
X3J16/95-0089 WG21/N0689 1

Summary of Issues

27.4.2 ios_traits

Active 27-001 Making newline locale aware
Active 27-002 is_whitespace is inconsistent
Active 27-003 Mention of base struct string_char_traits
Active 27-004 Adding space function that returns a “space” character.
Active 27-005 example of changing the behavior of is_whitespace is incorrect.
Active 27-006 not_eof specification

27.4.3 ios_base

Closed 27-101exceptions called a method that required template arguments
Active 27-102 fill function needs to use template character type
Active 27-103 ios_base::ios_base() effects
Active 27-104 ios_base manipulators

27.4.4 basic_ios

27.5.2 basic_streambuf

Closed 27-301 imbued locale mentioned, but missing from the interface
Closed 27-302stossc missing from the interface
Open 27-303 sputc parameters need to reflect the traits parameters
Active 27-304 imbuing on streambufs. When, how often, etc...
Active 27-305 sungetc has an incorrect return type
Active 27-306 not_eof needs to be used where appropriate
Active 27-307 uflow needs editing

27.6.1 basic_istream

Active 27-401 isfx what does it do?
Active 27-402 ipfx example is incorrect
Active 27-403 readsome returns an incorrect value

X3J16/95-0089
WG21/N0689

IOStreams Issues List
Library Clause 27

By: John Hinke, Quantitative Data Systems
jhinke@qds.com

NOTE: I’ve included the Pre-Austin issues lists because some of those˝issues are still open. The closed issues are
also here with a description of the resolution. The Pre-Austin Document˝numbers are: X3J16/95-0034
WG21/N0634

X3J16/95-0089 WG21/N0689 2

Active 47-404 Clarification of exceptions thrown

27.6.2 basic_ostream

Active 27-501 op<<(char) needs to be consistant with the other formatted inserters
Open 27-502 op<<(void *) should it be const volatile void *
Closed 27-503 op<<(basic_streambuf&). Should it be const basic_streambuf&
Active 27-504 put has an incorrect return type

27.6.1-27.6.2 basic_istream, basic_ostream

Active 27-601 op[<<|>>](basic_streambuf *) Error status on NULL streambuf
Active 27-602 op[<<|>>](ios_base&) needed for manipulators
Closed 27-603 op[<<|>>](basic_streambuf&) differs from the original version
Active 27-604 positional typedefs in istream/ostream derived classes are not needed
Active 27-605 read/write should take a void * instead of a char_type *
Closed 27-606 seekg, tellg, seekp, tellp missing from the interface
Active 27-607 Should we require ios::in to be set for istream’s and ios::out to be set for

ostream’s?
Active 27-608 Should get/put use iterators?

27.7 basic_stringbuf, basic_istringstream, basic_ostringstream

Closed 27-701basic_stringbuf needs to mention behavior of ios_base::openmode
Active 27-702 str() needs to clarify return value on else clause
Active 27-703 string stream classes need to have string_char_traits and allocator

parameters

27.8.2 basic_filebuf, basic_ifstream, basic_ofstream

Active 27-801 Table 83 (File Open Modes) incomplete
Active 27-802 filebuf::underflow example is incorrect
Active 27-803 filebuf::open calls basic_streambuf constructor

Miscellaneous

Closed 27-901 Do ios type classes access the streambuf on destruction...
Closed 27-902 Do streambuf classes access the buffer on destruction...
Closed 27-903 public typedefs in the interface, static functions in interface
Active 27-904 input/output of unsigned char, and signed char
Closed 27-905basic_ manipulators were mentioned. No longer needed
Active 27-906 default locale arguments for stream constructors
Active 27-907 ipfx/opfx/isfx/osfx not compatible with exceptions.
Active 27-908 iosfwd declarations incomplete
Active 27-909 iostream type classes are missing.
Active 27-910 add a typedef to access the traits parameter in each stream class.
Active 27-911 templatized function in resetiosflags
Active 27-912 <ios> synopsis is incomplete

Editorial Boxes

X3J16/95-0089 WG21/N0689 3

Box 126 27.1.1 Definitions [lib.iostreams.definitions]
Box 127 27.3 Standard iostream objects [lib.iostream.objects]
Box 128 27.3.1 Narrow stream objects [lib.narrow.stream.objects]
Box 129 27.3.2 Wide stream objects [lib.wide.stream.objects]
Box 130 27.4.2 Template struct ios_traits lib.ios.traits]
Box 131 27.4.2.2 ios_traits value functions [lib.ios.traits.values]
Box 132 27.4.2.2 ios_traits value functions [lib.ios.traits.values]
Box 133 27.4.2.4 ios_traits conversion functions [lib.ios.traits.convert]
Box 134 27.4.2.4 ios_traits conversion functions [lib.ios.traits.convert]
Box 135 27.4.3 Class ios_base [lib.ios.base]
Box 136 27.4.3 Class ios_base [lib.ios.base]
Box 137 27.4.3.1.6 Class ios_base::Init [lib.ios::Init]
Box 138 27.4.3.5 ios_base constructors [lib.ios.base.cons]
Box 139 27.4.4 Template class basic_ios [lib.ios]
Box 140 27.4.4 Template class basic_ios [lib.ios]
Box 141 27.4.4.1 basic_ios constructors [lib.basic.ios.cons]
Box 142 27.4.4.1 basic_ios constructors [lib.basic.ios.cons]
Box 143 27.4.4.2 Member functions [lib.basic.ios.members]
Box 144 27.5.2.1 basic_streambuf constructors [lib.streambuf.cons]
Box 145 27.5.2.4.2 Buffer management and positioning [lib.streambuf.virt.buffer]
Box 146 27.5.2.4.3 Get area [lib.streambuf.virt.get]
Box 147 27.6.1.2.1 Common requirements [lib.istream.formatted.reqmts]
Box 148 27.6.1.2.1 Common requirements [lib.istream.formatted.reqmts]
Box 149 27.6.2.3 basic_ostream prefix and suffix functions [lib.ostream.prefix]
Box 150 27.6.2.4.1 Common requirements [lib.ostream.formatted.reqmts]
Box 151 27.6.2.4.1 Common requirements [lib.ostream.formatted.reqmts]
Box 152 27.6.2.4.1 Common requirements [lib.ostream.formatted.reqmts]
Box 153 27.6.2.4.1 Common requirements [lib.ostream.formatted.reqmts]
Box 154 27.7.1 Template class basic_stringbuf [lib.stringbuf]
Box 155 27.7.1.3 Overridden virtual functions [lib.stringbuf.virtuals]
Box 156 27.7.1.3 Overridden virtual functions [lib.stringbuf.virtuals]
Box 157 27.7.1.3 Overridden virtual functions [lib.stringbuf.virtuals]
Box 158 27.8.1 File streams [lib.fstreams]
Box 159 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]
Box 160 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]
Box 161 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]
Box 162 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]
Box 163 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]

X3J16/95-0089 WG21/N0689 4

Open Issues

Issue Number: 27-001
Title: changing traits::newline to be locale aware
Section: 27.4.2.2 ios_traits value functions
Status: active
Description:

The problem with traits::newline is that it does not know about the currently imbued locale.

This proposal addresses the need for a locale-aware newline.

Possible Resolution:
Change traits::newline by adding a parameter for locale information:

static char_type newline(const ctype<char_type>& ct);

The default definition is as if it returns:
ct.widen(‘\n’);

Some functions in basic_istream have a default parameter that is: traits::newline()
(getline , get). These defaults will have to be changed to use the currently imbued
locale. Changing
the default value to: traits::newline(getloc()) won’t work because getloc() is not static.
This would require that the functions that have newline() as a default value will need to be split into two
functions. One function that has three parameters, and one function that has˝two parameters and calls the
three parameter function with a “default” value. For example:

istream_type& getline(char_type *, streamsize, char_type delim);

istream_type& getline(char_type *s, streamsize n)
{ return getline(s, n, newline(getloc().template
use<ctype<char_type> >())); }

The functions that would need to change are:
istream_type& get(char_type *, streamsize, char_type);
istream_type& get(streambuf_type&, char_type);
istream_type& getline(char_type *, streamsize, char_type);

Requestor: Nathan Myers (myersn@roguewave.com),
John Hinke(jhinke@qds.com)

X3J16/95-0089 WG21/N0689 5

Issue Number: 27-002
Title: traits::is_whitespace() is inconsistent
Section: 27.4.2.3 ios_traits test functions [lib.ios.traits.tests]
Status: active
Description:

This function is inconsistent throughout the document. For example:

27.4.2 Template struct ios_traits [lib.ios.traits]
static bool is_whitespace(const ctype<char_type>&, char_type);

27.4.2.3 ios_traits test functions [lib.ios.traits.tests]
bool is_whitespace(char_type, const ctype<char_type>&);

27.6.1.1.2 basic_istream::ipfx [lib.istream.prefix]
Notes: ...uses the function

bool traits::is_whitespace(charT, const locale *)

The same paragraph goes on to use ctype<...> in the example.

27.6.1.1.2 Paragraph 4: [lib.istream.prefix]
static bool is_whitespace(char, const ctype<charT>&)

Possible Resolution:
The problem is which signature is correct. The purpose of this function is to
check for whitespace
characters. It will most commonly be used inside a tight loop where the
lookup of the ctype facet could
be very expensive. I propose the following option:

static bool is_whitespace(char_type c, const ctype<char_type>& ct);

Returns: true if c represents one of the white space characters. The default definition is as
if it
returns ct.is(ct.space, c).

Side note: 27.4.2.3 ios_traits::is_whitespace: The returns paragraph calls a method of ctype
that does not exist.

Requestor: John Hinke (jhinke@qds.com)

Issue Number: 27-003
Title: mention of base struct string_char_traits
Section: 27.4.2.3 ios_traits test functions

paragraph 1 [lib.ios.traits.tests]
Status: active
Description:

27.1.2.1 Type CHAR_T paragraph 2:
“The base class (or struct), string_char_traits provides the definitions common between the string
class templates and the iostream class templates.”

27.4.2.3 paragraph 1:
“...the following three functions provided from the base struct string_char_traits<CHAR_T>.”

ios_traits is not derived from string_char_traits.

X3J16/95-0089 WG21/N0689 6

Possible Resolution:
Remove the sentence from 27.1.2.1. Remove 27.4.2.3 paragraph 1.

Requestor: John Hinke (jhinke@qds.com)

X3J16/95-0089 WG21/N0689 7

Issue Number: 27-004
Title: Add ios_traits::space that returns a space character.
Section: 27.4.2 Template struct ios_traits [lib.ios.traits]
Status: active
Description:

The space character should be made available in the ios_traits class. The default fill character is a
“space” character. This character may not be available for all˝character sets and should be placed in the
ios_traits class for specialization.

Possible Resolution:
Add the following member to ios_traits:

static charT space(const ctype<charT>& ct);

Returns: The space character for the given locale. The default definition is as if it˝evaluates:

return ct.widen(‘ ‘);

Requestor: John Hinke (jhinke@qds.com)

Issue Number: 27-005
Title: example of changing the behavior of is_whitespace is incorrect.
Section: 27.6.1.1.2 Paragraph 4 basic_istream prefix and suffix [lib.istream.prefix]
Status: active
Description:

The example of changing behavior of is_whitespace is incorrect. It should read:

struct my_char_traits : public ios_traits<char> {
static bool is_whitespace(char c, const ctype<char>& ct)

{ ... my own implementation... }
};

Possible Resolution:
Requestor: John Hinke (jhinke@qds.com)

Issue Number: 27-006
Title: not_eof specification
Section: 27.4.2.2 ios_traits value functions [lib.ios.traits.values]
Status: active
Description:

int_type not_eof(int_type c);

Editorial: “Notes:” should also mention it is used for sbumpc and sgetc.

Per Bothner writes:
“The Returns: is incompatible with the traditional masking function for zapeof. This is because
int_type(-2) == -2 while zapeof(-2) == ((-2) & 0xFF). And nowhere else does it say
anything that would allow the traditional implementation.

“I don’t understand the presentation style well enough to suggest the˝proper fix. But somewhere it should
say or imply that when charT is specialized with char, then not_eof(c) is int_type((unsigned
char)(c)).”

X3J16/95-0089 WG21/N0689 8

Possible Resolution:
Requestor: Per Bothner (bothner@cygnus.com)

Issue Number: 27-102
Title: ios_base::fill
Section: 27.4.3.2 ios_base fmtflags state functions [lib.fmtflags.state]
Status: active
Description:

The ios_base::fill functions use a type that depends on the template type; however, ios_base is a
non-templatized class.

Possible Resolution:
Move the fill functions to basic_ios. This would allow them to be templatized on the character type.
The fill character is really only used for output, but moving this to basic_ostream would break code
that expected it to be in ios.

Requestor: John Hinke (jhinke@qds.com)

Issue Number: 27-103
Title: ios_base::ios_base() effects
Section: 27.4.3.5 ios_base constructors [lib.ios.base.cons]
Status: active
Description:

Table 72 lists the effects of calling the ios_base constructor. There are several issues relating to this
constructor.

Issue 1:
The rdstate() element has a value that is based on sb which is a streambuf located in
basic_ios<>. Change the value of rdstate() to goodbit and ignore checking the streambuf.
The basic_ios constructor will handle checking the streambuf.

Issue 2:
The fill() element needs to be moved to basic_ios. This falls in line with Issue 27-102.

Possible Resolution:
Requestor: John Hinke (jhinke@qds.com)

Issue Number: 27-104
Title: ios_base manipulators
Section: 27.4.5 ios_base manipulators [lib.std.ios.manip]
Status: active
Description:

There is only one ios_base manipulator that says, “Does not affect any extractors.” (showbase)

This implies that the rest of the manipulators affect extractors. If the˝manipulators only affect insertors
(ignoring skipws), then perhaps they should be ostream manipulators instead of ios_base
manipulators. If they are left as ios_base manipulators, then they should affect extractors as well as
insertors.

The locale num_get facet says, “Reads characters from in, interpreting them according to
str.flags()...” This implies that the manipulators affect the extraction of values˝from a stream.

X3J16/95-0089 WG21/N0689 9

A couple of cases:

unsigned int ui;
int i;

cout << -10;
cin >> ui; // What should this read in?
cout << showpos << 10; // +10
cin >> ui; // What about this?

cout << showbase << hex << 10; // 0xa
cin >> i; // Should this be valid?
cin >> showbase >> hex >> i; // What about this?

Possible Resolution:

Keep all manipulators as they are but say something to the effect that the
manipulators affect both insertors
and extractors. Remove the Notes on showbase. This is different behavior than the original AT&T
implementation.

Editorial Issue: These manipulators should be moved to the ios_base clause.

Requestor: John Hinke (jhinke@qds.com)

Issue Number: 27-303
Title: basic_streambuf::sputc(int c)
Section: 27
Status: closed
Description:

Bernd Eggink says,
“I think the parameter shold be ‘int_type’ instead of ‘int’. May this be called with parameter
eof()? If so, what will happen? What is the effect of calling sputc() with an arbitrary int
parameter?”

Possible Resolution:
Eggink’s proposal:

“A consistent solution would be to change 27.2.1.2.13 like this:

int_type sputc(int_type c);

If the output sequence does not have a write position available, returns overflow(c). Otherwise, if
c != eof(), returns (*pnext++ = (char_type)c). Otherwise returns a value != eof().”

Schwarz’ proposal:
“The return type should clearly be int_type. I think that was just overlooked in the templatization.
I think the argument type should be char_type.

For ordinary char streambuf’s sputc(-1) is supposed to insert 0xFF. At least that is what it did in
the original implementation. Note that under your description the function˝would do different things
depending on whether or not a write position is available. The orginal˝implementation does
overflow(zapeof(c)) when it calls overflow. zapeof was a macro that corresponds to the
version of not_eof accepted at VF.

X3J16/95-0089 WG21/N0689 10

int_type not_eof(char_type);

So I think we should say it calls:

overflow(not_eof(c));

in case a write position isn’t available.”

The accepted solution was Schwarz’.

Discussion:
The WP does not reflect the accepted solution. The return type is still int. This should be changed to
int_type.

Requestor: Bernd Eggink (admin@rrz.uni-hamburg.de)
John Hinke (jhinke@qds.com)

Issue Number: 27-304
Title: imbuing on streambufs: when, how often, etc...
Section: 27.5.2.2.1 Locales [lib.streambuf.locales]
Status: active
Description:

There needs to be something said as to when a new locale can be imbued into a˝streambuf or stream. Which
operations are considered “atomic” in regards to locale changes.

Possible Resolution:
The effect of calling imbue during activation of any member of a class derived from basic_ios<>, or
of any operator << or >> in which the class is the left argument, is unspecified. In particular˝(e.g.) any
codeset conversion occurring in the streambuf may become incompatible with the˝formats specified by
the old locale and still used.

The effect of calling streambuf::imbue or pub_imbue during activation of any streambuf virtual
member is also undefined.

Requestor: Nathan Myers (myersn@roguewave.com)

Issue Number: 27-305
Title: int streambuf::sungetc()
Section: 27.5.2.2.4 Putback [lib.streambuf.pub.pback]
Status: active
Description:

The function int basic_streambuf::sungetc() has a return type that should be int_type.

Possible Resolution:
Change 27.5.2: Template class

basic_streambuf<charT, traits> [lib.streambuf]
int_type sungetc();

Change 27.5.2.2.4: basic_streambuf::sungetc [lib.streambuf.pub.pback]
int_type sungetc();

Requestor: John Hinke (jhinke@qds.com)

X3J16/95-0089 WG21/N0689 11

Issue Number: 27-306
Title: not_eof needs to be used where appropriate
Section: 27
Status: active
Description:

27.5.2.2.3 Get area [lib.streambuf.pub.get]

int_type sbumpc();
Returns: “...returns char_type(*gptr())...”

This should be changed to say, “...returns not_eof(*gptr())...”

int_type sgetc();
Returns: “...returns char_type(*gptr()).”

This should be changed to say, “...returns not_eof(*gptr())...”

Possible Resolution:
Requestor: Per Bothner (bothner@cygnus.com)

Issue Number: 27-307
Title: uflow needs editing
Section: 27
Status: active
Description:

27.5.2.4.3 Get area [lib.streambuf.virt.get]

int_type uflow();
Default behavior: “...returns *gptr().”

This should be changed to, “...returns not_eof(*gptr()).”

Returns: traits::not_eof(c)

This should be changed to, “traits::not_eof(*gptr())”

Possible Resolution:
Requestor: Per Bothner (bothner@cygnus.com)

Issue Number: 27-401
Title: istream::isfx
Section: 27.6.1.1.2 basic_istream prefix and suffix [lib.istream.prefix]
Status: active
Description:

What is the purpose of this function? The WP says, “Effects: None.” Should it do something more? Or is
it implementation defined!

Possible Resolution:
This function should be deprecated in favor of 27-908

Requestor: John Hinke (jhinke@qds.com)

X3J16/95-0089 WG21/N0689 12

Issue Number: 27-402
Title: examples for ipfx
Section: 27.6.1.1.2 basic_istream prefix and suffix [lib.istream.prefix]
Status: active
Description:

The example for a “typical” implementation of ipfx() has an incorrect function declaration. It should
read:

template<class charT, class traits>
bool basic_istream<charT, traits>::ipfx(bool noskipws)

Possible Resolution:
This function should be fixed and deprecated in favor of 27-907

Requestor: John Hinke (jhinke@qds.com)

Issue Number: 27-403
Title: streamsize istream::readsome
Section: 27.6.1.3 Unformatted input functions [lib.istream.unformatted]
Status: active
Description:

The return for in_avail() > 0 will return a value that doesn’t match the return type for readsome.

Possible Resolution:
Change the description for in_avail > 0 to:

If in_avail > 0, calls read(s, min(in_avail(), n)), and returns
min(in_avail(), n).

Requestor: John Hinke (jhinke@qds.com)

Issue Number: 27-406
Title: Clarification of exceptions thrown
Section: 27.6.1.1 Template class basic_istream [lib.istream]
Status: active
Description:

27.6.1.1 paragraph 4 says
 "If one of these called functions throws an exception, then unless noted˝otherwise the input function calls
setstate(badbit) and if badbit is on in exception() (sic) rethrows the exception without
completing its actions."

Problem: If badbit is on in exceptions() then ios_base::clear, which is called by
setstate(badbit), will throw an object of ios_base::failure and the original exception will
NEVER be rethrown, i.e., it will be lost.

Discussion:
Jerry Schwarz,

“This has been discussed a lot. My preference has always been that if any˝of the virtuals throws an
exception then

a) set badbit in error state
b) check badbit in exception state
 b1) if its on then rethrow the original exception

b2) do not throw anything, treat as an error.

X3J16/95-0089 WG21/N0689 13

“Other implementors have complained that this was hard to do, and have˝preferred to just let the exception
be passed through without being caught at all.

“Other people think that all iostream operations should only through ios_base::failure.”
Possible Resolution:

Requestor: Modena Software (modena@netcom.com)

Issue Number: 27-501
Title: ostream<<(char) : formatting, padding, width
Section: 27.6.2.4.2 basic_ostream::operator<<
Status: active
Description:

For historical reasons, this function has usually ignored padding and˝formatting. In the WP, it does not
mention anything about ignoring padding or formatting. This needs to be˝clarified.

Possible Resolution:
Reasons for ignoring padding on op<<(char):

1. Historical reasons/compatibility

Reasons for full formatting on op<<(char):

1. put(char) currently does no formatting. But there is no way to insert a char with formatting.
2. Some implementations do formatting.

Since put can insert a character without formatting, there needs to be a way to insert˝a character with
formatting. Currently this does not exist. It would be nice not to introduce˝an inconsistency with the other
formatted inserters, but it would also be nice to provide compatibility. I˝think that consistency would be
much better in this case than compatibility.

Requestor: John Hinke (jhinke@qds.com),
Bernd Eggink (admin@rrz.uni-hamburg.de)

X3J16/95-0089 WG21/N0689 14

Issue Number: 27-502
Title: ostream::operator<<(void *)
Section: 27.2.4.1
Status: Open
Description:

ostream& operator<<(void *)

should take ‘const volatile void *’ rather than void *.

Resolution:
The function now takes a const void *.

ReOpened:
Does anyone know why the resolution was for it to take a const void * rather than a const
volatile void *?

I can't think of any good reason why we should make the code:

#include <iostream>
volatile int x;
int main() {

cout << & x;
return 0;

}

ill-formed.

Requestor: Fergus Henderson (fjh@munta.cs.mu.oz.au)

Issue Number: 27-504
Title: int ostream::put(char_type c)
Section: 27.6.2.5.1 basic_ostream::put
Status: active
Description:

The current return type should be changed from int to int_type.

Also, the Effects: says, “returns (unsigned char)c”. This should be changed to some appropriate
value (I’m not sure what that is!)

Possible Resolution:
Requestor: John Hinke (jhinke@qds.com)

Issue Number: 27-601
Title: operator<<(streambuf *), and operator>>(streambuf *)

error status on NULL streambuf
Section: 27.6.1.2.2, 27.6.2.4.2

[lib.istream::extractors], [lib.ostream.inserters]
Status: active
Description:

It is currently undefined as to what happens when a NULL streambuf is passed to these functions.

Possible Resolution:

X3J16/95-0089 WG21/N0689 15

Need to add wording that says if the streambuf is NULL, then setstate(failbit).

Requestor: John Hinke (jhinke@qds.com)

Issue Number: 27-602
Title: istream::operator>>(ios_base&),

ostream::operator<<(ios_base&)
Section: 27.6.1.2.2, 27.6.2.4.2

[lib.istream::extractors], [lib.ostream.inserters]
Status: active
Description:

The ios_base manipulators will not work as written. They won’t work because there is˝no conversion
from ios_base to basic_ios.

They are currently declared as:
ios_base& boolalpha(ios_base&);

I propose adding a new insertor/extractor for istream and ostream that does insertion/extraction for
ios_base.

Possible Resolution:
Add to basic_istream:

basic_istream<charT, traits>& operator>>(ios_base& (*pf)(ios_base&));

Effects: Calls (*pf)(*this), returns *this.

Add to basic_ostream:

basic_ostream<charT, traits>& operator<<(ios_base& (*pf)(ios_base&));

Effects: Calls (*pf)(*this), returns *this.

Also, several footnotes will need to be changed.

Requestor: John Hinke (jhinke@qds.com)

Issue Number: 27-604
Title: positional typedefs in istream/ostream derived classes
Section: 27
Status: active
Description:

Remove the positional typedefs from the following classes. The positional˝typedefs are:

typedef traits::pos_type pos_type;
typedef traits::off_type off_type;

They are not used in the following classes:

basic_istringstream
basic_ostringstream
basic_ifstream
basic_ofstream

X3J16/95-0089 WG21/N0689 16

Possible Resolution:
Remove them. They are still inherited from the base classes.

Requestor: John Hinke (jhinke@qds.com)

Issue Number: 27-605
Title: istream::read, ostream::write
Section: 27.6.1.3, 27.6.2.5

[lib.istream.unformatted], [lib.ostream.unformatted]
Status: active
Description:

istream& istream::read(char_type *,streamsize);
ostream& ostream::write(const char_type *,streamsize);

These functions are typically used for binary data.

Possible Resolution:
These function should take a void * instead of char_type *. If these functions are changed, then
perhaps we should add another function that replaces this behavior. basic_istream currently has a
get function which behaves like the read and write functions. It would make sense to add a
corresponding put function in basic_ostream which parallels the behavior of get.

Requestor: John Hinke (jhinke@qds.com)

Issue Number: 27-607
Title: Opening an istream without ios::in set? or an ostream without ios::out set?
Section: 27.6.1.1, 27.6.2

[lib.input.streams], [lib.output.streams]
Status: active
Description:

Benedikt asks,
“Why can I open an istream without ios::in being set or an ostream without ios::out? I mean,
I just did that by mistake with an ofstream and searched for quite a while to find out, why there were no
actual writes to the newly created file.

“Or, even worse, why can I open an istream with ios::out (and no ios::in) being set and vice
versa?

“Shouldn't the iostreams check whether the given mode flags make any sense,˝and maybe even add
ios::in if you missed to set this in an istream, or ios::out if you used an ostream?”

Possible Resolution:
Should we enfore this policy? Does it ever make sense to open an istream for writing or an ostream
for reading?

Requestor: Benedikt Erik Heinen (beh@tequila.oche.de)

Issue Number: 27-608
Title: get/put type functuions should be able to use iterators.
Section: 27
Status: active
Description:

X3J16/95-0089 WG21/N0689 17

Several functions in istream and ostream take a pointer and a length and optionally a delimiter. It
would be nice to add overloaded functions that took either InputIterators, or
OutputIterators. These new
functions would look like:

For basic_istream:

template<class OutputIterator>
istream& get(OutputIterator begin, OutputIterator end, char_type

delim);

The begin and end iterators define where the characters will be written. Characters will be
read
from the sequence until the end iterator is reached, or the next character is delim.

For basic_ostream:

template<class InputIterator>
ostream& write(InputIterator begin, InputIterator end);

The begin and end iterators define the sequence of characters to be written.

These functions would be added to the current implementation. The current set
of functions should not be
removed. They are very commonly used. There are several functions which are
candidates for these
begin and end iterators. These functions are:

For basic_istream:

istream& get(char_type *, streamsize, char_type);
istream& getline(char_type *, streamsize, char_type);
istream& read(char_type *, streamsize);

For basic_ostream:

ostream& put(char_type *, streamsize);
ostream& write(void *, streamsize);

Possible Resolution:
Requestor: Nathan Myers (myersn@roguewave.com)

Issue Number: 27-702
Title: basic_stringbuf::str() needs to clarify return value on else clause
Section: 27.7.1.2 Member functions [lib.stringbuf.members]
Status: active
Description:

“Table 75 in [lib.stringbuf.members] describes the return values of basic_stringbuf::str(). What
does the "otherwise" mean?. Does it mean neither ios_base::in nor ios_base::out is set? What
is the return value supposed to be if _both_ bits are set?”

Possible Resolution:
Requestor: Angelika Langer (Angelika.Langer@mch.sni.de)

Bernd Eggink (admin@rrz.uni-hamburg.de)

Issue Number: 27-703
Title: string streams need allocator and

string_char_traits parameters

X3J16/95-0089 WG21/N0689 18

Section: 27.7.1 Template class basic_stringbuf
Status: active
Description:

The string streams are currently templatized on the character type (charT) and the traits type
(ios_traits). String template parameters need to be added.

Possible Resolution:
I propose to change the template parameters of the string streams from:

template<class charT, class traits = ios_traits<charT> >
to:

template<class charT, class IOS_traits = ios_traits<charT>,
class STRING_traits = string_char_traits<charT>,
class Allocator = allocator>

All references to basic_string, or any of the string stream classes will need to be fixed.

All references to traits should be replaced by either IOS_traits or STRING_traits.

Requestor: John Hinke (jhinke@qds.com)

Issue Number: 27-801
Title: Table 83 (File Open Modes) is incomplete
Section: 27
Status: active
Description:

The table is incomplete in describing all possible combination of modes.
Something should be said about
modes not listed in this table?

Possible Resolution:
Either:

• fill in the table and list all possible combinations
• or say that the unlisted modes are undefined.

I think that the table should be filled in.

Requestor: Jerry Schwarz (jss@declarative.com)

 Issue Number: 27-802
Title: filebuf::underflow example
Section: 27
Status: active
Description:

The “as if” example for basic_filebuf::underflow has several “typos”. It should say:

char from_buf[FSIZE};
char* from_end;
char to_buf[TSIZE};
char* to_end;
typename traits::state_type st;

codecvt_base::result r =
getloc().template use<codecvt<char, charT,
typename traits::state_type> >().convert

X3J16/95-0089 WG21/N0689 19

(st, from_buf, from_buf+FSIZE, from_end,
to_buf, to_buf+TSIZE, to_end);

Possible Resolution:
Requestor: John Hinke (jhinke@qds.com)

Issue Number: 27-803
Title: filebuf::open calls basic_streambuf constructor
Section: 27
Status: active
Description:

The Effects: clause says, “calls basic_streambuf<charT, traits>::basic_streambuf()”
This type of call is illegal.

Possible Resolution:
A member function should be added to basic_streambuf that does the initialization. Then change
basic_filebuf::open so that it calls that function.

Requestor: John Hinke (jhinke@qds.com)

Issue Number: 27-904
Title: input/output of unsigned charT
Section: 27
Status: active
Description:

NOTE: istream here means basic_istream.
ostream here means basic_ostream.

This issue details all of the issues with inserting or extracting characters.

Currently, IOStreams does not allow the insertion/extraction of unsigned charT or signed charT.
There are two types of functions that could insert or extract these character˝types: formatted IO, and
unformatted IO. Formatted IO use overloaded operators. Example:

istream& istream::operator>>(charT&);
ostream& ostream::operator<<(charT);

Examples of unformatted IO are:

istream& istream::get(charT *, streamsize, charT);
int_type ostream::put(charT);

This does not allow us to overload on unsigned charT. We can make the formatted operators global,
and then overload (“specialize”) on char, and wchar_t, but that doesn’t solve the unformatted problem.

There is also a problem of inserting or extracting wide-characters from a˝skinny stream or skinny characters
from a wide-stream:

char c;
wchar_t wc;

cout << wc;
wcout << c;

X3J16/95-0089 WG21/N0689 20

Possible Resolution:
I propose two different solutions. Both of them solve the problem.

Solution #1
I propose to change the current member functions that “use” charT’s as the argument type to char and
wchar_t. For example:

Replace:
istream& istream::operator>>(charT&);

With:
istream& istream::operator>>(char&);
istream& istream::operator>>(signed char&);
istream& istream::operator>>(unsigned char&);
istream& istream::operator>>(wchar_t&);

Users can easily add a new global insertion/extraction operator for their new˝character type. They can also
derive from istream or ostream and add their own unformatted IO functions for their new character
type.

This would also solve the problem of inserting skinny characters into a wide˝stream or wide characters into
a skinny stream.

For the unformatted IO functions, we replace:
istream& istream::get(charT *, streamsize, charT);

with:
istream& istream::get(char *, streamsize, char);
istream& istream::get(unsigned char *, streamsize, unsigned char);
istream& istream::get(signed char *, streamsize, signed char);
istream& istream::get(wchar_t *, streamsize, wchar_t);

We would also need to replace the other members that make sense reading or w˝riting unsigned char, or
signed char values.

This would still allow users to have streams of unsigned char, or any other type.

Solution #2
Leave the classes as they are, but add several new member functions. For˝example:

Leave this member function:
istream& istream::operator>>(charT&);

and add these member functions:
istream& istream::operator>>(unsigned char&);
istream& istream::operator>>(signed char&);

For the unformatted IO functions we leave this member function:
istream& istream::get(charT *, streamsize, charT);

and add these member functions:
istream& istream::get(unsigned char *, streamsize, unsigned char);
istream& istream::get(signed char *, streamsize, signed char);

This would still allow users to create their own character type class and also˝provide backward
compatibility. However, this would mean that users could not have istream<unsigned char>,
which I think is a resonable restriction.

X3J16/95-0089 WG21/N0689 21

This would not solve the skinny-character-on-wide-stream problem, though. To
solve this problem, we can
overload the formatted functions:

We can define global inserters/extractors for these special cases:

namespace std {
 ostream& operator<<(ostream&, wchar_t);
 wostream& operator<<(wostream&, char);

 istream& operator>>(istream&, wchar_t&);
 wistream& operator>>(wistream&, char&);
}

This would still not allow us to to insert a skinny-character-on-wide-stream
using the unformatted IO
routines. I’m not sure if that is a real problem or not. If you need to˝use the unformatted operations, you
could easily use either read or write.

The following functions would need to be changed for either solution:
istream& operator>>(char_type *);
istream& operator>>(char_type&);
istream& get(char_type *, streamsize, char_type);
istream& getline(char_type *, streamsize, char_type);

ostream& operator<<(char_type *);
ostream& operator<<(char_type);

Requestor: John Hinke (jhinke@qds.com)

Issue Number: 27-906
Title: default locale arguments
Section: 27
Status: active
Description:

Default locale arguments for stream constructors.

istream and ostream constructors (and all derivations) should have a default locale argument,˝in the
manner of

obogusstream(const char *name,const locale& l = locale::classic());

or perhaps:

obogusstream(const char *name,const locale& l = locale());

Norihiro Kumagai <kuma@slab.tnr.sharp.co.jp> replies:

In order to cordinate the C-language locale model, I believe that the default˝locale value should not be
’locale::classic ()', what we call "C" locale, but be ’locale::global()', the current
global locale.

Most likely, it should probably be locale::global().

The next issue is when can the locale change? There is nothing that says a˝user cannot change the current
locale. In fact, an interface exists in both ios_base and basic_streambuf for changing the locale at

X3J16/95-0089 WG21/N0689 22

any time. If we were to use locale::transparent, the locale could change even if the user didn’t
want it to. This isn’t to say that the user couldn’t imbue locale::transparent.

Possible Resolution:
Add a new argument to the standard stream constructors:

const locale& l = locale::global()

Add this new argument to the following classes’ constructors:

basic_istream,
basic_ostream,
basic_istringstream,
basic_ostringstream,
basic_ifstream,
basic_ofstream

Question: Should we say anything about str streams?

Requestor: Nathan Myers (myersn@roguewave.com)
Norihiro Kumagai (kuma@slab.tnr.sharp.co.jp)

Issue Number: 27-907
Title: [io]{pfs|sfx} and exceptions
Section: 27.2.2.1, 27.2.4.1
Status: active
Description:

The members ipfx()/opfx and isfx()/osfx() of the streams are not compatible with exceptions.
We need to eliminate them in favor of member classes whose˝constructor/destructor perfom the same
actions, in the manner of custodian classes.

Possible Resolution:
In order for istream/ostream to be safe with exceptions the *pfx and *sfx functions need to be called
in pairs. I propose to introduce a new class in basic_istream and basic_ostream. This class will
be responsible for “doing” *pfx type operations in the constructor and˝*sfx type operations in the destructor.
This will guarantee that *pfx and *sfx will be called in pairs even if an˝exception is thrown.

Add the following class to basic_istream:

class sentry {
bool ok_; // exposition only

public:
explicit sentry(bool noskipws = false);
~sentry();

operator bool();
};

Add the following class to basic_ostream:

class sentry {
bool ok_; // exposition only

public:
explicit sentry();
~sentry();

X3J16/95-0089 WG21/N0689 23

operator bool();
};

Typical usage will be something like:

template<class charT, class traits>
basic_istream<charT, traits>&
basic_istream<charT, traits>::
operator>>(short& s)
{

if(sentry cerberus(false)) {
// read in short

}

return *this;
}

Class basic_istream::sentry

The class sentry defines a class that is responsible for doing ipfx and isfx type operations.
This class
makes prefix and suffix operations exception safe.

explicit sentry(bool noskipws = false);

Effects: Same as ipfx(), except that the return value is stored in ok_.

~sentry();

Effects: Same as isfx()

operator bool();

Effects: Returns ok_.

Class basic_ostream::sentry

The class sentry defines a class that is responsible for doing opfx and osfx type operations.
This class
makes prefix and suffix operations exception safe.

explicit sentry();

Effects: Same as opfx(), except that the return value is stored in ok_.

~sentry();

Effects: Same as osfx()

operator bool();

Effects: Returns ok_.

Deprecate ipfx/opfx/isfx/osfx in favor of this technique.

Requestor: Nathan Myers (myersn@roguewave.com),

X3J16/95-0089 WG21/N0689 24

John Hinke (jhinke@qds.com),
Jerry Schwarz (jss@declarative.com)

Issue Number: 27-908
Title: iosfwd declarations: incomplete
Section: 27.2 Forward declarations
Status: active
Description:

The list of forward declarations is incomplete. Should it contain all of the
forward declarations available?

Possible Resolution:
Requestor: John Hinke (jhinke@qds.com)

Issue Number: 27-909
Title: Add iostream, fstream, stringstream,

and strstream
Section: 27
Status: active
Description:

These classes were removed from the WP (date unknown). Users will complain
about this. Library
vendors will probably add this to make their users happy. There has been some
discussion of this on
comp.std.c++.

Add the classes back to the WP. There is a way around this problem, but it
requires users to change more
of their code. If at all possible, I think it would be excellent if we could
reduce the amount of code that
users will have to change.

Without these classes, code such as:
fstream inout(“test.txt”);

Would have to be replaced by code such as:
filebuf fb(“test.txt”);
istream in(&fb);
ostream out(&fb);

The problem with this is that there would still be code like:
inout << “Something”;
inout >> someVar;

That would have to be changed and that could be a lot of work.

Possible Resolution:
Option 1:

Add the classes back following the original AT&T implementation.

Requestor: John Hinke (jhinke@qds.com)

X3J16/95-0089 WG21/N0689 25

Issue Number: 27-910
Title: add a typedef to access the traits parameter for a class.
Section: 27
Status: active
Description:

Some classes like istream don’t have access to the traits template parameter. Perhaps each class˝should
provide a typedef for the traits parameter.

You need the traits parameter when you want to say stuff like:

cin.ignore(100, traits::newline(cin.getloc().
template use<ctype<cin.char_type> >()));

There is no way to get the traits type without saying something like: ios_traits<cin.char_type>
which is almost resonable, but it would be nicer to say something like: cin.traits_type. There are
some cases where ios_traits is not the traits used to instantiate the stream.

Possible Resolution:
Add the following to each templatized class:

typedef traits traits_type;
Where traits is the template parameter

Requestor: John Hinke (jhinke@qds.com)

Issue Number: 27-911
Title: The example return function for resetiosflags is templatized.
Section: 27.6.3 [lib.std.manip]
Status: active
Description:

The function returned in resetiosflags is templatized. It doesn’t need to be templatized.

Possible Resolution:
Looks like an editorial issue. Just need to remove the template.

Requestor: John Hinke (jhinke@qds.com)

Issue Number: 27-912
Title: <ios> synopsis is incomplete
Section: 27.4 [lib.iostreams.base]
Status: active
Description:

There are missing typedefs. The missing typedefs are:

typedef POS_T streampos;
typedef POS_T wstreampos;

Possible Resolution:
Add these typedefs to the synopsis.

Requestor: John Hinke (jhinke@qds.com)

X3J16/95-0089 WG21/N0689 26

Editorial Boxes
Issue Number: Box 126
Title: Definitions
Section: 27.1.1 [lib.iostreams.definitions]
Status: active
Description:

“Move these to an Annex containing a Glossary of terms”

Possible Resolution:

Issue Number: Box 127
Title: Standard iostream objects
Section: 27.3 [lib.iostream.objects]
Status: active
Description:

“These objects need to be constructed and associations established before˝dynamic initialization of file
scope variables is begun.”

Possible Resolution:

Issue Number: Box 128
Title: Narrow stream objects
Section: 27.3.1 [lib.narrow.stream.objects]
Status: active
Description:

“The destination of clog ought to be implementation defined”

Possible Resolution:
Change 27.3.1 Narrow stream objects [lib.narrow.stream.objects] Paragraph 6 to:

The object clog controls output to an implementation defined stream buffer.

Issue Number: Box 129
Title: Wide stream objects
Section: 27.3.2 [lib.wide.stream.objects]
Status: active
Description:

“The destination of wlog ought to be implementation defined”

Possible Resolution:
Change 27.3.2 Wide stream objects [lib.wide.stream.objects] Paragraph 6 to:

The object wlog controls output to an implementation defined stream buffer.

Issue Number: Box 130
Title: Template struct ios_traits
Section: 27.4.2 [lib.ios.traits]
Status: active
Description:

X3J16/95-0089 WG21/N0689 27

“The newline() member needs to depend on a ctype<char_type> parameter, just as does
is_whitespace()”

Possible Resolution:
See Issue #27-001

Issue Number: Box 131
Title: ios_traits value functions
Section: 27.4.2.2 [lib.ios.traits.values]
Status: active
Description:

“Should the argument type be int_type”

Possible Resolution:

Issue Number: Box 132
Title: ios_traits value functions
Section: 27.4.2.2 [lib.ios.traits.values]
Status: active
Description:

“The newline() member needs to depend on a ctype<char_type> parameter, just as does
is_whitespace(). As such, we should overload getline() with and without the parameter so that
the caller need not obtain a ctype<char_type> reference to pass to getline().”

Possible Resolution:
See Issue #27-001

Issue Number: Box 133
Title: ios_traits conversion functions
Section: 27.4.2.4 [lib.ios.traits.convert]
Status: active
Description:

“To be specified”

state_type get_state(pos_type pos);

Possible Resolution:

Issue Number: Box 134
Title: ios_traits conversion functions
Section: 27.4.2.4 [lib.ios.traits.convert]
Status: active
Description:

“To be specified”

pos_type get_pos(streampos pos,
state_type state);

Possible Resolution:

Issue Number: Box 135
Title: Class ios_base
Section: 27.4.3 [lib.ios.base]

X3J16/95-0089 WG21/N0689 28

Status: active
Description:

“Add the following declarations:

// 27.4.4.3 iostate flags:
operator bool() const;
bool operator!() const;
iostate rdstate() const;
void clear(iostate state = goodbit);
void setstate(iostate state);
bool good() const;
bool eof() const;
bool fail() const;
bool bad() const;
ios_base& copyfmt(const ios_base& rhs);

Note that there will still be a version of copyfmt() specified for basic_ios. The task of “copying the
state” can be divided between these two functions: ios_base::copyfmt() copies the current state of
the fmtflags, while basic_ios::copyfmt() copies the tie() state (if that is indeed what is
involved in copying the format).”

Possible Resolution:
Move all of these functions to class ios_base except for clear and setstate.

Issue Number: Box 136
Title: Class ios_base
Section: 27.4.3 [lib.ios.base]
Status: active
Description:

“Move the following to class basic_ios:

int_type fill() const;
int_type fill(int_type ch);

Possible Resolution:

Issue Number: Box 137
Title: Class ios_base::Init
Section: 27.4.3.1.6 [lib.ios::Init]
Status: active
Description:

“For the sake of exposition, the maintained data is presented here as:

static int init_cnt, counts the number of constructor and destructor calls for class Init,
initialized to zero.”

Possible Resolution:

Issue Number: Box 138
Title: ios_base constructors
Section: 27.4.3.5 [lib.ios.base.cons]
Status: active
Description:

X3J16/95-0089 WG21/N0689 29

“The initialization of the value returned by getloc() remains an open issue, as described in 95-
0026/N0626; it may be changed to, locale(), the global locale in effect at the time of initialization.”

Possible Resolution:

Issue Number: Box 139
Title: Template class basic_ios
Section: 27.4.4 [lib.ios]
Status: active
Description:

See Box 135

Possible Resolution:

Issue Number: Box 140
Title: Template class basic_ios
Section: 27.4.4 [lib.ios]
Status: active
Description:

See Box 136
Possible Resolution:

Issue Number: Box 141
Title: basic_ios constructors
Section: 27.4.4.1 [lib.basic.ios.cons]
Status: active
Description:

“TBS”

Possible Resolution:

Issue Number: Box 142
Title: basic_ios constructors
Section: 27.4.4.1 [lib.basic.ios.cons]
Status: active
Description:

“TBS”

Possible Resolution:

Issue Number: Box 143
Title: Member functions
Section: 27.4.4.2 [lib.basic.ios.members]
Status: active
Description:

Need to modify so as to describe the occurrence of imbueing getloc()::codecvt into the argument
stream buffer.

Possible Resolution:

Issue Number: Box 144
Title: basic_streambuf constructors

X3J16/95-0089 WG21/N0689 30

Section: 27.5.2.1 [lib.streambuf.cons]
Status: active
Description:

The choice of locale::classic() vs. locale() for the initial value of getloc() remains open:
95-0026/N0626.

Possible Resolution:
The default value of getloc() should most likely be the current global locale or locale(). The reason
for this is that locale::classic() seems very constraining for implementations that regularly use a
locale other than the “C” locale.

Issue Number: Box 145
Title: Buffer management and positioning
Section: 27.5.2.4.2 [lib.streambuf.virt.buffer]
Status: active
Description:

Is it possible to synchronize the input sequence in all cases? If not, can we˝liberalize this specification to
accomodate those constraints?

Possible Resolution:
I think it is perfectly resonable to be unable to synchronize the input˝sequence all of the time.

Issue Number: Box 146
Title: Get area
Section: 27.5.2.4.3 [lib.streambuf.virt.get]
Status: active
Description:

Is this correct? 94-0035/N0422 said: “Returns an estimate of the number of˝characters available in the
sequence, or -1. If it returns a positive value, then successive calls to underflow() will not return
traits::eof() until at least that number of characters have been supplied. If showmanyc() returns -
1, then calls to underflow() or uflow() will fail.

Possible Resolution:

Issue Number: Box 147
Title: Common requirements
Section: 27.6.1.2.1 [lib.istream.formatted.reqmts]
Status: active
Description:

Is this table clear with regards to %x vs. %X?

Possible Resolution:

Issue Number: Box 148
Title: Common requirements
Section: 27.6.1.2.1 [lib.istream.formatted.reqmts]
Status: active
Description:

Can the current num_put/num_get facet handle basefield specification? Needs more discussion.

Possible Resolution:

X3J16/95-0089 WG21/N0689 31

Issue Number: Box 149
Title: basic_ostream prefix and suffix functions
Section: 27.6.2.3 [lib.ostream.prefix]
Status: active
Description:

Need to append the locale dependency on appropriate inserters. In particular, descriptions must allow
for digit group separators.

Possible Resolution:

Issue Number: Box 150
Title: Common requirements
Section: 27.6.2.4.1 [lib.ostream.formatted.reqmts]
Status: active
Description:

Needs work: NTBS

Possible Resolution:

Issue Number: Box 151
Title: Common requirements
Section: 27.6.2.4.1 [lib.ostream.formatted.reqmts]
Status: active
Description:

Is this table clear with regards to %x vs. %X?

Possible Resolution:

Issue Number: Box 152
Title: Common requirements
Section: 27.6.2.4.1 [lib.ostream.formatted.reqmts]
Status: active
Description:

Can the current num_put/num_get facet handle basefield specification? Needs more discussion.

Possible Resolution:

Issue Number: Box 153
Title: Common requirements
Section: 27.6.2.4.1 [lib.ostream.formatted.reqmts]
Status: active
Description:

Is this table clear with regards to %e vs. %E?

Possible Resolution:

Issue Number: Box 154
Title: Template class basic_stringbuf
Section: 27.7.1 [lib.stringbuf]
Status: active
Description:

For the sake of exposition, the maintained data is presented here as:

X3J16/95-0089 WG21/N0689 32

ios_base::openmode mode, has in set if the input sequence can be read, and out set if the
output sequence can be written.

Possible Resolution:

Issue Number: Box 155
Title: Overridden virtual functions
Section: 27.7.1.3 [lib.stringbuf.virtuals]
Status: active
Description:

Check vs. 27.5.2.4 and 27.8.1.4

Possible Resolution:

Issue Number: Box 156
Title: Overridden virtual functions
Section: 27.7.1.3 [lib.stringbuf.virtuals]
Status: active
Description:

Check vs. 27.8.1.4

Possible Resolution:

Issue Number: Box 157
Title: Overridden virtual functions
Section: 27.7.1.3 [lib.stringbuf.virtuals]
Status: active
Description:

Check vs. 27.8.1.4

Possible Resolution:

Issue Number: Box 158
Title: File streams
Section: 27.8.1 [lib.fstreams]
Status: active
Description:

basic_filebuf<charT, traits> should be specified so that it treats a file as a sequence of
charT. Except for filebuf and wfilebuf that implies it treats the file as binary.

Possible Resolution:

Issue Number: Box 159
Title: Overridden virtual functions
Section: 27.8.1.4 [lib.filebuf.virtuals]
Status: active
Description:

Check vs. 27.5.2.4

Possible Resolution:

Issue Number: Box 160

X3J16/95-0089 WG21/N0689 33

Title: Overridden virtual functions
Section: 27.8.1.4 [lib.filebuf.virtuals]
Status: active
Description:

[To Be Filled]

Check vs. 27.5.2.4 and 27.7.1.3

Possible Resolution:

Issue Number: Box 161
Title: Overridden virtual functions
Section: 27.8.1.4 [lib.filebuf.virtuals]
Status: active
Description:

The member get_offstate() is not defined anywhere.

Possible Resolution:

Issue Number: Box 162
Title: Overridden virtual functions
Section: 27.8.1.4 [lib.filebuf.virtuals]
Status: active
Description:

[To Be Filled]

Check vs. 27.5.2.4 and 27.7.1.3

Possible Resolution:

Issue Number: Box 163
Title: Overridden virtual functions
Section: 27.8.1.4 [lib.filebuf.virtuals]
Status: active
Description:

[To Be Filled]

Check vs. 27.5.2.4

Possible Resolution:

X3J16/95-0089 WG21/N0689 34

Closed Issues

Issue Number: 27-101
Title: ios_base::exceptions(...)
Section: 27.4.3.2.11
Status: closed
Description:

The ios_base::exceptions(iostate except_arg) function calls a member of basic_ios,
which isn’t accessible. The Effects clause says: Calls clear(rdstate()).

Resolution:
The Effects clause was removed.

Requestor: John Hinke (jhinke@qds.com)

Issue Number: 27-301
Title: imbued locales for streambufs mentioned, but missing
Section: 27
Status: closed
Description:

There was mention of an imbued locale for the streambufs, but there was no˝reference to it in the WP.

Possible Resolution:
This has been fixed. There is now functions for imbueing a locale into a˝streambuf.

Requestor: John Hinke (jhinke@qds.com)

Issue Number: 27-302
Title: basic_streambuf::stossc()
Section: 27
Status: closed
Description:

Bernd Eggink says,
“The function is missing and will break a lot of code.”

Resolution:
The function is now deprecated.

Requestor: Bernd Eggink (admin@rrz.uni-hamburg.de)

Issue Number: 27-503
Title: ostream::operator<< (basic_streambuf&)
Section: 27
Status: closed
Description:

ostream& operator<<(ostream&, basic_streambuf&)

should take ‘const basic_streambuf&’ rather than ‘basic_streambuf&’

X3J16/95-0089 WG21/N0689 35

Possible Resolution:
It doesn’t make sense to have a const basic_streambuf& for this function because the streambuf
will change. Therefore, no action was required for this issue.

Requestor: John Hinke (jhinke@qds.com)

Issue Number: 27-603
Title: istream::operator>>(streambuf &)

ostream::operator<<(streambuf &)
Section: 27.2.2.1, 27.2.4.1
Status: closed
Description:

The original IOStreams contained functions:
istream& istream::operator>>(streambuf *);
ostream& ostream::operator<<(streambuf *);

I see in the current draft that they have been changed to take references˝instead of pointers.

Resolution:
They have been changed back to take pointers. See also 27-601.

Requestor: Steve Clamage (stephen.clamage@eng.sun.com)

Issue Number: 27-606
Title: seekg, tellg, seekp, tellp
Section: 27.2.2.1
Status: closed
Description:

The following functions were missing from the WP. Here istream refers to basic_istream, and
ostream refers to basic_ostream.

pos_type istream::tellg();
istream& istream::seekg(pos_type&);
istream& istream::seekg(off_type&,

ios_type::seekdir);

pos_type ostream::tellp();
ostream& ostream::seekp(pos_type&);
ostream& ostream::seekp(off_type&,

ios_type::seekdir);

Resolution:
The functions were added to the WP.

Requestor: John Hinke (jhinke@qds.com)
Bernd Eggink (admin@rrz.uni-hamburg.de)

Issue Number: 27-701
Title: stringstream constructors
Section: 27
Status: closed
Description:

Bernd Eggink says,

X3J16/95-0089 WG21/N0689 36

"The effect of basic_ios::ate should be mentioned. A behavior corresponding to
basic_filebuf::open() would be desirable: If the bit basic_ios::app is set, insertions
take place at the end of the string. Maybe this is a major issue, but I think
it should be considered for
the sake of consistency."

This should be considered for basic_strstreambuf, basic_ostrstream,
basic_istrstream, and the string stream classes.

Possible Resolution:
Requestor: Bernd Eggink (admin@rrz.uni-hamburg.de)

Issue Number: 27-901
Title: Do ios type classes access the streambuf on

destruction...
Status: closed
Description:

Angelika Langer asks,
“Is it correct that all classes in the ‘ios’ class family which do not provide the stream buffer themselves,
i.e. the buffer is externally provided, do not access the stream buffer on˝construction or destruction? This is
explicitly stated for ~istream() and ~ostream() in the draft and will be added for ~ios() as well,
as far as I’ve gathered.”

Resolution:
No action required. Some classes like ifstream and ofstream need to access the streambuf on
destruction to flush and close the file.

Requestor: Angelika Langer (Angelika.Langer@mch.sni.de)

Issue Number: 27-902
Title: Do streambuf classes access the buffer on

destruction...
Status: closed
Description:

Angelika Langer asks,
 "Does the same hold for all classes in the ‘streambuf’ family in case when the character buffer is
provided externally via setbuf() or pubsetbuf()? (Access on construction is no issue here, as there
is no constructor which allows attaching the character buffer. So the question˝is only about access on
destruction.)"

Resolution:
Requestor: Angelika Langer (Angelika.Langer@mch.sni.de

Issue Number: 27-903
Title: public typedefs in the interface, static

eof/newline functions
Section: 27
Status: closed
Description:

All of the IOStreams classes have a public section that only contains either˝typedefs for abreviation, or
helper functions that are not part of the interface. Should these typedefs˝and functions be moved to the
private section. An example is:

X3J16/95-0089 WG21/N0689 37

typedef charT char_type;
static int_type eof()

{ return traits::eof(); }

Resolution:
The typedefs are part of the interface. They are not removed. The
eof/newline functions are removed. The
eof function caused problems with the ios_base::eof() function. To refer to the eof character, use
traits::eof().

Requestor: John Hinke (jhinke@qds.com)

Issue Number: 27-905
Title: basic_ functions
Section: 27.1
Status: closed
Description:

What is the purpose of the basic_ functions (basic_dec, basic_oct...?) The
same purpose can be achieved
without using the basic_ prefix.

Resolution:
These functions were removed. The manipulators are now no-longer templatized
because ios_base is no
longer templatized.

Requestor: John Hinke (jhinke@qds.com)

