
Document Numbers: X3J16/95-0042
WG21/N0642

Date: January 31, 1995
Reply To: Bill Gibbons

bgibbons@taligent.com

Placement Delete

Introduction

When placement new is used to allocate space, there is the potential for
exceptions to cause memory
leaks. There are several possible solutions. One was explored in
94-0104/N0491, but was rejected
by the extensions WG. Another solution, placement delete, was found
more acceptable.

The Problem

A new-expression for a class type implicitly calls operator new to allocate memory and
then implicitly
calls a constructor. If the constructor exits via an uncaught
exception, there is no way for the program
to explicitly deallocate the now unused memory.

For non-placement new-expressions, this problem was solved by requiring the implementation to
implicitly call operator delete when propagating such an exception.

This is a simple and reasonably complete solution for non-placement new.
 But it doesn’t work for
placement new, because placement new may not actually allocate memory.
(The working paper states
that the result of calling operator delete on a pointer returned from
placement new is undefined.) And
so operator delete is not called automatically during exception handling
for a placement-style new-
expression .

class PrivateHeap;

struct A {
A() { throw “Boom!”; }
operator new(size_t, PrivateHeap *);

};

void f(PrivateHeap *heap) {
A *a = new (heap) A;

This code leaks memory each time function “f” is called. This is
problem we’re trying to solve.

The Solution

There is no way for the implementation to know whether a given placement
operator new function
actually allocates space. Therefore there is no way to know whether it
is appropriate to pass the result
of placement new to an ordinary operator delete.

The solution is to provide a different operator delete - a “placement
delete” - which is a match for the
placement new. The placement delete may or may not deallocate memory;
that decision is now totally

X3J16/95-0042 WG21/N0642 Page 1

under the control of the programmer. But the implementation can safely
assume that it’s safe to call
placement delete after placement new.

Placement operator new functions are distinguished by the presence of
additional parameters (beyond
the allocation size). The obvious way to write a placement operator
delete is to include the same
additional parameters as in the corresponding placement operator new.
These values may be needed
by the delete anyway; for example, they may specify a private heap from
which the memory is to be
allocated (and to which it must be returned).

For example:

class PrivateHeap;

struct A {
A() { throw “Boom!”; }
operator new(size_t, PrivateHeap *);
operator delete(void *, PrivateHeap *);

};

void f(PrivateHeap *heap) {
A *a = new (heap) A;

}

Since the placement operator delete function is an exact match for the
placement operator new
function, the implementation must call the delete function when
propagating an exception. This is
exactly the same semantics as non-placement new.

Placement operator delete is never called implicitly except in the above
situation. In particular, there is
no placement syntax for delete-expression. There are no syntax changes to the language at all.

Name Lookup

It seems reasonable to require that the matching operator delete have
exactly the same extra parameters
as the operator new. But must it be in exactly the same scope?

This problem is very similar to the one for ordinary class-scope
operator new and operator delete. In
that case, there is no requirement that operator new and operator delete
be found in the same class, or
even that they both be members.

The parallel for placement delete would have the name lookup done using
the ordinary lookup rules,
and then any exactly matching placement delete in that scope would be
used.

The disadvantage is that for a class with a placement opertor new but no
placement operator delete, it’s
necessary to inspect the base classes and global scope to determine
whether placement delete will be
used.

In this proposal the former solution (general lookup) is used, but
this point is not crucial to the
proposal.

Page 2 X3J16/95-0042 WG21/N0642

Matching New and Delete

Given a placement new-expression, and one or more declarations from the lookup of
“operator delete”, exactly how is the appropriate placement operator delete to be
chosen for use in
exception handling?

The two obvious choices are:

• Using the original arguments, perform overload resolution again.

• Only use a placement operator delete with exactly the same additional parameters
as in the placement operator new chosen for use in this expression.

For this proposal, we’ve taken the second approach: exact match of
additional parameters.

Again, this point is not crucial to the proposal.

Conflicting Signature

Unfortunately, there is already a version of operator delete which has an
additional parameter. As
described in 3.6.3.2, when operator delete is declared as a member function it may have an
additional parameter of type size_t.

So the following case has a potential ambiguity:

struct T {
void * operator new(size_t, size_t);
void operator delete(void *, size_t);

};

Is the operator delete a placement delete or a plain delete with an extra parameter? There are
a
several possible ways to resolve this:

• It’s a non-placement operator delete, unless there is another plain
operator delete (without the extra parameter) also declared in the class; in which
case, it’s a placement operator delete. This is compatible with existing code,
since you can’t declare both functions in the same class today.

• It’s a non-placement operator delete, unless there is an exactly matching
placement operator new in the class. This breaks existing code because it changes
the current meaning of the above example.

• It’s a non-placement operator delete, because the extra parameter is required for
placement delete (for just class members or all versions).

The first solution is proposed, since it is compatible with existing
code and simple enough.

X3J16/95-0042 WG21/N0642 Page 3

Parameter Passing

When placement operator delete is called, the same arguments which were passed to placement
operator new are passed to operator delete. Is there any problem with this?

No, not really. The original arguments which were used to initialize
the parameters of operator new
still exist. They can just be used again to initialize the parameters
of operator delete. The only
issue is whether additional copying is permitted.

Since there are already rules for whether an implementation may copy an
argument while initialzing a
parameter, we can just extend those rules, and say that if the
implementation is allowed to make a copy
of one of the operator new arguments as part of the operator new call, it is allowed to make
a copy (of the same original value) as part of the operator delete call. If the copy is elided in one
place, it need not be elided in the other.

Explicit Calls to Placement Delete

Although there is no proposal for extending the syntax of delete-expression to invoke placement
operator delete, there is no reason why explicit calls should not be
allowed:

struct T {
void operator delete(void *, double);

};
void g(void *p) {

T::operator delete(p, 1.0);
}

Making the above example ill-formed would require special rules and
would serve little purpose. This
proposal would allow the above example.

Placement Array Delete

All of the changes proposed for non-array placement new/delete would
also apply to array placement
new/delete. There are no issues specific to array allocation.

The Proposal

We propose the following changes to the working paper, with the
understanding that additional
changes needed for consistency with this paper and with the working
paper are at the editor’s
discretion.

3.6.3.2/2

Change: a second parameter of type size_t may be added but deallocation functions may not
be overloaded.

to: a second parameter of type size_t may be added. If both versions are declared in
the same class, the one-parameter form is the usual deallocation
function and the
two-parameter form is used for placement delete [expr.new]. If the
second version
is declared but not the first, it is the usual deallocation function,
not placement
delete.

Page 4 X3J16/95-0042 WG21/N0642

5.3.4/18

add: If the new-expression contains a new-placement, and a placement operator delete is
visible from the appropriate scope and it matches the placement operator
new used
in this new-expression, the placement operator delete is called.
[basic.atc.dynamic.deallocation]

A placement operator delete is a match for a placement operator new when
it has the
same number of parameters and all parameter types except the first are
identical
(except for top-level qualifiers).

If placement operator delete is called, it is passed the same arguments
as are passed
to placement operator new. If the implementation is allowed to make a
copy of one
of the placement new parameters as part of the placement new call, it is
allowed to
make a copy (of the same original value) as part of the placement
delete call, or to
reuse the copy made as part of the placement new call. If the copy is
elided in one
place, it need not be elided in the other.

X3J16/95-0042 WG21/N0642 Page 5

