INITIALIZATION OF CALL-BY-VALUE OBJECTS

James W. Welch
Watcom International Corp.

jww@watcom.on.ca

Doc No. WG21/N0780, X3J16/95-0180

Abstract

Existing vendors implement call-by-value of destructableobjects in at least two ways,
because of differing interpretations of the Draft Working"Paper. This paper proposes
changes to the draft to eliminate the two interpretations.” The proposal is to define call-by-
value as an initialization of the parameter of the called”function that conceptually occurs in
the context of the calling function. The lifetime of the"parameter is the time during which
the called function is activated.

(1) Existing Practice
Consider the following fragment of C++ code:
struct Obj {
Obj(int);

Obj(Obj const &);
~Obj();

extern void PlaceHolder();
void Called(Obj object)

PlaceHolder();
}

void Caller(void)

Called(Obj(1995)), Called(Obj(1996));

Inspection of the example reveals that the fun@ialter twice passes by value an
object of typeObj to the called functioalled

It has been reported that there are at least two ways in“which vendors have implemented
the compilation of the indicated fragment. The first method,”used by WATCOM and EDG
(Edison Design Group), is to create temporaries in the"calling function, to merely use these
temporaries as required in the called function, and then to“destruct the temporaries at end

of the expression containing the call(s) to the calledfunction. This results in the following
actions:

- Obj(1995) is constructed

- Called is invoked which call®laceHolder and returns

- Obj(1996) is constructed

- Called is invoked which call®laceHolder and returns

- Obj(1996) s destructed

- Obj(1995) s destructed

The second method, reportedly used by Sun and Microsoft’compilers, is to construct the
temporaries in the caller and to destruct the call-by-value“object during the return from the
called function. This results in the following actions:

- Obj(1995) is constructed

- Called isinvokedPlaceHolder is calledObj(1995) is destructed,

return toCaller

- Obj(1996) is constructed

- Called isinvokedPlaceHolder is calledObj(1996) is destructed,

return toCaller

These two methods have different temporary lifetimes and“orders of destruction, which is
not desireable. It is proposed to add language of the"working paper which is a compromise
between the two methods. Essentially, it is proposed that"the calling function is
responsible for construction and destruction of the parameter”and that the parameter has a
lifetime matching the activation of the called function (not"the expression containing the
call). An optimizing compiler may do a direct’initialization of the parameter by existing
language in the working paper.

As well, the following program fragment was compiled under”several compilers.

class CALLER;

class CALLEE {
CALLEE(CALLEE const &);
~CALLEE();
friend void callee(CALLEE, CALLER);
public:
CALLEE();
void dummy();

class CALLER {
CALLER(CALLER const &);
~CALLER();
friend void callerl(CALLEE &, CALLER &);
friend void caller2(void);
public:
CALLER();
void dummy();

void callee(CALLEE x, CALLER y) {
x.dummy();
y.dummy();

void callerl(CALLEE &rx, CALLER &ry) {
callee(rx, ry);

void caller2(void) {
callee(CALLEE(), CALLER());

Access errors were detected by the indicated compilers at the following spots.

CALLER CALLEE

copy copy

ctor dtor ctor dtor
start of callee MBHG
end of callee B
call-point in callerl PBHWEGS PBE
call-point in caller2 PBE PMWES
W -- Watcom 10.5 E -- Edison Design Group
M -- Microsoft 2.0 G--g++2.6.3
B -- Borland 4.02 S--Sun4.0.1
H -- Metaware 3.1 P -- proposal

It is concluded that there is little consistency among“vendors for detecting access errors.

(2) Model of call-by-value

It is proposed that call-by-value be mandated to be an”initialization of the argument in the
called function with the value specified in the caller. The’lifetime of that argument is the
time during which the called function is active. The”initialization and destruction of the
parameter in the called function occurs in the calling“function.

By existing rules, an optimizing compiler may eliminate"temporaries (see 12.2
[class.temporary]) and directly initialize a parameter.

An optimizing compiler could compile the called function in"such a way that the actual call
for destruction could be done from code for the called function (and not from the caller).
Of course, accessibility checks are done in the context of the“caller, not the context of the
called function. When there are multiple call-by-value”parameters to a function, the
compiler would need to ensure that the order of destruction of'the parameters is in reverse
of the order of construction.

(3) Formal Proposal
It is proposed that the Draft Working Paper be amended as follows:

5.2.2 Function call [expr.call] paragraph 3: add the“following after the second
sentence.

The lifetime of each parameter is until there is a return“from that activation of the
function. The initialization and destruction of each”parameter occurs within the
context of the calling function. An implementation may“eliminate construction of
extra temporaries by combining the construction and/or"conversion with the
initialization of the associated parameter (see 12.2"[class.temporary]).

(4) Conclusion

The intent of this paper is to eliminate one more difference”between implementations. As
usual, | am not invested in the specific wording; those more“capable in standardese can
likely improve my amendment

Acknowledgements

Anthony Scian and John Spicer have made several useful”criticisms of the paper. | have
adopted some of their suggestions. Any errors or omissions are, of course, my
responsibility.

