
Doc. No.: X3J16/95-0215
WG21/ N0815

Date: December 2, 1995
Project: Programming Language C++
Reply To: Richard K. Wilhelm

Strategic Technology Resources
rwilhelm@str.com

Clause 21 (Strings Library) Issues List
Revision 11

Revision History
Version 1 - January 30, 1995: Distributed in pre-Austin mailing.
Version 2 - March 6, 1995: Distributed at Austin meeting.
Version 3 - March 24, 1995: Distributed in post-Austin mailing. Several issues added. Several
issues updated to reflect decisions at Austin meeting.
Version 4 - May 19, 1995: Distributed in pre-Monetery mailing.
Version 5 - July 9, 1995: Distributed at the Monterey meeting. Includes many issues added from
public comments.
Version 6 - July 11, 1995: Distributed at the Monterey meeting. Added no new issues from
previous version. Included issues prepared for formal vote. Added solutions for issues 8, 21,31,
38, 69, 71. Made only changes to reflect the decisions of the string sub-group, correct working
paper text and to correct typographical errors.
Version 7 - July 27, 1995: Distributed in the post-Monterey mailing. Reflects the resolutions and
discussions of the Monterey meeting.
Version 8 - September 24, 1995: Distributed in the pre-Tokyo mailing. Some new issues added.
Version 9 - November 2, 1995: Distributed at the Tokyo meeting. Added issue 79. Added
solutions for issues: 29, 30, 61, 62, and 63.
Version 10 - November 8, 1995: Distributed at the Tokyo meeting. Contains resolutions for issues
to be closed by a vote.
Version 11 - December 2, 1995: Distributed in the post-Tokyo mailing. Updated issues closed in
Tokyo. Added several new issues.

Introduction
This document is a summary of the issues identified in Clause 21. For each issue the status, a
short description, and pointers to relevant reflector messages and papers are given. This
evolving document will serve as a basis of discussion and historical record for Strings issues and
as a foundation of proposals for resolving specific issues.

For clarity, active issues are seperated from issues recently closed. Closed issues are retained for
one revision of the paper to serve as a record of recent resolutions. Subsequenly, they will be
removed from the paper for brevity. Any issue which has been removed will include the
document number of the final paper in which it was included.

Active Issues
Issue Number: 21-014
Title: Argument order for copy() is incorrect.
Section: 21.1.1.8.7 [lib.string::copy]

Clause 21 (Strings Library) Issues List: Rev. 11 - 95-215=N0815

2

Status: active
Description:

In private email, John Dlugosz wrote:
“In copy() the arguments are in a different order than on other functions. I
suppose this was to provide for a default on pos. However, if someone does
specify both he will be likely to get them backwards and the compiler will not
catch this. I feel it is a point of usability that is not worth the default argument.
Provide two forms of copy() instead:
copy (dest, pos, len);
copy (dest,len);

Note: The current interface to copy is:
size_type copy(charT* s, size_type n, size_type pos=0);

Proposed Resolution:
Provide two forms of copy():
size_type copy(charT* s, size_type pos, size_type n);

This function differs from the current copy only in the order of its last two
arguments and the lack of a default argument.
size_type copy(charT* s, size_type n);

Returns:
copy(s, 0, n);

.Requester: John Dlugosz: jdlugosz@objectspace.com
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-059
Title: String traits have no relationship to iostream traits.
Section: 21.1.1.1 [lib.string.char.traits]
Status: active
Description:

I would like to propose (whether officially or not) to modify the current CD:
 template <class charT> struct ios_traits {};

to
 template <class charT> struct ios_traits :

public string_char_traits<charT> {};

in order to integrate the closely related traits, 'ios_traits' and 'string_char_traits'.

We can expect the integration of the common features, such as 'eq', 'eos', 'length',
and 'copy' which is now inappropriately separated with no explicit reasons.

In lib-3832, Nathan Myers wrote:
“I have been careful to avoid getting too involved with Clause 21, thus far,
because I have been quite busy with other chapters. However, it would be my
recommendation to eliminate most of the string character traits: eq(), ne(), lt(),
assign(), char_in(), char_out(), and is_del(). Also, I would either add a few
"speed-up functions" needed to efficently implement strings without
specialization, such as a move() member, or eliminate them all, and let the
implementation specialize speedups for types known to it.”

A public comment included the following:

Clause 21 (Strings Library) Issues List: Rev. 11 - 95-215=N0815

3

“string_char_traits is missing three important speed-up functions, the
generalizations of memchr, memmove, and memset. Nearly all the mutator
functions in basic_string can be expressed as calls to these three primitives, to
good advantage.”

See also issue 21-018.

Discussion at the Tokyo meeting found merit in the idea of integrating
string_char_traits and ios_char_traits. However, no action was taken pending
further investigation.

A cursory review of string and iostream character traits shows that the signatures
are basically compatible except for the string_char_traits::eq() and
ios_char_traits::eq_char_type().

Proposed Resolution:
Some traits issues are addressed in issue 21-002, 21-018, 21-024, and 21-060. This
issue remains open as a discussion of the possible integration of iostream traits
and string character traits.

Requester: Norihiro Kumagai: kuma@slab.tnr.sharp.co.jp.
See also Public Comment T21 (p. 108).

Owner:
Emails: lib-3832, lib-4351
Papers: N0810R1=95-0210R1

Issue Number: 21-062
Title: Missing explanation of requirements on charT .
Section: 21.1.1.3 [lib.basic.string]
Status: active
Description:

A public comment noted:
Paragraph 1 doesn’t say enough about the properties of a “char-like object.” It
should say that it doesn’t need to be constructed or destroyed (otherwise, the
primitives in string_char_traits are woefully inadequate).
string_char_traits::assign (and copy) must suffice either to copy or initialize a
char-like element. The definition should also say than an allocator must have the
same definitions for the types size_type, difference_type, pointer, const_pointer,
reference, and const_reference as class allocator::types<charT> (again because
string_char_traits has no provision for funny address types).

Proposed Resolution:
Add the following text after paragraph 1 in 21.1.1.3 [lib.basic.string]

A “char-like type” does not need to be constructed or destroyed. A string’s
allocator shall have the same definitions for the types size_type ,
difference_type , pointer , const_pointer , reference ,
const_reference as class allocator::types<charT>.

In private email, P.J. Plauger wrote:
“In reviewing my code, I realize that I overstated the case here.
It is more accurate to say that the basic_string class presumes that
charT has a default constructor (and a destructor), which the class
uses to construct (and destroy) all elements of the controlled
sequence. Whenever the class is asked to copy out elements, as with
the copy member function, it assumes that it need only assign to
previously constructed elements.

Clause 21 (Strings Library) Issues List: Rev. 11 - 95-215=N0815

4

“A better design of string_char_traits would probably include
uninitialized_copy and uninitialized_fill members, but I feel it's
way too late to propose such additions.”

Requester: Public comment T21 (p. 108).
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-080
Title: Allow template specialization for basic_string and string_char_traits ?
Section: 21.1.1.3 [lib.template.string]
Status: active
Description:

Discussion of a general library issue in Tokyo arrived at the conclusion that
template specialization would require the templates to be placed in the std
namespace. Since there is currently a general prohibition on extending the std
namespace [lib.reserved.names] “unless otherwise specified”, basic_string and
string_char_traits must be explicitly exempted from this prohibition if they
can be specified.

Proposed Resolution:
None yet.

Requester: LWG
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-081
Title: Portions of Clause 21 are redundant with portions of Clause 23.
Section: 21.1.1.3 [lib.template.string]
Status: active
Description:

Since basic_string is a Sequence (as defined in Clause 23) portions of the
description for basic_string are redundant. In particular, the parts that describe
members which fulfill Sequence requirements.

In Tokyo, the issue of clarity and maintainability was raised. If portions of the
basic_string description are removed, the clause becomes easier to maintain
because it can rely on Clause 23 for all Sequence requirements. However, this
removal may impact the clarity of Clause 21.

Proposed Resolution:
None yet.

Requester: LWG
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-082
Title: Typedef for reverse_iterator is incorrect.
Section: 21.1.1.3 [lib.template.string]
Status: active
Description:

Clause 21 (Strings Library) Issues List: Rev. 11 - 95-215=N0815

5

In 24.3.1.3 [lib.reverse.iterator], the class reverse_iterator has the following
template arguments:
template <class RandomAccessIterator, class T,

 class Reference = T&, class Pointer = T*,
 class Distance = ptrdiff_t>
class reverse_iterator

The fifth template argument was added recently. The reverse_iterator typedef in
basic_string does not reflect this change.

Proposed Resolution:
Change the typedefs for for basic_string’s reverse_iterator and
const_reverse_iterator to:
typedef
reverse_iterator<iterator, value_type,

 reference, difference_type> reverse_iterator;
typedef
reverse_iterator<const_iterator, value_type,

 const_reference, difference_type> const_reverse_iterator;

Requester: Larry Podmolik (podmolik@str.com)
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-083
Title: Traits member eos() is not forced to return the same value every time.
Section: 21.1.1.2 [lib.string.char.traits.members]
Status: active
Description:

With the resolution of issue 21-067, the traits member eos() is not required to
return the value char_type(). However, this desirable freedom might be
construed to allow an implementation to return a different value for eos() on
subsequent calls.

Proposed Resolution:
Add the following text to the portion of 21.1.1.2 [lib.string.char.traits.members]
which describes eos():

Subsequent calls to this member will return an equivalent object.
Requester: LWG
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-084
Title: Specialize swap() algorithm for basic_string.
Section: 21.1.1.10.8 [lib.string.special]
Status: active
Description:

From Box 1 in Clause 23: “Change: Issue 23-031 in N0781R2=95-0181R2,
approved in Tokyo, approved the addition of swap specializations for all
containers except basic_string. It only mentioned the problem in this class. In the
interest of stability and correctness, it has been added and an issue opened to
formalize the change.”

Proposed Resolution:
No change. Remove the box from section 21.1.1.10.8 [lib.string.special]

Requester: LWG
Owner:

Clause 21 (Strings Library) Issues List: Rev. 11 - 95-215=N0815

6

Emails: (none)
Papers: (none)

Issue Number: 21-085
Title: Awkward argument order for basic_string traits.
Section: 21.1.1.2 [lib.string.char.traits.members]
Status: active
Description:

Two string_char_traits members have the following signatures:
static const char_type*
find(const char_type* s, int n, const char_type& a)

static char_type*
assign(char_type* s, size_t n, const char_type& a)

The semantics of these members emulate memchr() and memset(). However, the
argument order is slightly different. In the interest of consistency, the order of
these arguments should be corrected.

Additionally, change the type of the find() member’s ‘n’ argument to size_t

Proposed Resolution:
In section 21.1.1.2 [lib.string.char.traits.members] change the signatures of find()
and assign() as follows:
static const char_type*
find(const char_type* s, const char_type& a, size_t n)

static char_type*
assign(char_type* s, const char_type& a, size_t n)

Requester: LWG
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-086
Title: New type added to table
Section: 21.2 [lib.c.strings]
Status: active
Description:

An editorial box has the content: “Change: added wchar_t to the above table
because wcsmemchr uses it.”

Proposed Resolution:
No change. The editors change is correct. Remove the editorial box.

Requester: LWG
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-087
Title: Different return values for index operations
Section: 21.1.1.7 [lib.string.access]
Status: active
Description:

Although the following accessors are semantically equivalent, the return values
are different:
charT operator[](size_type pos) const;

Clause 21 (Strings Library) Issues List: Rev. 11 - 95-215=N0815

7

const_reference at(size_type pos) const;

Proposed Resolution:
Change the return value of the at() member as follows:
charT at(size_type pos) const;

Requester: LWG
Owner:
Emails: (none)
Papers: (none)

Closed Issues
Issues which have been recently closed are included in their entirety. Issues which have
appeared in a previous version of the issues list as “closed” have the bulk of their content deleted
for brevity. The document number of the paper in which they last appeared is included for
reference.

Issue Number: 21-001
Title: Should basic_string have a getline() function?
Last Doc.: N0721=95-0121

Issue Number: 21-002
Title: Are string_traits members char_in() and char_out() necessary?
Section: 21.1.1.2 [lib.string.char.traits]
Status: closed
Description:

In lib-3398, Nathan Myers writes:

Looking at Clause 21, Strings, I find some string_traits static members:
static basic_istream<charT>
 string_char_traits::char_in(basic_istream<charT>& is,

charT& a)
{ return is >> a; }

static basic_istream<charT>
 string_char_traits::char_out(basic_ostream<charT>& os,

 charT& a)
{ return os << a; }

Are they necessary? If so, shouldn’t they be parameterized on ios_traits? And
shouldn’t they default to use streambuf put() and get()?

[Note: lib-3398 contained a typo in which char_in() and char_out() were
incorrectly specified as being members of basic_string. The slight error is
corrected above.]

Proposed Resolution:
Remove the members string_char_traits::char_in() and
string_char_traits::char_out() .

Requester: Nathan Myers: myersn@roguewave.com
Owner:
Emails: lib-3398
Papers: (none)

Issue Number: 21-003

Clause 21 (Strings Library) Issues List: Rev. 11 - 95-215=N0815

8

Title: Character-oriented assign function has incorrect signature
Last Doc.: N0721=95-0121

Issue Number: 21-004
Title: Character-oriented replace function has incorrect signature
Last Doc.: N0759=95-0159

Issue Number: 21-005
Title: How come the string class does not have a prepend() function?
Last Doc.: N0759=95-0159

Issue Number: 21-006
Title: Should the Allocator be the last template argument to basic_string?
Last Doc.: N0721=95-0121

Issue Number: 21-007
Title: Should the string_char_traits speed-up functions be specified as inline?
Last Doc.: N0759=95-0159

Issue Number: 21-008
Title: Should an iostream inserter and extractor be specified for basic_string?
Last Doc.: N0759=95-0159

Issue Number: 21-009
Title: Why are character parameters passed as “const charT”?
Last Doc.: N0721=95-0121

Issue Number: 21-010
Title: Should member parameters passed as “const_pointer”?
Last Doc.: N0721=95-0121

Issue Number: 21-011
Title: Why are character parameters to the string traits functions passed by reference?
Last Doc.: N0721=95-0121

Issue Number: 21-012
Title: Why are character parameters to the string functions passed by value?
Last Doc.: N0800=95-0200

Issue Number: 21-013
Title: There is no provision for errors caused by implementation limits.
Section: 21.1.1.2 [lib.basic.string]
Status: closed
Description:

In private email, John Dlugosz wrote:
“There is no provision for errors caused by implementation limits. The class
handles strings up to length NPOS-1, with no specified way to throw an error
saying "I can't do that!" for shorter values. In my implementation I'm simulating
an out-of-memory error if an operation exceeds a `maxcount' length, since that's
what would presumably happen anyway. The maxcount arises due to arithmetic
overflow: I'm limited to size_t-(small constant) _bytes_, not elements, and an
element may be any size. I can't compute the memory requirments without

Clause 21 (Strings Library) Issues List: Rev. 11 - 95-215=N0815

9

getting an unreported arithmetic overflow, so I have to check in advance for this
instantiation-specific maxcount.

“In order to simulate the out of memory condition, I just call `new' on NPOS
bytes. That way I get the "correct" behavior for any installed new_handler or
replacement operator new() that may exist. However, that is not the best solution
for a few reasons. First, it will fail if the implementation _does_ in fact allocate
NPOS bytes without error. Second, an out-of-memory exception might not be the
appropriate way for a program to recover from this problem. Third, it is less
efficient, since by spec I must test for an argument of NPOS anyway, and take
one action and _then_ test for the smaller maxcount and take another action. To
summarize, I think that a "length error" should be allowed at an implementation
defined size limit which is less than or equal to NPOS. There should also be a
function available to return this value.”

In lib-4279, P.J. Plauger wrote:
It is my belief that the implementor can have max_size() return whatever it
deems necessary in the way of a largest *practical* size for a string. It can also
throw length_error for any member function call that would grow the controlled
sequence beyond this length. Admittedly, the draft is characteristically laconic in
this area, but I think ``a careful reading of the draft'' (as we love to say in a
related committee) supports this sensible interpretation.

Proposed Resolution:
No change. Close the issue.

Requester: John Dlugosz: jdlugosz@objectspace.com
Owner:
Emails: lib-4277, lib-4278, lib-4279
Papers: (none)

Issue Number: 21-015
Title: The copy() member should be const.
Last Doc.: N0759=95-0159

Issue Number: 21-016
Title: The error conditions are not well-specified for the find() and rfind() functions.
Last Doc.: N0759=95-0159

Issue Number: 21-017
Title: Can reserve() cause construction of characters?
Section: 21.1.1.6 [lib.string.capacity]
Status: closed
Description:

In private email, John Dlugosz wrote:
“Also, totally unspecified, is the treatment of the `reserve' area with respect to
element creation and destruction. I chose to construct elements in the reserve
area right away, and then the string grows into the reserve area using assignment
semantics. This causes dramatic simplification in several areas, and allows me to
implement it without the need for in-place construction and explicit destructor
calls (important when targeting cfront-based compilers).”

Proposed Resolution:
No change required. Close the issue.

Requester: John Dlugosz: jdlugosz@objectspace.com
Owner:

Clause 21 (Strings Library) Issues List: Rev. 11 - 95-215=N0815

10

Emails: (none)
Papers: (none)

Issue Number: 21-018
Title: Specification of traits class is constraining.
Section: 21.1.1.2 [lib.string.char.traits.members]
Status: closed
Description:

In private email, John Dlugosz wrote:
“The austerity of the traits class strongly suggests certain implementations and
prevents certain optimizations. For a simple example, the copy() function does
not provide for overlapping copies. Say I have a string "ABr" where A and B
represent substrings of some length, and r is unused reserve area. I want to
insert "C" into the string, and the length of "ACB" fits into the pre-existing
allocation (because C is shorter or equal in size to r). I can't just copy B down to
the tail end. Instead, I have to reallocate the whole string and copy the A part
also.

“More significantly, the find() functions pretty much have to be implemented by
a brute-force approach as they are defined-- locate a place where the match
occurs. In short, I wish the traits available were richer. It seems inconsistent
w.r.t. copy semantics, as explained in [issue 23-017], and it is so simple as to force
inefficiencies in the implementation. In addition, it would be nice if additional
implementation-specific stuff could be placed in the traits class. This can be done
and still allow for user-defined "custom" traits to be created that only have the
standard members, by using inheritance.”

Proposed Resolution:
The resolution to 21-029 addresses the concern about traits::copy().

To enrich the capabilities of string_char_traits, add the following to 21.1.1.2
[lib.string.char.traits.members]

static const char_type*
find(const char_type* s, int n, const char_type& a)

Effects: Determines the lowest pointer p, if possible, such that all of the
following conditions hold true:
• *p == a

• s <= p < s + n

Returns: p if the function can determine such a value for p. Otherwise, returns
0.

static char_type*
move(char_type* s1, const char_type* s2, size_t n)

Effects: Copies elements. For each integer i in the range [0, n), performs
assign(s1[i], s2[i]) . Even when s2 is in the range [s1, s1+n) , the
implementation shall copy the characters correctly.
Returns: s1 .

static char_type*
assign(char_type* s, size_t n, const char_type& a)

Effects: For each integer i in the range [0, n), performs assign(s[i], a)

Returns: s
Requester: John Dlugosz: jdlugosz@objectspace.com
Owner:
Emails: (none)

Clause 21 (Strings Library) Issues List: Rev. 11 - 95-215=N0815

11

Papers: (none)

Issue Number: 21-019
Title: The Allocator template parameter is not reflected in a member typedef.
Last Doc.: N0759=95-0159

Issue Number: 21-020
Title: Header for Table 42 is incorrect.
Last Doc.: N0759=95-0159

Issue Number: 21-021
Title: compare() has unexpected results
Last Doc.: N0759=95-0159

Issue Number: 21-022
Title: s.append('c') appends 99 nulls.
Last Doc.: N0759=95-0159

Issue Number: 21-023
Title: Non-conforming default Allocator arguments
Last Doc.: N0759=95-0159

Issue Number: 21-024
Title: Name of traits delimiter function is confusing
Section: 21.1.1.1 [lib.string.char.traits]
Status: closed
Description:

The name of the string_char_traits function is “is_del”. This has the connotation
of “is delete”.

Proposed Resolution:
Remove the member string_char_traits::is_del(char_type) . These sorts
of traits are the domain of iostreams.

Requester: John Hinke: jhinke@qds.com
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-025
Title: Does string_char_traits need a locale?
Section: 21.1.1.2 [lib.string.char.traits.members]
Status: closed
Description:

The description of the member string_char_traits::is_del() says it returns:
isspace() . This function is subject to localization. Does this mean that
string_char_traits is locale sensitive?

Proposed Resolution:
Remove the member string_char_traits::is_del(char_type) . These sorts
of traits are the domain of iostreams.

Requester: John Hinke: jhinke@qds.com

Clause 21 (Strings Library) Issues List: Rev. 11 - 95-215=N0815

12

Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-026
Title: Description of string_char_traits::compare() is expressed in code.
Section: 21.1.1.2 [lib.string.char.traits.members]
Status: closed
Description:

The description of the string_char_traits member:
static int compare(const char_type* s1, const char_type* s2,

 size_t n);

is expressed in code as follows:
for (size_t i=0; i<n; ++i, ++s1, ++s2)

if (ne(*s1, *s2))
return (lt(*s1, *s2) ? -1 : 1;

return 0;

 It should be expressed in prose.
Proposed Resolution:

Replace the description with the following:
Returns: 0 iff for each i in the range [0,n) the expression
eq(s1[i], s2[i]) is true.
Otherwise, returns a negative integer iff for some j in the range [0, n) the
expression lt(s1[j], s2[j]) is true and for each i in the range [0, j) the
expression eq(s1[i], s2[i]) is true.
Otherwise, returns a positive integer.

Requester: Rick Wilhelm: rwilhelm@str.com
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-027
Title: Description of string_char_traits::compare() overspecifies return value.
Section: 21.1.1.2 [lib.string.char.traits.members]
Status: closed
Description:

The description of the string_char_traits member:
static int compare(const char_type* s1, const char_type* s2,

 size_t n);

is expressed in code as follows:
for (size_t i=0; i<n; ++i, ++s1, ++s2)

if (ne(*s1, *s2))
return (lt(*s1, *s2) ? -1 : 1;

return 0;

 Specifying the exact return values when the comparison returns “less than” or
“greater than” is too constraining.

Proposed Resolution:
Close the issue. Necessary changes subsumed by issue 21-026.

Requester: Rick Wilhelm: rwilhelm@str.com
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-028
Title: Description of string_char_traits::length() is expressed in code.

Clause 21 (Strings Library) Issues List: Rev. 11 - 95-215=N0815

13

Section: 21.1.1.2 [lib.string.char.traits.members]
Status: closed
Description:

The description of the string_char_traits member:
static int length(const char_type* s);

is expressed in code as follows:
size_t len = 0;
while (ne(*s++, eos())) ++len;
return len;

It should be expressed in prose.
Proposed Resolution:

Replace the description with the following:
Returns: the lowest non-negative value of i such that the expression
eq(s[i], eos()) returns true and for each j in the range [0, i) the
expression ne(s[j], eos()) returns true .

Requester: Rick Wilhelm: rwilhelm@str.com
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-029
Title: Description of string_char_traits::copy() is overconstraining.
Section: 21.1.1.2 [lib.string.char.traits.members]
Status: closed
Description:

The description of the member string_char_traits::copy():
char_type* s = s1;
for (size_t i=0; i<n; ++i) assign(*s1++, *s2++);

This overconstrains implementations, in that there is no particular reason to do
the operations in the order specified. (Clause 21, box 1).

Proposed Resolution:
Replace the description as follows:

Effects: Copies elements. For each non-negative integer i : i< n, performs
assign(s1[i], s2[i]).

Returns: s1 .
The closing of this issue permits the removal of Box 1 from Clause 21.

Requester: Rick Wilhelm: rwilhelm@str.com
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-030
Title: Description of string_char_traits::copy() is silent on overlapping strings.
Section: 21.1.1.2 [lib.string.char.traits.members]
Status: closed
Description:

The description of the member string_char_traits::copy():
char_type* s = s1;
for (size_t i=0; i<n; ++i) assign(*s1++, *s2++);

Doesn’t explicitly address the issue of overlapping strings.
Proposed Resolution:

Add the following to the description of string_char_traits::copy():
Requires: s2 shall not be in the range [s1, s1+n).

This is similar to the approach followed by copy() in 25.2.1 [lib.alg.copy].

Clause 21 (Strings Library) Issues List: Rev. 11 - 95-215=N0815

14

Requester: Rick Wilhelm: rwilhelm@str.com
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-031
Title: Copy constructor takes extra argument to switch allocator but does not allow

allocator to remain the same.
Section: 21.1.1.4 [lib.string.cons]
Status: closed
Description:

The copy constructor:
basic_string(

const basic_string<charT, traits, Allocator>& str,
size_type pos = 0, size_type n = npos,
Allocator& = Allocator());

takes an extra argument, so that it can be used to copy a string while changing its
allocator. Is this the best way to do this? (Box 79).

This copy constructor does not allow the user to retain the same allocator as the
current string. Additionally, the string class does not provide a member to access
a string’s allocator.

Proposed Resolution:
The solution to this issue exactly mirrors the solution to a general containers
issue.

At the Monterey meeting, the following change was approved and inserted into
the WP:
In section 21.1.1.9 [lib.string.ops], add the member:
const allocator_type& get_allocator() const;

Returns: a reference to the string’s allocator object.

The resolution to the default Allocator argument is pending the resolution to a
similar issue in Clause 23: 23-024. Any changes made to the WP as a result of
resolving 21-024 should be made in a similar fashion to Clause 21.

The resolution of this issue will permit the closing of Box 2 in Clause 21.
Requester: Rick Wilhelm: rwilhelm@str.com. See also public comment T21 (p. 108)
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-032
Title: Description for operator+() is incorrect
Last Doc.: N0759=95-0159

Issue Number: 21-033
Title: Requirements for const charT* arguments not specified
Last Doc.: N0759=95-0159

Issue Number: 21-034
Title: Inconsistency in requirements statements involving npos
Section: 21.1.1.4 [lib.string.cons] and 21.1.1.6 [lib.string.capacity]
Status: closed

Clause 21 (Strings Library) Issues List: Rev. 11 - 95-215=N0815

15

Description:
In the current draft, the requirements for
basic_string(size_type n, charT c, Allocator& = Allocator());

read:
Requires: n < npos .

and the requirements for
void resize(size_type n, charT c);

read:
Requires: n != npos .

These should be expressed in terms of max_size()
Proposed Resolution:

Change the description of resize():
Requires: n <= max_size()
Throws: length_error if n > max_size()

Requester: Rick Wilhelm: rwilhelm@str.com See also public commnet T21 (p. 109)
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-034a
Title: Expand ability to throw length_error
Section: 21.1.1.3 [lib.basic.string]
Status: closed
Description:

The specification carefully dictates that a string should be able to hold the
number of entities indexed by a size_type. This is evidenced, for example, in the
strict specification of when a length_error exception is thrown in
basic_string::replace.

Strictly interpreted, this prevents storage of other information in the same
memory block as the data (e.g., reference counts of string lengths). It should be
possible to throw a length_error when the resulting data size *plus the size of the
overhead information* exceeds the capacity of a size_type.

It may be convenient to specify length_error conditions in terms of the max_size()
value.

Proposed Resolution:
No change. Close the issue. See 21-013 for further discussion.

Requester: Judy Ward: ward@roguewave.com
Owner:
Emails: lib-4277, lib-4278, lib-4279
Papers: (none)

Issue Number: 21-035
Title: Character replacement does not change length.
Last Doc.: N0759=95-0159

Issue Number: 21-036
Title: Character case disregarded during common operations.
Last Doc.: N0759=95-0159

Issue Number: 21-037
Title: Traits needs a move() for overlapping copies.

Clause 21 (Strings Library) Issues List: Rev. 11 - 95-215=N0815

16

Section: 21.1.1.4 [lib.string.cons]
Status: closed
Description:

A move() member for overlapping copies would be a useful addition to the
string_char_traits class.

Proposed Resolution:
Close the issue. The resolution is provided by the resolution for issue 21-018.

Requester: Judy Ward: ward@roguewave.com
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-038
Title: Operator < clashes cause ambiguity
Last Doc.: N0759=95-0159

Issue Number: 21-039
Title: Iterator parameters can get confused with size_type parameters.
Last Doc.: N0759=95-0159

Issue Number: 21-040
Title: Repetition parameter non-intuitive
Last Doc.: N0759=95-0159

Issue Number: 21-041
Title: Assignment operator defined in terms of itself
Last Doc.: N0759=95-0159

Issue Number: 21-042
Title: Character assignment defined in terms of non-existent constructor
Last Doc.: N0759=95-0159

Issue Number: 21-043
Title: Character append operator defined in terms of non-existent constructor
Last Doc.: N0759=95-0159

Issue Number: 21-044
Title: Character modifiers defined in terms of non-existent constructor
Last Doc.: N0759=95-0159

Issue Number: 21-045
Title: Iterator typenames overspecified
Last Doc.: N0759=95-0159

Issue Number: 21-046
Title: basic_string type syntactically incorrect in some descriptions
Last Doc.: N0759=95-0159

Issue Number: 21-047

Clause 21 (Strings Library) Issues List: Rev. 11 - 95-215=N0815

17

Title: Error in description of replace() member
Last Doc.: N0759=95-0159

Issue Number: 21-048
Title: Inconsistency in const-ness of compare() declarations
Last Doc.: N0759=95-0159

Issue Number: 21-049
Title: Inconsistency constructor effects and semantics of data()
Last Doc.: N0759=95-0159

Issue Number: 21-050
Title: Incorrect semantics for operator+()
Last Doc.: N0759=95-0159

Issue Number: 21-051
Title: Incorrect return type for insert() member
Last Doc.: N0759=95-0159

Issue Number: 21-052
Title: Unconstrained position arguments for find members.
Last Doc.: N0759=95-0159

Issue Number: 21-053
Title: Semantics of size() prevents null characters in string
Last Doc.: N0759=95-0159

Issue Number: 21-054
Title: Change the semantics of length()
Last Doc.: N0759=95-0159

Issue Number: 21-055
Title: append(), assign() have incorrect requirements
Last Doc.: N0759=95-0159

Issue Number: 21-056
Title: Requirements for insert() are too weak.
Last Doc.: N0759=95-0159

Issue Number: 21-057
Title: replace has incorrect requirements
Last Doc.: N0759=95-0159

Issue Number: 21-058
Title: Description of data() is over-constraining.
Last Doc.: N0759=95-0159

Issue Number: 21-060
Title: string_char_traits::ne not needed
Section: 21.1.1.1 [lib.string.char.traits]
Status: closed
Description:

A public comment included:

Clause 21 (Strings Library) Issues List: Rev. 11 - 95-215=N0815

18

“string_char_traits::ne is hardly needed given the member eq . It should be
removed.

Discussion at the Tokyo meeting concluded that the presence of this member
might provide greater efficiency over the logical negation of the result of
string_char_traits::eq()

Proposed Resolution:
Close the issue. Make no change to the WP.

Requester: Public comment T21 (p. 107)
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-061
Title: Missing explanation of traits specialization
Section: 21.1.1.2 [lib.string.char.traits.members]
Status: closed
Description:

A public comment noted:
“No explanation is given for why the descriptions of the members of template
class string_char_traits are “default definitions.” If it is meant to suggest that the
program can supply an explicit specialization, provided the specialization
satisfies the semantics of the class, then the text should say so (here and several
other places as well).

Proposed Resolution:
Remove paragraph 1 in 21.1.1.2 [lib.string.char.traits.members].

Requester: Public comment T21 (p. 108).
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-063
Title: No constraints on constructor parameter.
Section: 21.1.1.4 [lib.string.cons]
Status: closed
Description:

The description of the constructor
basic_string(const charT* s, size_type n, const Allocator&);

Doesn’t constrain the size_type parameter.
Proposed Resolution:

Modify the description of the constructor as follows:
Requires: s shall not be a null pointer and n < npos .
Throws: length_error if n == npos

Requester: Public comment T21 (p. 108)
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-064
Title: Miscellaneous errors in resize(size_type n)
Last Doc.: N0759=95-0159

Issue Number: 21-065

Clause 21 (Strings Library) Issues List: Rev. 11 - 95-215=N0815

19

Title: Incorrect return value for insert()
Last Doc.: N0759=95-0159

Issue Number: 21-066
Title: Description of remove() is over-specific
Last Doc.: N0759=95-0159

Issue Number: 21-067
Title: Traits specializations are over-constrained for eos() member
Section: 21.1.1.2 [lib.string.char.traits.members]
Status: closed
Description:

The current description is:
Returns: The null character, char_type()

However, if the traits are specialized, the specialization should not be required to
return the result of the default constructor.

Proposed Resolution:
Change the description to be:

Returns: The null character for char_type.
Requester: Public comment T21 (p. 108).
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-068
Title: What is the proper role of the “Notes” section in Clause 21.
Section: 21.1.1.6 [lib.string.capacity] (and several other sections in the clause)
Status: closed
Description:

Clause 21 currently contains several sections which include the text:
Notes:

The draft already says that notes are non-normative. However, the contents of
these sections are often normative. Should the contents of these sections be
moved into other sections.

Also, the Notes sections currently give information on the use of some traits. The
Japanese delegation would like to see information on the use of traits expanded
to give the user more information about the impact of traits on the string
template. However, one public comment described these sorts of notes on traits
as over-specification.

Proposed Resolution:
Change all instances of “Notes” sections to conform to the draft convention for
notes as specified in [intro.compliance], with the exception of the following
instances:
• 21.1.1.6 [lib.string.capacity], notes on reserve() which discuss the invalidation

of references and guarantees on reallocation.
• 21.1.1.7 [lib.string.access], notes on operator[] which discuss the validity of

references.
• 21.1.1.8.7 [lib.string::copy], notes on copy() which discuss the absence of a null

object at the end of the string.
In these three cases, the text should be moved to the “Effects” section. Note: this
solution implies that all notes which deal with the use of traits members are non-
normative.

Clause 21 (Strings Library) Issues List: Rev. 11 - 95-215=N0815

20

Requester: Public comment T21 (p. 108).
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-069
Title: Swap complexity underspecified.
Last Doc.: N0759=95-0159

Issue Number: 21-070
Title: operator>= described incorrectly
Last Doc.: N0759=95-0159

Issue Number: 21-071
Title: Does getline() have the correct semantics?
Last Doc.: N0759=95-0159

Issue Number: 21-072
Title: Incorrect use of size_type in third table in section
Last Doc.: N0759=95-0159

Issue Number: 21-073
Title: Add overloads to functions that take default character object.
Last Doc.: N0759=95-0159

Issue Number: 21-074
Title: Should basic_string have a member semantically equivalent to strlen()

Section: 21.1.1.6 [lib.string.capacity])
Status: closed
Description:

The basic_string template contains two member functions which return the
number of characters in the string: size() and length(). Issue 21-054 proposed
changing the semantics of length() to return the number of characters in the
string which are positioned before the first traits::eos() character.

In discussions in Monterey, the LWG rejected the notion of changing the
semantics of length(), but agreed to discuss addiing a new member which is
semantically equivalent to C’s strlen().

In lib-3973, Jerry Schwarz (jss@declarative.com) spoke against the idea:

“The string class is already large (at least IMO) and adding new functions should
be done only if there is a real justification. c_strlen does not have any such
justification. Firstly, it is inconsistent with the abstraction that string provides in
which traits::eos() is not special . And secondly, string::find can be used to
determine the locations of traits::eos(). So it provides no extra functionality.”

In lib-3997, John Max Skaller suggested that a template function be added to the
library to provide this functionality. In lib-4003, Nathan Myers refined this idea
into:
template <class charT, class Traits, class Allocator>
 typename basic_string<charT,Traits,Allocator>::size_type
 strlen(const basic_string<charT,Traits,Allocator>& s)

Clause 21 (Strings Library) Issues List: Rev. 11 - 95-215=N0815

21

 Returns: s.find(Traits::eos()), if that succeeds, or 0 if it fails.
 Note: Result identical to strlen(s.c_str()) for basic_string<char>.

Notice that this is not quite the same as find('\0').

Proposed Resolution:
No change. Close the issue.

Requester: LWG
Owner:
Emails: lib-3967, lib-3968, lib-3972, lib-3973, lib-3979, lib-3983, lib-3993, lib-3995, lib-3997,

lib-3999, lib-4001, lib-4003, lib-4005
Papers: (none)

Issue Number: 21-075
Title: Incomplete specification for assignment operator
Last Doc.: N0800=95-0200

Issue Number: 21-076
Title: Inconsistent pattern of arguments in basic_string overloads
Section: 21.1.1.3 [lib.template.string]
Status: closed
Description:

During discussions at the Monterey meeting, the LWG determined that the
pattern of arguments and overloads used in member functions is often
inconsistent and confusing.

Most of these inconsistencies relate to size_type parameters referring either to the
lvalue (this) or the rvalue (a parameter passed to the member function.

Proposed Resolution:
Paper N0767=95-0167 (pre-Tokyo mailing) contains the proposed resolution for
this issue.

Requester: LWG
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-077
Title: basic_string not identified as a Sequence.
Section: 21.1.1.3 [lib.template.string]
Status: closed
Description:

Although basic_string has been modified to conform to the requirements for
Sequences specified in Clause 23, no language in the WP specifically states that
basic_string is a Sequence.

Proposed Resolution:
Add the following to after paragraph 1 of 21.1.1.3 [lib.basic.string]:

The template class basic_string conforms to the requirements of a Sequence, as
specified in 23.1.1 [lib.sequence.reqmts]. Additionally, because the iterators
supported by basic_string are random access iterators
[lib.random.access.iterators], basic_string conforms to the the requirements of a
Reversible Container, as specified in 23.1 [lib.container.requirements].

Additionally, change the name of all members named remove to erase .

Clause 21 (Strings Library) Issues List: Rev. 11 - 95-215=N0815

22

(The name change is required to make basic_string conform to Sequence
requirements. In March, 1995, (Valley Forge) the portion of 94-0155=N0542
which proposed a Sequence requirement name change from “erase” to “remove”
failed.)

Requester: LWG
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-078
Title: Possible problem with reference counting and strings.
Section: 21.1.1.7 [lib.string.access]
Status: closed
Description:

In lib-4097, Uwe Steinmuller wrote:
string s = "abc"; //1
char& r = s[0]; //2
string cs = s; //3
r = x ; //4

Problem: If an implementation prevents (using some flag) that after processing
line //2 this representation cannot be shared (copy is getting its own
representation), then there is no problem.

I doubt many implementations will do so (including my own). If in line //3 cs
shares the representation with s then line //4 will modify both strings. The user
did nothing wrong if he looks at the standard. The reference r should be valid
until a non const operation is performed on s and there is no such operation.

Solutions: We require the implementation (which is implicitly done by the
current draft) to handle this case. This requires an extra flag and overhead to
check for it. A restriction for the guarantee of r would be also a solution but could
get quite complicated.

In lib-4102, Steven Kearns wrote:
One solution is to have operator[](int index) return a helper class:
class StringHelper {
 int index;
 String& s;
 StringHelper(String& s0, int index0) : index(index0), s(s0) {}
 operator=(char c) { s.SetAt(index, c); }
};

Unfortunately, this makes the most common idiom:
String s;
s[0] = 'a';

much more inefficient than before. So the only practical solution is to come up
with a suitable restriction on the lifetime of the reference returned. How about
the obvious one of saying that the reference returned is only valid until the next
non-const operation on the string, or until the string is copied or assigned from.

Proposed Resolution:
No change. Close the issue.

Clause 21 (Strings Library) Issues List: Rev. 11 - 95-215=N0815

23

Requester: Uwe Steinmuller (Uwe.Steinmueller@zfe.siemens.de)
Owner:
Emails: lib-4097, lib-4101, lib-4102, lib-4105, lib-4107
Papers: (none)

Issue Number: 21-079
Title: Possible problem with operator<<()

Section: 21.1.1.10.8 [lib.string.io]
Status: closed
Description:

Resolutions which fixed problems with operator<<() were incorporated along
with an editorial box (Box 3). This box contains the text:

“Change: Issue 21-008 in N0721R1=95-0121R1, approved in Monterey,
changed this to:
 template<class charT, class IS_traits,
 class STR_traits, class STR_Alloc>
 basic_ostream<charT, IS_traits>&
 operator<<(basic_istream<charT, OS_traits>& os,
 basic_string<charT,STR_traits,STR_Alloc>&
str);

This looks like a cut and paste error, and the above looks more reasonable. The
declaration in 21.1 [lib.string.classes], which was not in fact mentioned by the
motion, has been corrected to match.”

Proposed Resolution:
No change, close the issue and remove Box 3 from Clause 21. The text in the WP
is correct.

Requester: LWG
Owner:
Emails: (none)
Papers: (none)

