
X3J16/95-0040
WG21/N0640

Concerns With the Template Compilation Model

John H. Spicer

Edison Design Group, Inc.

jhs@edg.com

January 31, 1995

Introduction

A template compilation model was adopted at the Valley Forge meeting in November 1994.

This document details concerns about the compilation model that I believe have not been

addressed.

As of the time that I am writing this, the working paper wording for the new compilation

model is not yet available, so the description of the compilation model that I will be using will

be a combination of the description in \Major Template Issues, Revision 1" (94-0195/N0582),

the additional information discussed in the extensions WG, and the discussions that have taken

place on the extensions re
ector.

I'll start by listing my concerns. I'll then describe my understanding of the compilation

model and provide a more detailed description of the things that I believe to be problems.

Finally, I'll provide some proposed solutions. My main objections to the compilation model

that was adopted are:

1. The fact that instantiations take place in a \merged context" requires that a large amount

of context information be passed from both the template de�nition and template reference

points to the instantiation point. Saving and restoring such large amounts of context

information will be prohibitively expensive.

2. Instantiations are forced to take place at link time (or at translation phase 8 for those

who wish to speak in more general terms). This is a problem for users, most of whom

would rather get their error messages earlier in the process. It also severely constrains

the way in which a processor implements instantiation.

3. Instantiations take place in a synthesized context, not one that is controlled by the pro-

grammer. This makes it much more di�cult to understand and correct errors that occur

during instantiation.

4. The new compilation model is radically di�erent than anything that has been imple-

mented so far. There are areas that are known to be unspeci�ed (the context merging

process). It is a big risk to incorporate something so completely untested into the language

so close to the time at which we are trying to complete the language de�nition.

In other words, the WP is requiring that instantiation be an expensive link time operation

that takes place in a synthesized context. We know what users think of this approach because



95-0040/N0640 - Concerns With the Template Compilation Model 2

these are precisely the things that most people complain about when using the cfront template

instantiation mechanism.

Overview of the Compilation Model

Compilation Model Used by Existing Compilers

The following is a small template example that illustrates how source �les are typically orga-

nized when using templates with existing compilers. When using a cfront-like source model, a

program includes a .h �le and the compiler automatically includes the associated .c �le when

needed to generate instantiations. Other compilers require that the template de�nition �le be

explicitly included as part of the compilation. One (or both) of these source organizations is

used by virtually all existing compilers and libraries that are in use today (including STL, with

the exception that STL unconditionally includes the template de�nitions in the .h �le).

File: a.h

struct A {};

File: f.c

template <class T> void f(T t)

{

A a;

g(a);

h(a, t);

}

File: f.h

template <class T> void f(T);

#ifdef INCLUDE_TEMPLATE_DEFINITIONS

#include "f.c"

#endif

File: t.c

#include "f.h"

#include "a.h"

void g(A){}

void h(A, int){}

int main()

{

f(1);

}

When compiling this example, only the t.c �le is compiled. The f.c �le is not separately

compiled, but is included as part of some other compilation.



95-0040/N0640 - Concerns With the Template Compilation Model 3

The New Compilation Model

The following code is the example above as modi�ed to work with the new compilation model:

File: a.h

struct A {};

File: f.c

#include "a.h" // added to declare A

#include "t.h" // added to declare g(A)

template <class T> void f(T t)

{

A a;

g(a);

h(a, t);

}

File: f2.c

// Alternate version of template f (see description below)

template <class T> void f(T t)

{

}

File: f.h

template <class T> void f(T);

// No longer includes f.c

File: t.c

#include "f.h"

#include "a.h"

void g(A){}

void h(A, int){}

int main()

{

f(1);

}

File: t.h

void g(A);

In the new compilation model the f.c �le is a separately compiled �le. As such, it must

include the header �les that are needed to de�ne any variables, types, constants, and nondepen-

dent function declarations needed to do the phase 1 name binding of the template de�nition.

Forcing Instantiation to Occur at Link Time

One of the features of the new compilation model is that the linkage between a template

reference and a template de�nition occurs at link time. In the example above, two de�nitions



95-0040/N0640 - Concerns With the Template Compilation Model 4

of template f are provided, one in �le f.c and one in �le f2.c. Both �les can be compiled

provided that only one of the object �les is included when the program is linked. Because you

know nothing about the template de�nition at the point at which it is referenced, you can't

know which symbols from the current context might be referenced by the template. It is the

requirement that the linkage between template reference and template de�nition occur at link

time that forces all instantiations to be done at link time.

Now, I'll admit that a model that uses separate compilation of templates is the most natural

from a user's perspective. It is the �rst thing that came to mind when I was �rst exposed to

templates. But it is not the \user interface" aspects of the model that I object to, it is the

consequences of that interface. And my primary concern is the impact of these consequences

on the user, not the implementor (although I am concerned about the implementation issues

too).

The following is an excerpt from re
ector message c++std-ext-2579, written by Tony

Hansen of AT&T.

However, on a similar note, here is another situation regarding templates that I feel should

be legitimate, but no current compilers even come close to allowing:

a.h:

----

// declare the template function

template <class T> int f(T);

b.c:

----

#include "a.h"

// define the template function

template <class T> T f(T a)

{ return a * a * a; }

c.c:

----

#include "a.h" // get template function declaration

void foo()

{

int x = f(3); // invoke the template

}

Although it may not look like it, I've chosen the above �lenames carefully. I would fully

expect this program to be compilable by typing in:

xcc b.c c.c # 1

(where xcc is your favorite compiler). I would also expect to be able to do the following:

xcc -c b.c # compile the template definition

ar r b.a b.o # put it in a library

xcc c.c b.a # link the library with c.c

As I said, I haven't seen the �nal de�nition of the compilation model in the WP, but I

believe that the people who discussed it would probably agree that the command labeled #1



95-0040/N0640 - Concerns With the Template Compilation Model 5

above should work to compile, instantiate, and link the program. The concept of a library or

archive is beyond the scope of the WP, so depending on your point of view, translation phase

8 \The translation units that form a program are combined. All external object and function

references are resolved." could be considered to include Tony's more complex example too.

But with or without libraries, the fact that the linkage of template de�nition occurs at link

time, and the fact that translation units may be linked with others in arbitrary ways makes

it impossible to use a repository. The information that is saved would have to be part of the

object �le, and ultimately part of the library if the object is used to build a library.

Let's consider the cost of providing this functionality. When a �le containing a template

de�nition is compiled, the resulting object �le must contain a representation of the template

de�nition plus complete information about any types, variables, functions (including the bodies

of inline functions), etc. that are referenced by the template. When a �le containing a template

reference is compiled, the resulting object �le must contain a representation of any types,

variables, functions (including the bodies of inline functions), etc. that may potentially be

referenced by the template.

For a typical compilation unit, this could easily mean saving several megabytes of infor-

mation. The most compact method of storing this information would be to save the entire

preprocessed source code for a given translation unit (this would, however, be the most expen-

sive representation when the information actually had to be used).

Is it possible to optimize this process? Yes, but not in a way that would remain conformant

to the standard. When compiling a �le, you have no idea how that �le may or may not be

linked with other �les you are compiling. If template references and de�nitions are simply

like other external references and de�nitions, the WP places no constraints on how separate

translation units may be combined.

Context Merging

In the new compilation model, instantiating a template requires that information from the

de�nition context be merged with information from the reference context.

Context merging su�ers from a number of problems

� it is inherently expensive

� it is di�cult for users to deal with

Context merging presents problems for users of templates because it makes the diagnosis

and correction of errors much more di�cult. It even introduces a new source of errors not

otherwise present. If a name con
ict occurs during context merging, how would a user go

about �xing such a problem? Such problems already exist in the limited context synthesis used

by the cfront instantiation mechanism. Even when the errors are the caused by a mistake on

the part of the user, it is di�cult to understand the cause of the error and the corrective action

required because there is no one place that to which the user can go to understand the context

in which the error occurred.

In addition to these general problems, there is the additional problem that how the contexts

are to be merged is completely unspeci�ed. I'm sure that once there is any de�nition of the



95-0040/N0640 - Concerns With the Template Compilation Model 6

merging process, many questions will arise. In the mean time, I'd like to start with two

fundamental questions:

� which names from each context participate in the merging process?

� what kind of con
icts are possible and how should they be handled?

Proposed Changes

I have two proposals: A simple proposal that I suspect would be rejected because it lacks

elegance, and a more complex proposal that retains some of the components of the current

model while eliminating those that make e�cient implementations di�cult or impossible.

Both of these proposals permit a wider range of implementations than is possible with the

existing compilation model (in fact, they support all existing instantiation mechanisms that I

know of). Both permit instantiation mechanisms that generate the needed instantiations as part

of the normal compilation process as is the case with most existing implementations. Allowing

instantiations to occur while compiling a translation unit that uses a template was formerly

seen as an important objective. So important, in fact, that the rule requiring specializations

to be declared before they could be used was introduced to make that instantiation model

possible. We should make the changes necessary to that that model is once again possible.

A Simple Alternative

The simple alternative is to simply require that template de�nitions be included wherever

they are referenced, and to specify nothing more about how an implementation is to handle

instantiation.

The objections that have been raised to this approach are

1. It is too expensive because of the extra text included in each compilation unit.

2. It is too expensive because the function de�nitions may themselves require additional �les

to be included in each compilation.

3. This subjects template de�nitions to the macros de�ned in the referencing program.

There is a fourth concern that is sometimes raised, but it is not included in the above list

because it is simply wrong. Some assume that simply because the template de�nition �les

are included in each compilation unit, duplicate instantiations are actually generated in each

object �le and must be �ltered out later. You have to separate the \source model", which

speci�es how source �les must be presented to the compiler, from the \instantiation model"

which is how an implementation chooses to decide when and where a given instantiation is to

be performed. The beauty of the model proposed here is that it gives implementations the

greatest possible degree of freedom in deciding when, where, and how instantiations are to be

done. And, given the uncertainty about how future implementations may be structured, isn't

this an important objective?

As for the other performance concerns, there are two responses: First, scanning of template

de�nitions is a very cheap operation for most compilers. Second, most compilers implement



95-0040/N0640 - Concerns With the Template Compilation Model 7

some form of precompiled header processing. C++ is a very header �le intensive language

and mechanisms for making this process as e�cient as possible are widely known and widely

deployed.

In other words, this is a process that can already be done e�ciently by most implementa-

tions.

Finally, as for the concern about macros: the class template de�nitions, function template

declarations, and inline function de�nitions are already subjected to any macros present in

the referencing program. Existing implementations expose the de�nitions to macros in the

referencing program. This has not presented problems in practice.

A More Complex Alternative

This alternative is intended to address the two most serious problems with the new compilation

model while retaining the following properties:

� The template de�nition �les can be separately compiled

� Template de�nitions need not be included in every referencing translation unit

� Such template de�nitions are not subjected to macros in the referencing translation unit

The important changes from the existing compilation would be:

� Instantiations are not required to be done at link time; they may be done earlier.

� There is no context merging. Instantiation is done in one of the referencing contexts.

In this proposal, when a template de�nition �le is compiled the result is essentially a

tokenized representation of the template de�nition. When a template needs to be instantiated,

it is done in the one of the contexts from which it was referenced. It is unspeci�ed when and

how the implementation �nds the template de�nition that is to be used for a given reference.

If there is more than one template de�nition that matches the reference, then the result is

unde�ned. The phase 1 name binding occurs at the point in the referencing context at which

the template is declared (for function templates) or, for member functions and static data

members, at the point at which the phase 1 name binding was done for the associated class

template.

This would require that any header �les needed to de�ne names used by the template

de�nitions would need to be included by each referencing translation unit. In practice, I don't

believe this would be a signi�cant cost, and would certainly be a much smaller cost than saving

and restoring context information as required by the current model.

Conclusion

The current compilation model needs to be replaced with one that permits a wider range

of implementations and avoids the performance and user interface problems associated with

context merging. I have provided two possible alternatives, and I'm sure there are others.


