h>

using namespace std;

int main(int argc, char* argv[])

{
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inti;

int iterations = (1 < argc) ? atoi(argv[1]) : 1000000; // number of

int tablesize = (2 < argc) ? atoi(argv[2])

ofstream target;

ostream* op = &cout;

if (3 < argc) { // place output in file
target.open(argv[3]);
op = &target;

ostream& out = *op;

/l output command for documentation:
for (i =0; i < argc; ++i)

out << argvli] <<"";
out << endl;

vector<T> v, /l holds elapsed time of the tests

/I seed the random number generator
srand( clock() );

clock_t t = clock();

if (t == clock_t(-1))

{

cerr << "sorry, no clock" << endl;
exit(1);

: 1000000; // size of
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// initialize the table to sort. we use the same table for all tests,

/I in case one randomly-generated table might require more work than
/I another to sort

double * master_table = new double[tablesize];

for(int n = 0; n < tablesize; ++n)

{
master_table[n] = static_cast<double>( rand() );
}
double * table = new double[tablesize]; /I working copy

/I here is where the timing starts

/I TEST 1: gsort with a C-style comparison function
copy(master_table, master_table+tablesize, table);
t = clock();

for (i = 0; i < iterations; ++i)

gsort( table, tablesize, sizeof(double), less_than_functionl );
copy(master_table, master_table+tablesize, table);

v.push_back(T("gsort array with comparison functionl ", clock() - t));

/ITEST 2: std::sort with function pointer
copy(master_table, master_table+tablesize, table);

t = clock();
for (i = 0; i < iterations; ++i)
{

sort( table, table + tablesize, less_than_function2 );
copy(master_table, master_table+tablesize, table);

v.push_back(T("sort array with function pointer ", clock() - t) );

/I TEST 3: std::sort with out-of-line functor
copy(master_table, master_table+tablesize, table);

t = clock();
for (i = 0; i < iterations; ++i)
{

sort( table, table + tablesize, less_than_functor() );
copy(master_table, master_table+tablesize, table);

v.push_back(T("sort array with user-supplied functor ", clock() - t));

/I TEST 4: std::sort with inline functor
copy(master_table, master_table+tablesize, table);
t = clock();

for (i = 0; i < iterations; ++i)

sort( table, table + tablesize, inline_less_than_functor() );
copy(master_table, master_table+tablesize, table);

v.push_back(T("sort array with user-supplied inline functor ", clock() - t));

/ITEST 5: std::sort with std::<less> functor

copy( master_table, master_table+tablesize, table );
t = clock();

for (i = 0; i < iterations; ++i)

sort( table, table + tablesize, less<double>() );
copy(master_table, master_table+tablesize, table);

v.push_back(T("sort array with standard functor ", clock() - 1));
/ITEST 6: std::sort using native operator <

copy( master_table, master_table+tablesize, table );

t = clock();

for (i = 0; i < iterations; ++i)

sort( table, table + tablesize );
copy(master_table, master_table+tablesize, table);
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v.push_back(T("sort array with native < operator ", clock() - 1));

/ITEST 7: std::sort with std::less functor,
/I on a vector rather than primitive array
vector<double> v_table( master_table, master_table+tablesize );

t = clock();
for (i = 0; i < iterations; ++i)
{

sort( v_table.begin(), v_table.end(), less<double>() );
copy( master_table, master_table+tablesize, v_table.begin() );

v.push_back(T("sort vector with standard functor ", clock() - t));

/ITEST 8: std::sort vector using native operator <
v_table.assign( master_table, master_table+tablesize );
t = clock();

for (i = 0; i < iterations; ++i)

sort( v_table.begin(), v_table.end() );
copy( master_table, master_table+tablesize, v_table.begin() );

v.push_back(T("sort vector with native < operator ", clock() - t));

/ITEST 9: std::sort vector using function pointer from test 2
v_table.assign( master_table, master_table+tablesize );

t = clock();

for (i = 0; i < iterations; ++i)

sort( v_table.begin(), v_table.end(), less_than_function2 );
copy( master_table, master_table+tablesize, v_table.begin() );

v.push_back(T("sort vector with function pointer ", clock() - t));

if (clock() == clock_t(-1))
{

cerr << "sorry, clock overflow" <<endl;
exit(2);
}

// output results
out << endl;
for (i =0; i < v.size(); i++)
out << v[i].s << " :\t"
<< V[i].t /CLOCKS_PER_SEC
<< " seconds" << endl;
delete[] table;
return O;

Versionfor PDTR approval ball ot Page 173 0of 189



Technical Report on C++ Performance PDTR 18015

D.5 Measuring the Cost of Synchronized I/O

§82.6 discusses using sync_with_stdio(false) to improve 1/O performance This
program attempts to measure any benefit.

/*

Test program to
(1) compare the performance of classic iostreams,
standard iostreams, and C-style stdio for output, and
(2) test any overhead of sync_with_stdio(true). Standard
iostreams by default are synchronized with stdio streams;
the opposite was true of classic iostreams.

optional command line argument:
- how many numbers to output (default 1,000,000)
- name of output file (default cout)

When compiling, define CLASSIC or STDIO to enable
those options; otherwise the default is to use
standard iostreams.
*/

#if defined (STDIO)
#include <stdio.h>

#elif defined (CLASSIC)
#include <iostream.h>
#include <fstream.h>

#else
#include <iostream> /I use standard iostreams
#include <fstream>
using namespace std;

#endif

#include <vector>
#include <ctime>

Il
/I struct to hold identifier and elapsed time
struct T {

const char* s;

double t;

T(const char* ss, double tt) : s(ss), t(tt) {}
T() = s(0), 10) {

int main (int argc, char *argv[])
{
constint n = (1 < argc) ? atoi(argv[1]) : 1000000; // number of
/I iterations

#if defined( STDIO )
FILE * target;
target = stdout;
if (2 < argc) { // place output in file
target = fopen( argv[2], "w");
}

#else /I for both iostreams libs
ofstream target;
ostream* op = &cout;
if (2 < argc) { // place output in file
target.open(argv(2]);
op = &target;
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ostream& out = *op;
#endif

int i; /I for-loop variable

// output command for documentation:
#if defined( STDIO )
for (i=0; i < argc; ++i)
fprintf( target, "%s ", argvl[i]) ;
fprintf( target, "\n");
#else
for (i =0; i < argc; ++i)
out << argvli] <<"";
out << "\n";
#endif

std::vector<T>v; /I holds elapsed time of the tests

#if defined( STDIO)
#if defined (CLASSIC)
/I non-synchronized /O is the default
#else
out.sync_with_stdio (false); /I must be called before any output
#endif
#endif

/I seed the random number generator
srand( clock() );

clock_t t = clock();

if (t == clock_t(-1))

{
#if defined( STDIO )
fprintf( stderr, "sorry, no clock\n");
#else
cerr << "sorry, no clock\n";
#endif

}

exit(1);

#if defined( STDIO )
t = clock();
for (i =0;i!=n; ++i)
fprintf ( target, "%d ", i);

v.push_back(T("output integers to stdio ", clock() -
1));

t = clock();
for (i =0;i!=n; ++i)

fprintf ( target, "%x ", i);

v.push_back(T("output hex integers to stdio ", clock() -

1);
if (clock() == clock_t(-1))
fprintf ( stderr, "sorry, clock overflow\n" );
exit(2);
}
// output results
fprintf ( stderr, "\n");

for (i = 0; i<v.size(); i++)
fprintf( stderr, "%s :\t%f seconds\n", v[i].s, Vv[i].t /CLOCKS_PER_SEC

#else
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t = clock();
for (i =0;i!=n; ++i)
{
out<<i<<''

v.push_back(T("output integers (sync = false)

out << hex;
t = clock();
for (i =0;i!=n; ++i)
{
out<<i<<''

v.push_back(T("output hex integers (sync = false)

#if defined (CLASSIC)
out.sync_with_stdio();
#else

out.sync_with_stdio (true);
#endif

out << dec;

t = clock();

for (i =0;i!=n; ++i)
{

out<<i<<'t

v.push_back(T("output integers (sync = true)

out << hex;
t = clock();
for (i =0;i!=n; ++i)
{
out<<i<<''

v.push_back(T("output hex integers (sync = true)
if (clock() == clock_t(-1))

cerr << "sorry, clock overflow\n";
exit(2);

// output results
cerr << endl;
for (i =0; i <v.size(); i++)
cerr << v[il.s << " :\t"
<< V[i].t /CLOCKS_PER_SEC
<< " seconds" << endl;
#endif

return O;
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", clock() - t));

", clock() - t));

/I synchronize -- no argument needed

", clock() - t));

", clock() - t));
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Appendix E: Bibliography

These references may serve & a starting point for finding more information about
programming for performance

[BIBREF-1] Bentley, Jon Louis

Writing Efficient Programs
Prentice-Hall, Inc., 1982

Unfortunately out of print, but a dassic caalogue of tedniques that can be
used to optimize the space and time consumed by an application (often by
trading one resourceto minimize use of the other). Because this book predates
the pubic release of C++, code examples are given in Pascd.

“T he rules that we will study increase dficiency by making changes to a
program that often deaease program clarity, moduarity, and robustness
When this coding style is apdied indiscriminately throughou a large system
(asit often has been), it usualy increases efficiency sightly but leads to late
software that is full of bugs and impossble to maintain. For these reasons,
tedhniques at this levd have arned the name of 'hacks.... But writing
efficient code need na remain the domain of hackas. The purpose of this
bodk isto present work at thisleve as a set of engineeing techniques.”

[BIBREF-2] Bulka, Dov, and David Mayhew

Efficient C++: Performance Programming Tedniques
Addison-Wesley, 2000

Contains many spedfic low-level techniques for improving time performance,
with measurements to illustrate their effectiveness.

"If used properly, C++ can yied software systems exhibiting nd just
acceptable performance but superior software performance”

[BIBREF-3] C++ ABI Group
C++ ABI for Itanium (Draft)
http://www.codesourcery.com/cxx-abi/abi.html

Although this document contains procesor-specific material for the Itanium
64-bit Application Binary Interface, it is intended as a generic spedficaion, to
be usable by C++ implementations on a variety of architedures. It discusses
implementation details of virtual table layout, exception handling support
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structures, Run-Time Type Information, name mangling, stack unwinding, and
template instantiation.

[BIBREF-4] Cusumano, Michael A., and David B. Y offie

What Netscape Learned from CrossPlatform Software Development
Communications of the ACM, October 1999

Faster run-time performance brings commercial advantage, sometimes enough
to outweigh other considerations sich as portability and maintainability (an
argument also advanced in the Bulka-Mayhew book [BIBREF-2]).

[BIBREF-5] de Dinechin, Christophe
C++ Exception Handling

|EEE Concurrency, October-Deaember 2000
http://www.computer.org/concurrency/pd2000/p4072abs.htm

Reporting error conditions using exception handling can produce more robust
programs, but EH imposes conditions on the generated object code which can
negatively affect performance. The aiuthor analyzes the impad of stadk-based
or table-based EH tedhniques and describes a third approach which leaves
scope for compiler optimizaions even in the presence of exceptions.

I [BIBREF-6] Embedded C++ Tedhnicd Committee

Embedded C++ Language Spedfication, Rationale, & Programming Guidelines
http://www.caravan.net/ec2plus

EC++ is a subset of Standard C++ that excludes sme significant fedures of
the C++ programming language, including:

» exception handling (EH)

* run-timetype information (RTTI)
o templates

* multiple inheritance (MI)

* namespaces

[BIBREF-7]  Glass Robert L

Software Runaways: L esons L earned from Massve Software Projed Failures
PrenticeHall PTR, 1998

Written from a management perspedive rather than a technical one, this book
makes the point that a major reason why some software projeds have been
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classified as massive failures is for failing to meet their requirements for
performance.

“Of all the tecdhndogy problems noted earlier, the most dominart one in our
own findings in this bodk is that performanceis a frequent cause of failure. A
fairly large number of our runaway projects were real-time in naure, and it
was not uncomnon to find that the projed could na achieve the resporse
times andor functiond performance times demanded by the original
requirements.”

[BIBREF-§] Gorlen, Keith E., Sanford M. Orlow, and Perry S. Plexico

Data Abstraction and Objed Oriented Programmingin C++
NIH 1990

Based on the Smalltalk model of objea orientation, the “NIH ClassLibrary”,
also known as the “OOPS Library”, was one of the ealiest Objed Oriented
libraries for C++. As there were no “standard” classes in the ealy days of
C++, and because the NIHCL was freely usable because it had been funded by
the US Government, it had a strong influence on design styles in C++ in
subsequent yeas.

[BIBREF-9] Henrikson, Mats, and Erik Nyquist.

Industrial Strength C++: Rules and Recommendations
PrenticeHall PTR, 1997

Coding standards for C++, with some discussion on performance apeds that
influenced them.

[BIBREF-10Q] Hewlett-Padkard Corp.
CXperf User's Guide
http://docs.hp.com/hpux/onlinedocs/B6323-96001/B6323-96001.html

Vendors of development tools often provide guidance on programming for
maximum performance This is one of such documents available.

"This guide describes the CXperf Performance Analyzer, an interactive run-
time performance andysis tod for programs compiled with HP ANS C (c89),
ANS C++ (aCC), Fortran 90(f90), and HP Parallel 32-bit Fortran 77 (f77)
compilers. This guide helps you prepare your programs for profiling, run the
programs, and andyze the resulting performance data.”
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[BIBREF-11]  Knuth, Donald E.

The Art of Computer Programming, Volume 1, Reisaued 3rd Edition
Addison-Wesley

Fundamental Algorithms [1997
Semi-numerical Algorithms [1999
Sorting and Seaching [1999

The definitive work on issues of algorithmic efficiency.

[BIBREF-12] Koenig, A., and B. Stroustrup

Exception Handling for C++ (revised)
Proceadings of the 1990Usenix C++ Conference, pp149176, San Francisco, April
1990

This paper discusses the two approades to low-overhead exception handling.

[BIBREF-13] Koenig, Andrew, and Barbara E. Moo

Performance: Myths, M easurements, and Morals
The Journal of Objed-Oriented Programming

Part 1. Myths [Oct ‘99
Part 2. Even Easy Meaurements Are Hard [Nov/Dec*99|
Part 3: Quadratic Behavior Will Get You If You Dont Watch Out [Jan ‘00|
Part 4. How Might We Speed Up a Simple Program [Feb *0Q]
Part 5: How Not to Measure Exeaution Time [Mar/Apr ‘00|
Part 6: Useful Measurements—Finally [May ‘0Q]
Part 7. Detailed Measurements of a Small Program [Jun *0Q]
Part 8: Experimentsin Optimization [Jul/Aug 00Q]
Part 9: Optimizaions and Anomalies [Sep ‘00
Part 10: Morals [Oct ‘00|

Becaise of the interadion of many fadors, measuring the run-time
performance of a program can be surprisingly difficult.

“The most important way to oltain good prformance is to use good
algorithms.”
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[BIBREF-14]  Lajoie, Joseé

" Exception Handling: Behind the Scenes.”
(Included in C++ Gems, edited by Stanley B. Lippman)
SIGS Reference Library, 1996

A brief overview of the C++ language feaures which support exception
handling, and of the underlying mechanisms necessary to suppat these
fedures.

[BIBREF-15]  Lakos, John

L arge-Scale C++ Software Design
Addison-Wesley, 1996

Scalability is the main focus of this book, but scaling upto large systems
inevitably requires performance issues to be aldresed. This book predates
the extensive use of templates in the Standard Library.

[BIBREF-16] Levine, JohnR.

Linkers& Loaders
Morgan Kaufmann Publishers, 2000

This book explains the mechanisms which enable static and dynamic linking
to create exeautable programs from multiple translation units.

[BIBREF-17] Lippman, Stanley B.
Insidethe C++ Objed Model

Explains typicd implementations and overheads of various C++ language
feaures, such as multiple inheritance and virtual functions. A good in-depth
look at the internals of typical implementations.

[BIBREF-18] Liu, Yanhong A., and Gustavo Gomez

Automatic Accurate Cost-Bound Analysisfor High-Level Languages
|EEE Transadions on Computers, Vol. 50, No. 12, Decamber 2001

This paper describes a language-independent approach to assigning cost
parameters to various language oonstructs, then through gatic analysis and
transformations automaticaly calculating the st bounds of whole programs.
Example programs in this article ae written in a subset of Scheme, not C++.
The aticle discusses how to obtain cost bounds in terms of costs of language
primitives, though it does not redly discuss how to obtain such costs.
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However, it includes a list of references to ather resources discussing how to
perform respedive measurements for different hardware achitedures and
programming languages.

“It is particularly important for many apgications, such as real-time systems
and embedded systems, to be able to predict accurate time bound and space
bound automatically and efficiently and it is particularly desirable to be able
to doso for high-leved languags.”

[BIBREF-19] Meyers, Scott

Effedive C++: 50 Spedfic Waysto Improve Your Programs and Design
Seoond Edition, Addison-Wesley, 1997.

More Effedive C++: 35 New Waysto Improve Your Programs and Designs
Addison-Wesley, 1995

Effedive STL: 50 Spedfic Waysto Improve Your Use of the Standard Template
Library
Addison-Wesley, 2001

In keeping with the philosophy of the Standard Library, this book carefully
documents the performance implications of different choices in design and
coding, such as whether to use std::map::operator(] or
std::map::insert

“The fact that function pointer parameters inhibit inlining explains an
observation that longtime C programmners often find hard to believe C++'s
sort virtualy always embarrasses C's gsort when it comes to speed. Sue,
C++ has function ard class templates to instantiate and funny-looking
operator()  functions to invoke while C makes a simple function call, but all
that C++ 'overhead is absorbed duing compilation... It's easy to verify that
when comparing function objeds andreal functions as algorithm parameters,
there'san atstraction bonus.”

[BIBREF-20]  Mitchell, Mark

Type-Based Alias Analysis
Dr. Dobbs' Journal, October 200Q

Some techniques for writing source @de that is easier for a compiler to
optimize

“ Although C++ is often criticized as being too dow for high-performance
apgications, ... C++ can actually enalde compil ers to create ade that is even
faster thanthe C equivalent.”
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| [BIBREF-21]  Moss Darren G.
Embedded Systems Conference Proceealings

Efficient C/C++ Coding Tedhniques

Boston, 2001
http://www.esconline.com/db_area/01boston/304.pdf

The objedive of this entire treatment is to determine if the speed and size
disadvantages of C/C++ can e minimzed for a range of
compil er/microprocesor platforms. This gudy resoundy [sic] says: yes. The
assmbly output of comnon C/C++ constructs demonstrate that the rred
seledion d coding tedhniques does guide the compiler to produce dficient
code.

[BIBREF-22] Musser, David R., Gillmer J. Derge, and Atul Saini

STL T utorial and Reference Guide, Semnd Edition: C++ Programming with the
Standard Template Library
Addison-Wesley, 2001

Among the tutorial material and example wde is a dhapter describing a class
framework for timing generic algorithms,

I [BIBREF-23]  Noble, James, and Charles Weir

Small Memory Software: Patternsfor Systemswith Limited M emory
Addison-Wesley, 2001

A book of design patterns illustrating a number of strategies for coping with
memory constraints.

“But what is small memory software? Memory size, like riches or beauty, is
always relative Whether a paticular amourt of memory is snall or large
depends on the requirements the software shoud med, on the underlying
software and hadware architedure, and onmuch else. A weather-calculation
program on avast computer may be just as constrained by memory limits as a
word-procesor running on amobile phore, or an embedded apgication on a
smart card. Therefore:

Small memory software is any software that doesn’t have as much memory as
youd like”
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[BIBREF-24] Predhelt, Lutz

Technical Opinion: Comparing Java . C/C++ Efficiency Differences to
Interpersonal Differences
Communications of the ACM, October 1999

This article compares the memory footprint and run-time performance of 40
implementations of the same program, written in C++, C, and Java. The
difference between individual programmers was more significant than the
difference between languages.

“The importance of an efficient technical infrastructure (such as
languagy/compiler, operating system, or even hadware) is often vastly
overestimated compared to the importance of a good pogram design and a
eoonamical programming style.”

[BIBREF-25]  Quiroz, César A.
Embedded Systems Conference Proceealings

Using C++ Efficiently In Embedded Applicaions

San Jose, CA, Nov. 1998
http://esconline.com/db_area/98fall/pdf/401.pdf

[BIBREF-26]  Saks, Dan
C++ Theory and Practice

C/C++ Users Jdurnal
Standard C++ as aHigh-Level Language? [Nov ‘99
Replacing Charader Arrays with Strings, Part 1 [Jan *0Q]
Replacing Charader Arrays with Strings, Part 2 [Feb‘Q]

These aticles are part of a series on migrating a C program to use the greater
abstraction and encgpsulation available in C++. The run-time and exeautable
size ae measured as more C++ fedures are alded, such as gandard strings,
|OStreams, and containers.

“ A seaningly small change in a string dgorithm [such as reserving space for
string dda, or erasing the data as an addtional preliminary step,] might
producea surprisingly large dhange in program execaitiontime.”

The @nclusion is that you should “program at the highest level of abstradion
that you can afford”.
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[BIBREF-27]  Saks, Dan
Embedded Systems Conference Procealings

Reducing Run-Time Overhead in C++ Programs

San Francisco, March 2002
http://www.esconline.com/db_area/02sf/405.pdf

Representing and Manipulating Hardware in Standard C and C++

San Francisco, March 2002
http://www.esconline.com/db_area/02sf/465.pdf

Programming Pointers

Embedded Systems Programming
Placing Datainto ROM [May 1999
Placing Datainto ROM with Standard C [Nov. 1998]
Static vs. Dynamic Initializaion [Dec 1993
Ensuring Static Initialization in C++ [March 1999

[BIBREF-28]  Schilling, Jonathan

Optimizing Away C++ Exception Handling
ACM SIGPLAN Notices, August 1998

This article discusses ways to measure the overhea, if any, of the exception
handling mechanisms. A common implementation of EH incurs no run-time
penalty unless an exception is adually thrown, but a a cost of greder datic
data space ad some interference with compiler optimizations. By identifying
sedions of code in which exceptions cannot possbly be thrown, these @sts
can be reduced.

“T his optimization produces modest but useful gains on some exsting C++
code, but produces very significant size and speed gans on code that uses
empty excetion spedfications, avoiding otherwise serious performance
losses.”
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[BIBREF-29] Stepanov, Alex
The Standard Template Library

Byte Magazine, October 1995 also at
http://www.byte.com/art/9510/sec12/art3.htm

The originator of the Standard Template Library discusses the emphasis on
efficiency which motivated its design.

[H]ow do you know that a generic algorithm is efficient? An algorithm is
called relativedy dficient if it's as efficient as a nongeneric vasion written
in the same languagg, andit's called alsolutely efficient if it's as efficient as a
nongeneric asembly languag vesion.

For many yers, | tried to achieve relative efficiency in more advanced
languags (e.g., Ada ard Scheme) but failed. My generic vesions of even
simple algorithms were not able to compete with bult-in primitives. But in
C++ | was finally able to na only accomplish relative efficiency but come
very dose to the more ambitious god of absolute dficiency. To verify this, |
spent courtless hous looking & the assembly code generated by different
compil ers on dfferent architedures.

| found that efficiency and generality were nat mutually exdusive In fact,
guite the revese is true. If a comporent is not efficient enough it usually
means that it's not abstract enough This is because dficiency and
abstractnessboth require a clean, orthogona design.

[BIBREF-30] Stroustrup, Bjarne

The C++ Programming Language, Spedal 3" Edition
Addison-Wesley, 2000

This definitive work from the language’'s author has been extensively revised
to present Standard C++.

[BIBREF-31] Stroustrup, Bjarne

The Design and Evolution of C++
Addison-Wesley, 1994

The aedor of C++ discusses the design objedives that shaped the
development of the language, especially the need for efficiency.

“T he imnediate cuse for the inclusion of inline functions ... was a projed
that couldn't afford function call overhead for some dasss involved in
real-time processing. For classesto be useful in that apgication, crossng the
protedion barier hadto befree [..]
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Ove the yars, considerations alongthese lines grew into the C++ rule that it
was not sufficient to provide a feature, it hadto be provided in an affordabe
form. Most definitely, affordable was ®en as meaning 'affordable on
hardware @mnon among dvdopers as opposed to 'affordade to
researchers with high-end equipment’ or 'affordalde in a coupe of years when
hardware will be cheaper'.”

[BIBREF-32] Stroustrup, Bjarne

Learning Standard C++ asa New Language
C/C++ Users Dburnal, May 1999

http://www.research.att.com/~bs/papers.html
http://www.research.att.com/~bs/cuj_code.html

This paper compares a few examples of simple C++ programs written in a
modern style using the standard library to traditional C-style solutions. It
argues briefly that lesons from these simple examples are relevant to large
programs. More generally, it argues for a use of C++ a a higher-level
language that relies on abstradion to provide elegance without loss of
efficiency compared to lower-level styles.

“1 was appdled to find examples where my test programs ran twice as fast in
the C++ style compared to the C style on ore system and ony half asfast on
anaher. ... Better-optimized libraries may be the easiest way to improve both
the percdved and atua performance of Sandard C++.  Compiler
implementers work hard to eliminate minor performance penalties compared
with ather compilers. | conjedure that the scope for improvementsis larger in
the standad library implementations.”

[BIBREF-33]  Sutter, Herb

Exceptional C++
Addison-Wesley, 200Q

This book includes a long discussion on minimizing compile-time
dependencies using compiler firewalls (the PIMPL idiom), and how to
compensate for the spaceand run-time @nsequences.

[BIBREF-34]  Tribolet, Chuck, and John Palmer

Embedded Systems Conference Proceealings
available on CD from http://www.esconline.com
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Embedded C and C++ Compiler Evaluation Methodology

Fall 1999
http://www.esconline.com/db_area/99fall/443.pdf

“Be aggessve abou trying compiler options. The compil ers each have many
options, and it is important to arive at the best set of the options for each
compiler.... A thoroughtweaking o compiler options will frequently generate
an improvement on the order of 30% ove aninitial decent set of options. If
theinitial set istruly abysmal, the improvement could be in excessof 100%.”

[BIBREF-35]  Veldhuizen, Todd

Five compilation modelsfor C++ templates
Proceadings of the 2000Workshop on C++ Template Programming

http://www.oonumerics.org/tmpwO00

This paper describes a work in progress on a new C++ compiler. Type
analysis is removed from the compiler and replaced with a type system library,
which istreated as urce code by the mmpiler.

“By making smple dhanges to the behavior of the partial evaluator, a wide
range of compilation models is achieved, each with a dstinct trade-off of
compile-time, code size, and exeation sped.... This approach may solve
sevaal serious problems in compiling C++: it achieves sparate @mmpil ation
of templates, allows template wde to be distributed in binary form by
deferring template instantiation until run-time, and reduces the wde bloat
associated with templates.”

[BIBREF-36]  Vollmann, Detlef

Exception Handling Alternatives
Published by ACCU — Overload, 1ssies 30 and 31 (February 1999

http://www.accu.org/c++sig/public/Overload.html
http://www.vollmann.ch/en/pubs/cpp-excpt-alt.html

This article shows me pros and cons of the C++ exception handling
mechanism and outlines sveral possible alternative goproacdes.
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[BIBREF-37]  Williams, Stephen

Embedded Programming with C++
Originally published in the Proceedings of the Third USENIX Conference on Objed-
Oriented Tedhnologies and Systems, 1997

http://www.usenix.org/publications/library/proceedings\
/coots97/williams.html

Describes experience in programming board-level components in C++,
including a library of minimal run-time support functions portable to any
board.

“We to this day face people telling ws that C++ generates inefficient code that
cannd possbly be practical for embedded systems where speed matters. The
criticismthat C++ leads to bad exeaitable awde is ndiculous, but at the same
time accurate. Poor style or hahts can in fact lead to awful results. On the
other hand a skilled C++ programmner can write programs that match or
exced the qudity of equivalent C programs written by equdly skilled C
programirers.

The devdopment cyde of embedded software does not easly lend itself to the
trial-and-error style of programming and @&buggng, so a stubban C++
compil er that catches as many arors as possble at compil e-time significantly
reduces the dependence on run-time debuggng, exeatable run-time suppat
and compil /downloadtest cydes.

This saves untold hous at the test bench, not to mention strain on PROM
sockds.”
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