
Doc. No.: X3J16/95-0016
WG21/ N0616

Date: January 30, 1995
Project: Programming Language C++
Reply To: Richard K. Wilhelm

Andersen Consulting
rkw@chi.andersen.com

Clause 21 (Strings Library) Issues List
Revision 1

Revision History
Version 1 - January 30, 1995: Distributed in pre-Austin mailing.

Introduction
This document is a summary of the issues identified in Clause 21. For each issue the status, a
short description, and pointers to relevant reflector messages and papers are given. This
evolving document will serve as a basis of discussion and historical for Strings issues and as a
foundation of proposals for resolving specific issues.

Issues
Issue Number: 1
Title: Should basic_string have a getline() function?
Section: 21.1.1.4.5 (new) [lib.string::getline]
Status: active
Description:

As identified by Beman Dawes in lib-3367, the 20 September 1994 draft of the
WP does not include getline() . It was part of the 27 May 1994 draft of the WP.
Beman suggested that getline() be reinstated with the semantics as specified in
the earlier WP draft.

In lib-3408, Nathan Myers responded as follows:
“I’m quite concerned about the semantics implied in the string traits. There, it
seems to be assumed that the end-of-line character is the same for all encodings
of a character type. But, of course, even in ASCII we see an amazing variety of
line-end conventions. Unicode is worse, with all the ASCII control characters
and (as I recall) two more line-end characters.

“I fear that we cannot provide internationalized getline semantics with the same
interface that we have had. I can imagine a getline() which takes the user’s
choice of line ending, but I can imagine you may want any of the available
choices to end a line. The locale object’s ctype facet does not provide an
‘is_eol()’ member, and POSIX does not provide the underlying support
necessary to implement it in any case.

“It seems clear to me that the getline operation depends on the character-
encoding in use, and that makes it a locale-dependent operation. It is not clear
to me how to propagate the information to the place where it is needed. It

Clause 21 (Strings Library) Issues List - 95-0016=N0616

would like to avoid a ‘virtual-function-call-per-character’ when reading lines of
text, because of performance problems.”

Resolution:
Requester: Beman Dawes: beman@dawes.win.net
Owner:
Emails: lib-3367, lib-3408, lib-3411, lib-3417, lib-3421
Papers: (none)

Issue Number: 2
Title: Are string_traits members char_in() and char_out() necessary?
Section: 21.1.1.1 [lib.string.char.traits]
Status: active
Description:

In lib-3398, Nathan Myers writes:

Looking at Clause 21, Strings, I find some string_traits static members:
static basic_istream<charT>
 string_char_traits::char_in(basic_istream<charT>& is,

charT& a)
{ return is >> a; }

static basic_istream<charT>
 string_char_traits::char_out(basic_ostream<charT>& os,

 charT& a)
{ return os << a; }
Are they necessary? If so, shouldn’t they be parameterized on ios_traits? And
shouldn’t they default to use streambuf put() and get()?

[Note: lib-3398 contained a typo in which char_in() and char_out() were
incorrectly specified as being members of basic_string. The slight error is
corrected above.]

Resolution:
Requester: Nathan Myers: myersn@roguewave.com
Owner:
Emails: lib-3398
Papers: (none)

Issue Number: 3
Title: Character-oriented assign function has incorrect signature
Section: 21.1.3.6 [lib.string::assign]
Status: active
Description:

As specified in N0557=94-0170, which was accepted in Valley Forge, the
character-oriented assign member has the interface:

basic_string<T>& assign(size_type pos, size_type n, const T c =
T());

This interface should not take have its first parameter. This change was
inadvertently introduced and should be removed.

Requester: Rick Wilhelm: rkw@chi.andersen.com
Owner: Rick Wilhelm

2

Clause 21 (Strings Library) Issues List - 95-0016=N0616

Emails: (none)
Papers: 95-0028=N0628

Issue Number: 3
Title: Character-oriented replace function has incorrect signature
Section: 21.1.3.9 [lib.string::replace]
Status: active
Description:

As specified in N0557=94-0170, which was accepted in Valley Forge, the
character-oriented replace member has the interface:

basic_string<T>&
replace(size_type pos, size_type n, const T c = T());

This interface should be as follows:

basic_string<T>&
replace(size_type pos, size_type n1,

 size_type n2, const T c = T());

This change was inadvertently introduced and should be removed.
(This issue will be irrelevant and closed if 2.5.5 of N0628=95-0028 is accepted.)

Requester: Rick Wilhelm: rkw@chi.andersen.com
Owner: Rick Wilhelm
Emails: (none)
Papers: 95-0028=N0628

Issue Number: 5
Title: How come the string class does not have a prepend() function?
Section: 21.1.3.5 [lib.string::append]
Status: active
Description:

(No additional information at this time.)
Requester: Judy Ward: ward@roguewave.com
Owner:
Emails: (none)
Papers: (none)

3

