
Doc No: X3J16/95-0064
WG21/N664

Date: March 4, 1995
Reply-To: Norihiro Kumagai

Sharp Corporation
kuma@slab.tnr.sharp.co.jp

My Position about the templatized Iostream
for Austin Meeting

Norihiro Kumagai
Sharp Corporation,

IPSJ/ITSCJ/SC22/C++WG

In this paper, I discuss for the two documents about Iostream(X3J16/94-0203,
``Iostream motion for Valley Forge by Jerry Schwarz'', and , X3J16/94-0197,
``Comments for Jerry's proposals about the Templatized Iostream'', by me) in order to
make my position clear for Austin Meeting.

Conclusion

1) I agree with Jerry's proposal of X3J16/94-0203, under the following condition:

1a) introduce wstreampos , wstreamoff in the wchar_t version of ios_traits

(relating to "Proposal 1").
1b) move fill member function from the ios_base to basic_ios (relating to

"Proposal 8".

2) I agree with Jerry's proposal of deleting basic_convbuf from the Working
Paper(see X3J16/94-0163).

3) I summarize my paper of X3J16/94-0197 as specifying locale-dependency of
basic_filebuf default implementation. I propose the following modification for
the Working Paper so as to achieve it:

3a) rewrite the description of the basic_filebuf so as to clarify that implements
shall perform conversion between external source/sink byte stream in a file
and charT stream in the put/get buffer with the codecnv facet in the locale
object imbued in the basic_filebuf .

3b) introduce two member functions:

 locale imbue (locale new_loc);

 locale getloc () const;

to the basic_streambuf (not to basic_filebuf) so as to achieve
synchronization of changing locale value between a basic_istream /
basic_ostream object and its related basic_streambuf object.

3c) introduce the following attribute(one of the private members) in the
basic_filebuf :

 state_type state;

3d) [optional] introduce a new value to the return value and modify the behavior of
codecnv facet of the locale class so as to avoid unnecessary copying to the
basic_filebuf implementation.

Discussion

1: Jerry's document "Iostream motion for Valley Forge"
 (X3J16/94-0203)

Proposal 1: Reorganize the "traits" classes as follows:
....

Allow (but do not require) an implementation to specialize ios_traits<char> .

ios_traits<wchar_t> shall have the default values except that int_type shall be
wint_t .

I agree with it other than the default values of ios_traits<wchar_t> . Instead of the
above description, I believe we should specify:

ios_traits<wchar_t> shall have the default values except that the following:
* int_type shall be wint_t ,
* pos_type shall be wstreampos ,

 - 2 -

* off_type shall be wstreamoff ,

We should leave freedom to choose a separate implementation of widechar version of
Iostream from the skinny character version. In a shift encoding environment,
pos_type and off_type should hold a shift state as well as file position offset
information. I am afraid that if the Standard imposed streampos , streamoff for
pos_type , off_type in widechar version as well as in skinny character version, we
should have given up to enjoy the 32bit range of seek facility under some shift
encoding environment.

Proposal 1a: Add traits to ios_traits .

Agree.

Proposal 2: Change the declaration of not_eof to ...

Agree.

Proposal 3: Clarify that POS_T and OFF_T are merely shorthand notations ...

Agree.

Proposal 4: Rewrite the requirement on pos_type and off_type ...
Proposal 5: Determining the offset associated with ...
Proposal 6: Explicitly allow streampos and streamoff to be the same type.
Proposal 7: The identity, streampos(streamoff (n)) == n; is required...

Agree.

Proposal 8: Introduce a class containing some of the types, constants and functions
that are currently declared in basic_ios , but which do not depend on the template
parameters of basic_ios .

I agree with the opinion. I have found that the ios_base definition appeared in Jerry's
document had included the fill member function although it has int_type as its
argument type, which closely relates to the template parameters of basic_ios . I
believe the fill function should be moved to basic_ios .

 - 3 -

Proposal 8: Change specification for various types to use typedefs rather than derived
classes.

typedef basic_ios<char> ios;

typedef basic_ios<wchar_t> wios;

...

Agree.

Proposal 9: A new header iosfwd that will contain an incomplete declarations of
basic_ios , ios , wios , basic_istream , istream , wistream , basic_ostream ,
ostream and wostream .

Agree.

Proposal 12: Declare wide "standard stream" win , wout , werr and wlog with
streambufs directed to the same sources/sinks of characters as the skinny standard
streams.

Mixing operations on corresponding wide and skinny streams (or stdio FILES) will
follow the same semantics as mixing wide and skinny operations as in amendment 1 of
the ISO C standard.

Agree. I much appreciate the specification of the mixing operation.

Proposal 13: Eliminate write_byte and read_byte from the WP.

Agree.

Proposal 14: Describe pbackfail using a style consistent with the descriptions of the
default (protocol) behavior of underflow and overflow as currently present in
editorial box 154 of the WP.

Agree.

Proposal 15: Add a sentence ...

 - 4 -

Agree.

Proposal 16: Delete all functions from the working paper that mention signed charT

or unsigned charT is the template class parameter. And add editorial boxes noting
that the existing code which calls these functions when T is char may quietly change:
actual arguments of type signed char or unsigned char will resolve to int

instead.

Agree.

I think the resulting declaration of ios_traits are as follows:

template <class charT, class traits=ios_traits<charT> >

class ios_traits {

public:

 typedef charT char_type;

 typedef int int_type; // 94-0203

 static char_type to_char_type (int_type c);

 static int_type to_int_type (char_type c);

 static bool eq_char_type (char_type, char_type);

 static bool eq_int_type (int_type, int_type);

 static int_type eof ();

 static int_type not_eof (char_type c);

 // 94-0203

 static bool is_eof (int_type);

 static char_type newline ();

 static bool is_whitespace (ctype<char_type>, char_type);

 static char_type eos ();

 static size_t length (); // streamsize?

 static char_type* copy (char_type* dst,

 const char_type* src, size_t n);

 // size_t --> streamsize?

 typedef streampos pos_type; // 94-0203

 typedef streamoff off_type; // 94-0203

 typedef T1 state_type; // 94-0197(1-1) && 94-0203,

 // but WP shows int instead of T1.

 - 5 -

 static state_type get_state (pos_type pos);

 // 94-0197 && 94-0203

 static state_type get_pos (streampos pos, state_type s);

 // 94-0197 && 94-0203

};

class ios_traits<wchar_t> {

public:

 typedef wchar_t char_type;

 typedef wint_t int_type; // 94-0203

 static char_type to_char_type (int_type c);

 ...

 typedef wstreampos pos_type; // 94-0197(1-2) (conflicts 203)

 typedef wstreamoff off_type; // 94-0197(1-2) (conflicts 203)

 ...

};

2: Deleting basic_convbuf

I decided to accept Jerry's response about extensibility of conversion functionality (see
c++std-lib-3515). I understand his idea to provide the extensibility by means of
mbstreambuf class and agree with him that the Standard has enough extensibility
without basic_convbuf . So I agree to delete it from the Working Paper.

3: basic_filebuf (X3J16/94-0203)

In general, we have to implement a conversion between charT sequence and byte
sequence in a templatized streambuf class whose external source/sink is a byte stream.
Note that this is not only the case in wide characters (wchar_t) but it is the common
case for any charT specialization's.

In the Working Paper, the basic_filebuf class is the only templatized streambuf
class whose external is byte-oriented. In order to implement the basic_filebuf , we
have to generate a charT sequence for filling the get buffer from the byte sequence in
a file and to generate a byte sequence from the charT sequence in the put buffer in the

 - 6 -

protected virtuals (underflow , uflow , and overflow) of the basic_filebuf .
Therefore, we need some templatized method to generate a charT sequences from a
byte sequence and to generate a byte sequence from a charT sequence in order to
implement basic_filebuf . Because all of the templatized method needed for
implementation shall be specified in the Standard by some means(either in a template
argument, in a traits, or through another templatized functions), we shall specify
templatized conversion functions as well.

Deletion of basic_convbuf from the Working Paper will cause the basic_filebuf

to lose the templatized conversion functions. So we have to do something to recover a
templatized conversion functions to it.

There are at least three alternatives to provide templatized conversion functions as
follows:

* use the convert member function of the codecvt facet in the locale class,
* use the widen /narrow member functions of the ctype facet in the locale class,
* introduce a new templatized class for conversion.

Among the above three, the widen /narrow approach is based on the concept of
conversion between one byte and one character and provides no ways to handle shift
states. So it is not appropriate as the solution.

The specification of convert member function of the codecnv facet is as
follows(see 22.2.7):

 result convert (stateT& state,

 const fromT* from, const fromT* f_end, const fromT*& f_next,

 toT* to, toT* t_end, toT*& t_next) const;

In the above interface, fromT , toT , and stateT is the template parameters of the
codecnv facet. This function provides an in-core memory to memory conversion
between arbitral two character classes, fromT and toT . It also has the stateT as
one of the template parameter so as to customize shift state definition necessary to
support arbitral shift encodings. In case the parameter fromT is fixed to char , the
convert function is available to convert from a byte sequence to a charT sequence
in a basic_filebuf implementation. So it is suitable for one of the solutions.

The 'mbstate' class, a new templatized class for conversion introduced in my

 - 7 -

message, c++std-lib-3511, is functionally equivalent to the convert member function
of the codecnv facet. It provides an in-core memory to memory templatized
conversion and can handle shift state by deriving from it, too. Instead of introducing
'yet another' redundant functionality to the Standard, I will give up the mbstate and
follow an approach based on the codecnv facet in order to specify templatized
conversion functionality to the basic_filebuf .

3.1 Synchronization between templatized istream/ostream and templatized
streambuf :

Changing the locale value in a basic_ifstream/basic_ofstream object causes to
change the encoding scheme for the its basic_filebuf object(rdbuf) if the new
locale object provides different codecnv facet object to the previous one.

So the basic_filebuf shall have a locale object (or at least a codecnv facet object)
as one of the attributes and shall have a member function to alter its locale attribute
value. So I might propose the following two members, imbue and setloc and one
attribute, loc (for exposition only), as same declaration as in the ios_base :

template <class charT, class traits=ios_traits<charT> >

class basic_filebuf : public basic_streambuf {

public:

 locale imbue (locale loc);

 // alter the locale attribute value. Mainly for

 // implementing basic_ifstream::imbue.

 locale getloc () const;

 // get the locale attribute value.

private:

 locale loc; // for exposition only

};

Exactly speaking, this specification is not enough to implement the ios_base::imbue ,
because the implementation of ios_base::imbue will refer the stream pointer (the
return value of rdbuf()), as the basic_streambuf class pointer, not as the
basic_filebuf pointer. Therefore, the class basic_streambuf shall have two
member, imbue and getloc , and one attribute, loc .

 - 8 -

Although introducing a locale value to the basic_streambuf , it does not affect the
behavior of other member functions than imbue , getloc at all because it is not useful
unless its external source/sink is byte-oriented. It affects only the behavior of the
basic_filebuf in the Standard.

3.2 Behavior of the basic_filebuf

Once we decide the basic_streambuf has a locale value as an attribute, we can
specify the behavior of the basic_filebuf as follows:

* In underflow,uflow member function, before acquiring charT values to fill the
get buffer a conversion with the codecnv facet of the attribute loc as if by
invoking the following function:
loc.use<locale::codecnv<char, charT, state_type> >().convert

 (state_type& state,

 const char* from, const char* f_end, const char*& f_next,

 charT* to, charT* t_end, charT*& t_next);

the input buffer beginning pointed to by from and the next byte pointed to by
f_end filled with the next of the external source byte sequence in a file.

* In overflow member function, before writing the byte sequence to the external
sink byte sequence in a file, a conversion with the codecnv facet of the attribute
loc as if by invoking the following function:

loc.use<locale::codecnv<charT, char, state_type> >().convert

 (state_type& state,

 const charT* from, const charT* f_end, const charT*& f_next,

 char* to, char* t_end, char*& t_next);

with the charT character sequence from the put buffer.

* Another private member, state, is needed to implement the above behaviors.

 state_type state;

 - 9 -

3.3 Performance improvement

Although it is inevitable some conversion in the default behavior in the basic_filebuf
class, we would like to avoid the conversion function invocation and relating handling
charge in some specialization's where no conversion needed(for example, filebuf in
the ASCII environment). In the ASCII environment, at least we would like to do
without unnecessary copying byte sequence from pointed to by from to to in the
convert function of the codecnv facet.

Fundamentally, there is no right to judge the necessity of conversion in the
basic_filebuf protected virtuals because it depends on the feature of the codecnv

facet.

In order to allow a convert function implementation where no copying occurs to return
immediately, we can introduce the means for the convert function to notify its decision
of no-copying and availability of the source data to the basic_filebuf. When a convert
function invocation results to notify the no-copying occurrence, the invoker, one of the
basic_filebuf protected virtuals is pleased to use the data pointed to by from instead of
those pointed to by to fill its get buffer, or to perform a physical write operation to the
file.

We have already had an enum, result , in the codecnv declaration, so as to utilize it
as the good means to the notification. We can introduce the forth value, noconv in
the enum result to do so. In case the convert returns the noconv value, the
protected virtuals use the sequence between pointed to by from and by f_next

instead of those between by to and by t_next .

* introduce a new value, noconv , in the enum, locale::codecnv::result .

enum result { ok, partial, error, noconv };

 - 10 -

