
INITIALIZATION OF CALL-BY-VALUE OBJECTS

James W. Welch
Watcom International Corp.

jww@watcom.on.ca

Doc No. WG21/N0780, X3J16/95-0180

Abstract
Existing vendors implement call-by-value of destructable˝objects in at least two ways,
because of differing interpretations of the Draft Working˝Paper. This paper proposes
changes to the draft to eliminate the two interpretations.˝ The proposal is to define call-by-
value as an initialization of the parameter of the called˝function that conceptually occurs in
the context of the calling function. The lifetime of the˝parameter is the time during which
the called function is activated.

(1) Existing Practice
Consider the following fragment of C++ code:

struct Obj {
Obj(int);
Obj(Obj const &);
~Obj();

};

extern void PlaceHolder();

void Called(Obj object)
{

PlaceHolder();
}

void Caller(void)
{

Called(Obj(1995)), Called(Obj(1996));
}

Inspection of the example reveals that the function Caller twice passes by value an
object of type Obj to the called function Called .

It has been reported that there are at least two ways in˝which vendors have implemented
the compilation of the indicated fragment. The first method,˝used by WATCOM and EDG
(Edison Design Group), is to create temporaries in the˝calling function, to merely use these
temporaries as required in the called function, and then to˝destruct the temporaries at end

of the expression containing the call(s) to the called˝function. This results in the following
actions:

- Obj(1995) is constructed
- Called is invoked which calls PlaceHolder and returns
- Obj(1996) is constructed
- Called is invoked which calls PlaceHolder and returns
- Obj(1996) is destructed
- Obj(1995) is destructed

The second method, reportedly used by Sun and Microsoft˝compilers, is to construct the
temporaries in the caller and to destruct the call-by-value˝object during the return from the
called function. This results in the following actions:

- Obj(1995) is constructed
- Called is invoked, PlaceHolder is called, Obj(1995) is destructed,
return to Caller
- Obj(1996) is constructed
- Called is invoked, PlaceHolder is called, Obj(1996) is destructed,
return to Caller

These two methods have different temporary lifetimes and˝orders of destruction, which is
not desireable. It is proposed to add language of the˝working paper which is a compromise
between the two methods. Essentially, it is proposed that˝the calling function is
responsible for construction and destruction of the parameter˝and that the parameter has a
lifetime matching the activation of the called function (not˝the expression containing the
call). An optimizing compiler may do a direct˝initialization of the parameter by existing
language in the working paper.

As well, the following program fragment was compiled under˝several compilers.

class CALLER;

class CALLEE {
 CALLEE(CALLEE const &);
 ~CALLEE();
 friend void callee(CALLEE, CALLER);
public:
 CALLEE();
 void dummy();
};

class CALLER {
 CALLER(CALLER const &);
 ~CALLER();
 friend void caller1(CALLEE &, CALLER &);
 friend void caller2(void);
public:
 CALLER();
 void dummy();
};

void callee(CALLEE x, CALLER y) {
 x.dummy();
 y.dummy();
}

void caller1(CALLEE &rx, CALLER &ry) {
 callee(rx, ry);
}

void caller2(void) {
 callee(CALLEE(), CALLER());
}

Access errors were detected by the indicated compilers at the˝following spots.

CALLER CALLEE
-------------------- -----------------------------------
copy copy
ctor dtor ctor dtor

start of callee MBHG
end of callee B
call-point in caller1 PBHWEGS PBE
call-point in caller2 PBE PMWES
---˝ --------------------
W -- Watcom 10.5 E -- Edison Design Group
M -- Microsoft 2.0 G -- g++ 2.6.3
B -- Borland 4.02 S -- Sun 4.0.1
H -- Metaware 3.1 P -- proposal

It is concluded that there is little consistency among˝vendors for detecting access errors.

(2) Model of call-by-value
It is proposed that call-by-value be mandated to be an˝initialization of the argument in the
called function with the value specified in the caller. The˝lifetime of that argument is the
time during which the called function is active. The˝initialization and destruction of the
parameter in the called function occurs in the calling˝function.

By existing rules, an optimizing compiler may eliminate˝temporaries (see 12.2
[class.temporary]) and directly initialize a parameter.

An optimizing compiler could compile the called function in˝such a way that the actual call
for destruction could be done from code for the called˝function (and not from the caller).
Of course, accessibility checks are done in the context of the˝caller, not the context of the
called function. When there are multiple call-by-value˝parameters to a function, the
compiler would need to ensure that the order of destruction of˝the parameters is in reverse
of the order of construction.

(3) Formal Proposal
It is proposed that the Draft Working Paper be amended as˝follows:

5.2.2 Function call [expr.call] paragraph 3: add the˝following after the second
sentence.

The lifetime of each parameter is until there is a return˝from that activation of the
function. The initialization and destruction of each˝parameter occurs within the
context of the calling function. An implementation may˝eliminate construction of
extra temporaries by combining the construction and/or˝conversion with the
initialization of the associated parameter (see 12.2˝[class.temporary]).

(4) Conclusion
The intent of this paper is to eliminate one more difference˝between implementations. As
usual, I am not invested in the specific wording; those more˝capable in standardese can
likely improve my amendment.

Acknowledgements
Anthony Scian and John Spicer have made several useful˝criticisms of the paper. I have
adopted some of their suggestions. Any errors or omissions˝are, of course, my
responsibility.

