Doc No: X3J16/95-0064
WG21/N664

Date: March 4, 1995

Reply-To: Norihiro Kumagai
Sharp Corporation
kuma@slab.tnr.sharp.co.jp

My Position about the templatized lostream
for Austin Meeting

Norihiro Kumagai
Sharp Corporation,
IPSJ/ITSCJ/SC22/C++WG

In this paper, | discuss for the two documents about lostream(X3J16/94-0203,
““lostream motion for Valley Forge by Jerry Schwarz", and , X3J16/94-0197,
“"Comments for Jerry's proposals about the Templatized lostream”, by me) in order to
make my position clear for Austin Meeting.

Conclusion

1)

2)

3)

| agree with Jerry's proposal of X3J16/94-0203, under the following condition:

1a) introducewstreampos , wstreamoff in thewchar_t version ofios_traits

(relating to "Proposal 1").
1b) movefil member function fronthe ios_base to basic ios (relating to

"Proposal 8".

| agree with Jerry's proposal of deletibhgsic_convbuf from the Working
Paper(see X3J16/94-0163).

| summarize mypaper of X3J16/94-0197 as specifying locale-dependency of
basic_filebuf default implementation. | propose floelowing modification for

the Working Paper so as to achieve it:

3a) rewrite the description of thasic_filebuf so as to clarify thamplements
shall perform conversion between external source/sink byte strearfilén a
andcharT stream in the put/get buffer with thedecnv facet in the locale

object imbued in theasic_filebuf

3b) introduce two member functions:

locale imbue (locale new_loc);
locale getloc () const;

to the basic_streambuf (not to basic_filebuf) so as to achieve
synchronization of changing locale valusetween abasic_istream /
basic_ostream object and its relateghsic_streambuf object.

3c¢) introduce the following attribute(one of the private members) in the
basic_filebuf

state_type state;
3d) [optional] introduce a new value to the return value and modify the behavior of

codecnv facet of thdocale class so as to avoid unnecessary copying to the
basic_filebuf implementation.

Discussion

1: Jerry's document "lostream motion for Valley Forge"
(X3J16/94-0203)

Proposal 1: Reorganize the "traits" classes as follows:

Allow (but do not require) an implementation to speciatizeraits<char>

ios_traits<wchar_t> shall have the default values except thiatype shall bg
wint _t
| agree with it other than the default valuesosftraits<wchar_t> . Instead of the

above description, | believe we should specify:

ios_traits<wchar_t> shall have the default values except that the following:
* int_type shall bewint_t ,
* pos_type shall bewstreampos ,

-2

* off_ type shall bewstreamoff

We should leave freedom to choose a separgilementation of widechar version of
lostream from the skinny character version. In a shift encoding environment,
pos_type andoff type should hold a shifstate as well agile position offset
information. | am afraid that if the Standard imposeeampos , streamoff for
pos_type , off type in widechar version as well as in skinny character version, we
should have given up to enjoy the 32bit rangese¢k facility under some shift
encoding environment.

Proposal 1a: Add traits tos_traits

Agree.

Proposal 2: Change the declarationafeof to ...

Agree.

Proposal 3: Clarify tha#tOS_TandOFF_T are merely shorthand notations ...

Agree.

Proposal 4: Rewrite the requirementpon _type andoff type

Proposal 5. Determining the offset associated with ...

Proposal 6: Explicitly allowtreampos andstreamoff to be the same type.
Proposal 7: The identitgireampos(streamoff (n)) == n; Is required...

Agree.

Proposal 8: Introduce a clasentaining some of the types, constants famdtiong
that are currently declared Inasic_ios , but which do not depend on the tempjate
parameters dfasic_ios

| agree with the opinion. | have found that i base definitionappeared in Jerry's
document had included thi# member function although it has type as its
argument type, which closely relates to the template parametetsiofios . |
believe thdill function should be moved basic_ios

-3-

Proposal 8: Change specification for various types to use typedefs rather than
classes.

typedef basic_ios<char> ios;
typedef basic_ios<wchar_t> wios;

Agree.

Proposal 9: A new headersfwd that will contain an incomplete declarationg
basic_ios , ios , wios , basic_istream , Iistream , wistream , basic_ostream
ostream and wostream .

Agree.

Proposal 12: Declare wide "standard streamr, wout, werr and wlog with
streambufs directed to the same sources/sinks of characters as the skinny
streams.

Mixing operations on correspondingde and skinny streams (or stdfa.ES) will
follow the same semantics as mixing wide and skinny operations as in amendn

the ISO C standard.

Agree. | much appreciate the specification of the mixing operation.

Proposal 13: Eliminaterite_byte andread_byte from the WP.

Agree.

derived

of

standarc

ent 1 of

Proposal 14: Descrilghbackfail using a style consistent with the descriptions ol‘ the
default (protocol) behavior afinderflow and overflow as currently present |in

editorial box 154 of the WP.

Agree.

Proposal 15: Add a sentence ...

Agree.

Proposal 16: Delete all functions from the working paper that mesigial charT
or unsigned charT Is the template class parameter. Aad editorial boxesoting|
that the existing code which calls these functions whesxhar may quietly changé:
actual arguments of typsigned char or unsigned char will resolve toint
instead.

L4

Agree.
| think the resulting declaration of ios_traits are as follows:

template <class charT, class traits=ios_traits<charT> >
class ios_traits {
public:

typedef charT char_type;

typedef int int_type; // 94-0203

static char_type to_char_type (int_type c);

static int_type to_int_type (char_type c);

static bool eq_char_type (char_type, char_type);

static bool eq_int_type (int_type, int_type);

static int_type eof ();

static int_type not_eof (char_type c);

/1 94-0203

static bool is_eof (int_type);

static char_type newline ();

static bool is_whitespace (ctype<char_type>, char_type);

static char_type eos ();

static size_t length (); // streamsize?

static char_type* copy (char_type* dst,

const char_type* src, size_t n);
/] size_t --> streamsize?

typedef streampos pos_type; // 94-0203

typedef streamoff off_type; // 94-0203

typedef T1 state_type; // 94-0197(1-1) && 94-0203,
// but WP shows int instead of T1.

-5-

static state_type get_state (pos_type pos);
/11 94-0197 && 94-0203

static state_type get_pos (streampos pos, state_type s);
/11 94-0197 && 94-0203

class ios_traits<wchar_t> {

public:
typedef wchar_t char_type;
typedef wint_t int_type; // 94-0203
static char_type to_char_type (int_type c);

typedef wstreampos pos_type; // 94-0197(1-2) (conflicts 203)
typedef wstreamoff off_type; // 94-0197(1-2) (conflicts 203)

2: Deletingbasic_convbuf

| decided to accept Jerry's response abgri@nsibility of conversion functionalifgee
c++std-lib-3515). | understand his idea to provide the extensibility by means of
mbstreambuf class and agree withim that the Standard has enough extensibility
withoutbasic_convbuf . So | agree to delete it from the Working Paper.

3: basic_filebuf (X3J16/94-0203)

In general, we have to implement a converdietweencharT sequence and byte
seqguence in a templatized streambuf class whose external source/sink is a byte stream
Note that this is nabdnly thecase in wide charactergdhar_t) but it is thecommon

case for angharT specialization's.

In the Working Paper, thieasic_filebuf class is theonly templatized streambuf
class whose external is byte-oriented. In ordémfilementthe basic_filebuf , we

have to generatecharT sequence faiilling the get buffefrom the byte sequence in
a file and to generate a byte sequence fromhthr@ sequence in the put buffer in the

-6 -

protected virtuals upderflow , uflow , and overflow) of the basic_filebuf

Therefore, we need some templatized method to genetiadera sequencedrom a

byte sequence and to generate a byte sequermea charT sequence in order to
implement basic_filebuf . Because all of the templatized method needed for
implementation shall be specified in the Standard by some means(either in a template
argument, in a traits, or through another templatized functions), we shall specify
templatized conversion functions as well.

Deletion ofbasic_convbuf ~ from the Working Papewill cause théasic_filebuf
to lose the templatized conversion functions. So we have to do something to recover a
templatized conversion functions to it.

There are at least three alternatives to provide templatized conviensabions as
follows:

* use theconvert member function of theodecvt facet in thdocale class,
* use thewiden /narrow member functions of theype facet in thdocale class,
* introduce a new templatized class for conversion.

Among the above three, thwéden /narrow approach is based on the concept of
conversion between one byte and one character and provides no ways tahi&ndle
states. So it is not appropriate as the solution.

The specification ofconvert ~ member function of thecodecnv facet is as
follows(see 22.2.7):

result convert (stateT& state,
const fromT* from, const fromT* f_end, const fromT*& f_next,
toT* to, toT*t end, toT*&t_next) const;

In the above interfacdiomT , toT , andstateT is the template parameters of the
codecnv facet. This function provides an in-coremory to memory conversion
between arbitral two character clasfesnT andtoT . It also has thatateT as
one of the template parameter so as to customizesshaiédefinition necessary to
support arbitral shift encodings. tase the parametépmT is fixed tochar , the
convert function is available to convert frombgte sequence tocarT sequence
In abasic_filebuf implementation. So it is suitable for one of the solutions.

The 'mbstate’ class, a new templatized class for conversion introduced in my
-7 -

message, c++std-lib-3511, is functionally equivalent t@dheert member function
of the codecnv facet. It provides an in-cormmemory to memory templatized
conversion and can handle slsfate byderiving fromit, too. Instead ointroducing
'vet another' redundant functionality to the Standandijll bive up thembstate and
follow an approachhased on theodecnv facet in order to specify templatized
conversion functionality to theasic_filebuf

3.1 Synchronization between templatizedstream/ostream and templatized
streambuf

Changing the locale value inbasic_ifstream/basic_ofstream object causes to

change the encoding scheme for thebiisic_filebuf object¢dbuf) if the new

locale object provides differeaddecnv facet object to the previous one.

So thebasic_filebuf shall have a locale object (or at least a codecnv facet object)
as one of the attributes and shall have a member function to alter its locale attribute
value. So Imight propose thdollowing two membersmbue andsetioc and one
attribute,loc (for exposition only), as same declaration as inothéase

template <class charT, class traits=ios_traits<charT> >
class basic_filebuf : public basic_streambuf {
public:

locale imbue (locale loc);
/I alter the locale attribute value. Mainly for
/I implementing basic_ifstream::imbue.
locale getloc () const;
/I get the locale attribute value.

private:
locale loc; // for exposition only

h

Exactly speaking, this specification is not enough to impletheids_base:iimbue
because th@nplementation ofos_base::imbue will refer the stream pointer (the
return value ofrdbuf()), as thebasic_streambuf class pointer, not as the
basic_filebuf pointer. Therefore, the clagasic_streambuf shall have two
memberjmbue andgetloc , and one attributdgc .

-8-

Although introducing a locale value to thasic_streambuf , it does not affect the
behavior of other member functions thahue , getioc at all because it is noiseful
unless its external source/sink is byte-oriented. It affects only the behavior of the
basic_filebuf in the Standard.

3.2 Behavior of thebasic_filebuf

Once we decide theasic_streambuf has a locale value as an attribute, we can
specify the behavior of thesic_filebuf as follows:

* In underflow,uflow member function, before acquiringarT values tdill the
get buffer a conversion with thesdecnv facet of the attributéoc as if by
invoking the following function:
loc.use<locale::codecnv<char, charT, state_type> >().convert

(state_type& state,
const char* from, const char* f_end, const char*& f_next,
charT* to, charT*t_end, charT*&t_next);

the input buffer beginning pointed to bym and the next byte pointed to by
f_end filled with the next of the external source byte sequence in a file.

* In overflow member function, before writing the byte sequence to the external

sink byte sequence in a file, a conversion withctitlecnv facet of the attribute
loc as if by invoking the following function:
loc.use<locale::codecnv<charT, char, state_type> >().convert

(state_type& state,

const charT* from, const charT* f_end, const charT*& f_next,

char* to, char*t_end, char*& t_next);

with thecharT character sequence from the put buffer.

* Another private member, state, is needed to implement the above behaviors.

state_type state;

3.3 Performance improvement

Although it is inevitable some conversion in thefault behavior in the basic_filebuf
class, we would like to avoid the conversfanction invocation and relatingandling
charge in somepecialization'svhere no conversion needed(for examiikuf in

the ASCII environment). In the ASCII environment, at least we would like to do
without unnecessary copying byte sequeinoen pointed to byfrom to to in the
convert function of thecodecnv facet.

Fundamentally, there is no right to judge the necessity of conversion in the
basic_filebuf protected virtuals because it depends on the feature obdbenv
facet.

In order to allow a convert function implementation where no copying occurs to return
immediately, we can introduce the means for the convert functiootifp its decision

of no-copying and availability of the sourdata to the basic_filebuf. When a convert
function invocation results to notify the no-copying occurrence, the invoker, one of the
basic_filebuf protected virtuals is pleased to useal#ta pointed to bfrom instead of
those pointed to by tiill its get buffer, or to perform a physical write operation to the
file.

We have already had an enussult , in the codecnv declaration, so as to utilize it
as the good means to the notification. We can introduce the forth nadoey In

the enumresult to do so. In case theonvert returns th@oconv value, the
protected virtuals use the sequence between pointed tmnby and byf next
instead of those between toy and byt_next

* introduce a new valuapconv , in the enumlpcale::codecnv::result

enum result { ok, partial, error, noconv };

-10 -

