
Major Template Issues
(Note for discussion. Revision 0)

Bjarne Stroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This note discusses major unresolved issues related to templates. Most issues have
been discussed before on the -ext reflector, in notes, and at meetings. Most are marked
by editorial boxes in the WP. I expect that further discussion will take place on the -ext
reflector so that I can have a revised version of this note ready as a basis for extensions
group work at Valley Forge. This note is (necessarily) incomplete. Unfortunately, time
pressure has made it even more incomplete that it ought to be. Sorry. Few topics – if any
– will be new to people who have followed the discussions of template issues closely, yet
I expect that I have pulled enough strands together to provide something new to most.

1 Introduction

I have tried to order these issues in order of importance. This is necessarily subjective, but please note that
the first three issues:

[1] typename qualification
[2] compilation model
[3] name injection

must be resolved for the language specification to be complete. I think all ought to be resolved at Valley
Forge.

In each case, I have suggest a resolution. In each case, I expect a debate leading to either a firmer con-
clusion or a better alternative. In each case where the debate leads to a tentative conclusion that a change to
the WP is needed, I’d like to see draft WP text ready before the Valley Forge meeting. Please email me
comments ASAP so that I can have a revision of this note ready for then.

2 typename qualification

Section [temp.res] of the post-Waterloo WP says:
‘‘A name used in a template is assumed not to name a type unless it has been explicitly declared to refer
to a type in the context enclosing the template declaration or in the template itself before its use. For
example:

- 2 -

// no B declared here

class X;

template<class T> class Y {
class Z; // forward declaration of member class
typedef T::A; // A is a type name

void f() {
X* a1; // declare pointer to X
T* a2; // declare pointer to T
Y* a3; // declare pointer to Y
Z* a4; // declare pointer to Z
T::A* a5; // declare pointer to T’s A
B* a6; // B is not a type name:

// multiply B by a6
}

};

’’
The principle that a name names a type if and only if it has been explicitly declared to (and names a tem-
plate only if it has been explicitly declared to) is important. Without it, syntax analysis of C++ would need
to interact closely with semantic analysis – and would probably be impossible even in relatively simple
cases.

However (quoting directly from an editorial box),
‘‘There is a potentially serious problem with the rule that a name is a non-type name unless it has been
explicitly specified to be the name of a type. In some contexts, there is no way of indicating that a name
is a type name before using it. For example:

template <class Predicate> class unary_negate
: unary_function<Predicate::argument_type, int>, // syntax error!

restrictor<Predicate>
{

// ...
};

There are two alternative solutions: (1) Allow the compiler to assume that a qualified name is the name
of a type in ‘‘such contexts,’’ thus making the example above well-formed as written. (2) Introduce a
keyword to allow the programmer to state that a name is a type name as part of using that name. For
example:

template <class Predicate> class unary_negate
: unary_function<typename Predicate::argument_type, int>,

restrictor<Predicate>
{

// ...
};

Solution (2) would replace the type-name-declaration construct.’’
The typename qualifier would be optional in almost all cases but essential in a few key cases, just like the
class qualifier is.

When processing Jon Spicer’s list of template issues (#6.7), we considered a less general variant of
typename, but preferred (at my recommendation, sorry) the less radical solution of ‘‘recycling’’
typedef as in the first example in this section. Unfortunately, that solution appears to have been insuffi-
cient.

I prefer a new keyword to a rule introducing context sensitivity (solution (1) above) because
[1] it is explicit, and
[2] it is general (can be used wherever we need to name a type), and
[3] it makes to novel use of typedef redundant (I hope we will be able to eliminate the novel use of

typedef before it takes root), and

- 3 -

[4] it would allow us to use typename instead of class in template declarations:

template<typename T> class Vector { /* ... */ };

and
[5] it would break very little code.

The last reason is why I suggest typename rather than the nicer keyword type. Can you think of a better
work to use as the keyword? Do we need an equivalent construct to say ‘‘this name denotes a template?’’
In theory we do, but I don’t see a practical need.

One reason I prefer the explicit qualification by typename approach to introducing context sensitivity
is that I fear that a list of contexts where a name is a type name by default will be hard to remember for
users – even if it turned out to be easy for us to produce.

With the typename keyword we could write the example from [temp.res] like this:

// no B declared here

class X;

template<class T> class Y {
class Z; // forward declaration of member class

void f() {
X* a1; // declare pointer to X
T* a2; // declare pointer to T
Y* a3; // declare pointer to Y
Z* a4; // declare pointer to Z
typename T::A* a5; // declare pointer to T’s A
B* a6; // B is not a type name:

// multiply B by a6
}

};

or even like this:

// no B declared here

class X;

template<typename T> class Y {
class Z; // forward declaration of member class

void f() {
X* a1; // declare pointer to X
T* a2; // declare pointer to T
Y* a3; // declare pointer to Y
Z* a4; // declare pointer to Z
typename T::A* a5; // declare pointer to T’s A
B* a6; // B is not a type name:

// multiply B by a6
}

};

However, allowing

- 4 -

// no B declared here

class X;

template<class T> class Y {
class Z; // forward declaration of member class
typename T::A; // T’s A is a type

void f() {
X* a1; // declare pointer to X
T* a2; // declare pointer to T
Y* a3; // declare pointer to Y
Z* a4; // declare pointer to Z
A* a5; // declare pointer to T’s A
B* a6; // B is not a type name:

// multiply B by a6
}

};

would require a separate extension. Note that allowing only a construct like

typename T::A; // T’s A is a type

would only be equivalent to

typedef T::A; // T’s A is a type

and not solve the general problem. However, I do like that last variant/extension because it allows the spec-
ification of T::A as a typename to be done separately in the same way as I prefer

class X;
X* p;

to

class X* p;

in contexts where the two are equivalent. It is easy to miss the class qualifier in the midst of another dec-
laration.

3 Template Compilation Model

We need a model of compilation of templates that tells people where to put their template declarations and
definitions. Three main suggestions have been made, each with a bewildering number of variants:

[1] Implementation dependent: The ARM didn’t specify a compilation model. It simply stated that
there had to be a – possibly implementation-defined – mapping between templates used and their
definitions. This was – not too surprisingly – found to be a source of porting problems as different
suppliers addressed issues of convenience, efficiency, etc., in different ways. It gave us lots of expe-
rience to work from, though.

[2] Repository: Let the user present the necessary template definitions to the compilation system and let
the compilation system keep track of the correspondence between the templates used and the tem-
plate definitions presented to it. The maintenance of the repository is extra-linguistic. In particular,
the issues of time order and different versions are not addressed by the language. This is described
in §3.1 below.

[3] Require the user to specify where definitions are to be found: Require that the user present the com-
piler with a ‘‘template directive’’ indicating where the template definition is found for each template
used. This is described in §3.2 below.

Approach 3 was preferred by a small majority at the Waterloo, approach 2 by a small minority, and a large
majority preferred to have more information before deciding.

An ideal approach would, among other things
[1] require the user to say as little as possible about where definitions are supposed to be found;
[2] allow the user to be specific about where definitions are supposed to be found;

- 5 -

[3] give reasonably efficient compilation and linking by default;
[4] be amenable to optimization of the compile and link process;
[5] be portable over all implementations;
[6] be easily comprehensible;
[7] allow good (that is, early) error detection and reporting;
[8] allow optional improve code generation (that is, inlining) based on knowledge of definitions;
[9] allow users to find definitions easily;
[10] not require yet-to-be invented techniques for its implementation.

3.1 A Repository-based Approach
Here is the repository approach presented in ‘‘Stroustrup: The Design and Evolution of C++ Addison-
Wesley 1994’’ and discussed in ANSI X3J16/94-0026, ISO WG21/N0413:

‘‘The concept of a central point where information related to templates and other issues that affect mul-
tiple compilation units must be recognized. I call that point ‘‘the repository’’ because its role is to keep
information that the compiler needs between compilations of the separate parts of a program.

Think of the repository as a persistent symbol table with one entry per template that the compiler
uses to keep track of declarations, definitions, specializations, uses, etc. Given that concept, I can out-
line a model of instantiation that supports all language facilities, accommodates the current uses of .h
and .c files, doesn’t require the user to know about the repository, and provides the alternatives for
error checking, optimization, and compiler/linker efficiencies that implementers have asked for. Note
that this is a model for an instantiation system, rather than a language rule or a specific implementation.
Several alternative implementations are possible, but I suspect a user could ignore the details (most of
the time) and think of the system this way.

Let me outline what might happen in a number of cases from the point of view of a compiler. As
usual, .c are fed to the compiler and these .c files contain #include directives for .h files. The
compiler knows only about code that has been presented to it. That is, it never looks around in the file
system to try to find a template definition that it hasn’t already been presented with. However, the com-
piler uses the repository to ‘‘remember’’ which templates it has seen and where they came from. This
scheme can easily be extended to include the usual notions of archives. This scheme can easily be
extended to include the usual notions of archives. Here is a brief description of what a compiler does at
critical points:

– A template declaration is seen: The template can now be used. Enter the template into the repos-
itory.

– A function template definition is seen in a .c file: The template is processed as far as necessary
to enter it into the repository. If it is already entered, we give a ‘‘double definition’’ error unless
it is a new version of same template.

– A function template definition is seen in a .h file: The template is processed as far as necessary
to enter it into the repository. If it is already entered, we check that the already entered template
did in fact originate in the same header. If not, we give a ‘‘double definition’’ error. We check
that the one-definition rule hasn’t been violated by checking that this definition is in fact identi-
cal to the previous one. If not, we give a ‘‘double definition’’ error unless it is a new version of
same template.

– A function template specialization declaration is seen: If necessary, give a ‘‘used before special-
ized’’ error. The specialization can now be used. Enter the declaration into the repository.

– A function template specialization definition is seen: If necessary, give a ‘‘used before special-
ized’’ error. The specialization can now be used. Enter the definition into the repository.

– A use is encountered: Enter the fact that the template has been used with this set of template
arguments into the repository. Look into the repository to see if a general template or a special-
ization has been defined. If so, error checking and/or optimizations may be performed. If the
template has not previously been used for this set of template arguments, code may be generated.
Alternatively, code generation can be postponed until link time.

– An explicit instantiation request is encountered: Check if the template has been defined. If not,
give a ‘‘template not defined’’ error. Check if a specialization has been defined. If so, give an
‘‘instantiated and specialized’’ error. Check if the template has already been instantiated for this

- 6 -

set of template arguments. If so, a ‘‘double instantiation’’ error may be given, or the instantia-
tion request may be ignored. If not, code may be generated. Alternatively, code generation can
be postponed until link time. In either case, code is generated for every template class member
function presented to the compiler.

– The program is linked: Generate code for every template use for which code hasn’t already been
generated. Repeat this process until all instantiations have been done. Give a ‘‘used but not
defined’’ error for any missing template functions.

Code generation for a template and a set of template arguments involves the lookup at the point of
instantiation mentioned in §???. Naturally, checking against illegal uses, unacceptable overloadings,
etc., must also be performed.

An implementation can be more or less thorough in checking for violations of the one-definition rule
and the rule against multiple instantiations. These are non-required diagnostics so the exact behavior of
the implementation is a ‘‘quality of implementation’’ issue.’’

The primary benefit of this scheme is that the language definition need not concern itself with the organiza-
tion of source text. The major snag is that someone has to worry about issues such as

[1] Is the definition being presented a new version or a double definition.
[2] When two projects share a repository – as they will insist on – how do a user tell if an object file has

become invalid.
In addition, heuristics must be developed to avoid repository lookups from becoming a major performance
bottleneck. In principle, these problems are solved. For example, the Ada world lives (happily?) with a
scheme of this kind, but feedback from C++ users of repository schemes are not encouraging.

3.2 Template Directives
Here is the template directive variant proposed at the Waterloo meeting:

‘‘A template that has been used in a way that requires a specialization of its definition may be explicitly
specialized (_temp.spec_) or explicitly instantiated (_temp.explicit_) within the current translation unit,
otherwise the specialization will be implicitly generated if the definition has either been previously
made available through a template-directive or has been previously defined in the current translation
unit, else the template shall be explicitly instantiated within the program.

The syntax for a template directive is:

template-directive:
template string-literal ;

A template-directive nominates a translation unit containing definitions of templates that have been
declared in the current translation unit. There shall be an implementation- defined mapping between the
string-literal and an external source file name that is used to produce the nominated translation unit.
The nominated translation unit is produced using the same environment as for the current translation
unit. Names declared in the current translation unit are not visible within the nominated translation unit.
Names declared within the nominated translation unit do not become visible within the current transla-
tion unit. After a template-directive has been processed, the template definitions within the nominated
translation unit are available for use in instantiation of the declared templates if required. Definitions of
objects or functions with external linkage within the nominated translation unit shall be well-formed but
shall otherwise be treated as declarations only (i.e., no storage will be allocated and no code will be gen-
erated). A template-directive shall not appear in class scope or local scope. The treatment of defini-
tions of objects or functions with internal linkage will be revisited when linkage issues are resolved.

In order to explicitly instantiate the specialization, the definition shall either be made available
through a template-directive or shall have been previously defined in the current translation unit. For
explicit instantiation of a class, the definition of all members shall be made available.’’

The main benefit of this proposal is that the definition of any template can be found by examining the pro-
gram text. Its origins lies with the #include scheme used to find header files (See Spicer issue #6.20).

Making template definitions available through #include is from a language point of view equivalent
to placing the template definitions in the source. That is too specific for many uses because we would like
the template definitions to be as independent of a specific point of use as possible. It is also too inefficient
for important applications and development environments. However, the idea of being able to point the
compiler at the template source and then have it use that information if and only if it has needs for it is

- 7 -

attractive.
Various degrees of precompilation of definitions made available through template directives is possible,

and various degrees of optimization is possible based on the information (optimally) found as indicated by
a template directive.

Like meaning the string specified in an #include directive, the string specified in a template directive
is implementation specific. I don’t expect that to be more of a problem than the equivalent problem with
#include.

It has been suggested that a template derictive should be specific about which templates are defined
where. For example:

template set "set.c"; // template set is defined in set.c

instead of plain

template "set.c"; // some template is defined in set.c

Heuristics will allow a compilation system to match the performance of the more specific version, and I
suspect that the more specific version would become a nuisance by causing a proliferation of template
directives and by constraining the way template definitions are stored. Also, once a more specific template
directive was introduced the temptation to make it more flexible would be irresistible. For example:

template set "set1.c" "set2.c" // template set is defined
// in se1.c and/or set2.c.

template list map "containers.c" // list and map are defined
// in containers.c.

3.3 Context Merging
When a template specialization is generated the context for the resulting specialization must somehow be
synthesized from the context of the template definition and the context of the use of the specialization.

<<I plan to expand this section>>

3.4 Recommendation
Accept some variant of the template directive proposal. I could live with the Waterloo proposal (§3.2).

4 Name Injection

Consider:

class complex {
double re, im;
friend complex operator+(complex,complex);
// ...

};

void f(complex x, complex y)
{

complex z = x+y;
}

The reason this works is that the name operator+ is somehow ‘‘injected’’ into the scope enclosing the
declaration of class complex so that f() can use it. We can debate the proper terminology for describing
this phenomenon, but this is the way C++ has always worked, much code depends on it, and it is not easy to
rewrite such code in a way that doesn’t depend on some form of injection.

Now consider:

- 8 -

template<class Scalar> class complex {
Scalar re, im;
friend complex operator+(complex,complex);
// ...

};

typedef complex<double> complex;

void f(complex x, complex y)
{

complex z = x+y;
}

By analogy to the original example, most people – maybe naively – expects this to work, it did work the
way templates were originally defined and accepted by X3J16/WG21, and significant code depends on it
(Barton&Nachman???).

On the other hand, there is no doubt that name injection is odd (why should you have to look inside a
declaration to figure out what is being declared?), and that name injection from template cause serious com-
plications for the language definition and for implementors. Yet, it appears fundamentally odd injection for
ordinary classes and not for template classes. If injection is allowed we must specify exactly how that is
done. The extensions group and the committee as a whole have repeatedly changed their position on
aspects of this issue (Spicer #2.23).

4.1 Problems with Injection
Consider this ‘‘classic’’ example of problems with name injection from templates, where the comments
reflects the original resolution of the friend functions:

template<class T> struct A {
friend void f(A<T>) { }
friend void f2(struct X*);

};

void g(void* fp)
{

X* x; // error: X undefined
fp = f; // error: f undefined
f2(x); // error: f2 undefined

A<int> a; // instantiate A<int>
// declare f(A<int>), f2(A<int>), and X somewhere

X* x2; // ok: X now defined
fp = f; // ok: f now defined

A<char> b; // instantiate A<char>
// declare f(A<char>), f2(A<char>), and X somewhere

fp = f; // error: ambiguous, f(A<int>) or f(A<int>)?
}

This resolution has the undesirable property that the interpretation of the statement fp=f changes as we
progress down the function body – in a way that would appear completely mysterious in a real program.

We need to steer a course between these alternative absurdities.

4.2 Delayed Injection
John Spicer (among others) proposed a resolution that appears to both serve the sensible demands of

users (which, because of existing code cannot be ignored anyway), and the equally sensible demands of
implementors: Names from a template are injected after the global declaration in which a specialization is
used. This would give this resolution:

- 9 -

void g2(void* fp)
{

X* x; // error: X undefined
fp = f; // error: f undefined
f2(x); // error: f2 undefined

A<int> a; // instantiate A<int>
// declare f(A<int>), f2(A<int>), and X after g2()

X* x2; // error: X undefined
fp = f; // error: f undefined

A<char> b; // instantiate A<char>
// declare f(A<char>), f2(A<char>), and X after g2()

fp = f; // error: f undefined
}

X* x3; // fine
void* fp2 = f; // error: ambiguous, f(A<int>) or f(A<int>)?

Leaving the ‘‘artificial’’ test case behind consider again a complex template. The key example

void f(complex x, complex y)
{

complex z = x+y;
}

but introducing a specialization of complex for the very first time in a translation unit in the middle of a
function would not:

void ff()
{

complex<float> x = 1;
complex<float> y = 2;
complex<float> z = x+y; // error:

// operator+(complex<float>,complex<float>)
// not declared

}

I think I could live with that. Does anyone have the means to check out a considerable amount of code to
see whether that kind of example occur frequently? The nastiest variant would be the one where x+y was
successfully resolved to another +, say operator+(complex<double>,complex<double>), by
using conversions.

4.3 Delayed injection with re-scanning
The point of instantiation for a template specialization is ‘‘just before the nearest enclosing namespace dec-
laration.’’ Typically, that is just before the function that first uses a specialization. Why don’t we just
inject the names there – and analyze the program exactly as if the user had explicitly written those declara-
tions. For example:

template<class T> struct A {
friend void f(A<T>) { }
friend void f2(struct X*);

};

// inject ‘void f(A<int>);’
// inject ‘struct X;’
// inject ‘void f2(X*);’
// inject ‘void f(A<char>);’

- 10 -

void g2(void* fp)
{

X* x; // ok
fp = f; // error: ambiguous
f2(x); // of

A<int> a; // instantiate A<int>

X* x2; // ok
fp = f; // error: ambiguous

A<char> b; // instantiate A<char>

fp = f; // error: ambiguous
}

The snag is that this requires that we first scan a function body for instantiations and then do syntax and
semantic analysis for it after every instantiation is done. Since injected names could determine whether a
function was syntactically legal, this would be a nightmare. For example, the body of g2() contains a
syntax error until the instantiation of A<int> has triggered the injection of X. Also, recursive instantia-
tions could change the meaning of a program (syntactically and semantically) repeatedly. This is why we
initially rejected this simple-minded model, and why I think it should stay rejected.

4.4 Immediate Injection
After I declare an ordinary class, I don’t have to wait for some sort of instantiation to make injected decla-
rations available. For example:

class X {
friend class Y;
// ...

};

Y* p;

works even when no use has been made of X.
Could templates be handled similarly? Consider:

template<class T> class X {
friend class Y;
friend class Z<T>;
friend int f(T);
// ...

};

Y* p1; // error?
Z* p2; // error
Z<int>* p3; // error?
int i1 = f(2); // error?

X<int> x;

Y* p11; // ok
Z* p22; // error
Z<int>* p33; // ok
Z<char>* p44; // error?
int i1 = f(2); // ok

Consider what we logically could inject at the point of the template declaration and then consider what it
would be best to do.

We clearly could inject names that are independent of the template parameter exactly as we would have
done had we been declaring a non-template. For example:

- 11 -

template<class T> class X {
friend class Y;
// ...

};
// possible: inject ‘class y;’

Y* p1; // ok (possible)

We could inject template declarations for names that are dependent on a template argument. For example:

template<class T> class X {
// ...
friend class Z<T>;
friend int f(T);
// ...

};
// possible: inject ‘template<class T> class Z;’
// possible: inject ‘template<class T> int f(T);’

Z* p2; // ok (possible)
Z<int>* p3; // ok (possible)
int i1 = f(2); // ok (possible)

This have a pleasing crude simplicity to it, and mirrors the way ordinary declarations ‘inject’ names. I have
a nasty feeling, though, that I might have missed some important point. Please check my logic and think
about the implications for users.

I think that an implementor ought to be able to diagnose this error:

int f;

template<class T> class X {
friend int f(T); // error: X can’t be instantiated
// ...

};

The reason X<T> cannot be instantiated for any T is that every f() will clash with ::f. This example
must be considered whichever rule we adopt.

4.5 Recommendation
Sigh. I’m not sure. I think some form of injection in necessary. Without it we make some fairly standard
ways of writing C++ code very difficult (see Barton and Nackman) and we break non-trivial amounts of
real code in a way that is hard to fix. I can live with late injection (without re-scanning). However, I find
immediate injection more attractive, and would encourage people to look for snags. If no serious snags are
found, I’ll recommend immediate injection.

5 Template Overloading and Specialization

Consider a template a simple vector:

template <class T> class vector { /* ... */ };

We can specialize it for a specific type, say bool, like this:

class vector<bool> { /* ... */ };

vector<int> vi(10); // the general template
vector<bool> vb(10); // vector<bool> user specialization

However, we cannot currently specialize it for a well-defined set of type, say all pointers:

template <class T> class vector<T*> { /* ... */ }; // can’t say this

- 12 -

vector<int> vi(10); // use the general template vector<T>
vector<int*> vip(10); // use vector<T*> user specialization

Even though that seems a pretty simple and something many have wanted to do.
Now consider a vector like the one in STL:

template <class T, template <class U> class Allocator = allocator>
class vector { /* ... */ };

If we need to have this container specialized for some type, such as bool, we can specialize on all template
parameters:

class vector<bool,allocator> { /* ... */ };

However, we can’t do what we really want to do; that is, specialize on the first argument and leave the sec-
ond one free for the user to specify:

template <template <class U> class Allocator = allocator>
class vector<bool, Allocator> { /* ... */ };

vector<bool> vb1(10); // vector<bool,allocator> user specialization
vector<bool,myalloc> vb2(10); // vector<bool,myalloc> user specialization

Similarly, we might want a partial specialization for vectors of pointers:

template <class T, template <class U> class Allocator = allocator>
class vector<T*, Allocator> { /* ... */ };

vector<int*> vi; // use vector<int*,allocator> user specialization

5.1 Specialization as Overloading
Specialization is a rather crude form of overloading. Basically, the compiler can tell a completely specific
example from the general case, but has no notion of a better match. The examples above suggests a way to
allow a limited form of overloading by allowing specific specialization patterns. Note that this line of
thought was not feasible until the rule that an explicit specialization must be declared before it is used was
adopted. Before that, we had to consider overloading and specialization as alternative and interfering
mechanisms.

Partial specialization could be made arbitrarily smart/general. That would, however, require the com-
piler to be arbitrarily smart or the introduction of rules for choosing between ‘‘similar’’ patterns. The other
extreme – apart from the current acceptance of individual specializations only – would be to accept only a
few simple patterns, such as T*. A better approach would be to accept exactly the set of patterns that
define the set of acceptable template parameter deductions for functions from section [temp.deduct] of the
WP. This would have the effect of allowing exactly the same set of overloadings for template functions
and template classes. For example:

template<class T> class List { /* ... */ };
template<class T> class List<void*> { /* ... */ };
template<class T> class List<T*> { /* ... */ };
template<class T> class List< Vector<T> > { /* ... */ };

would provide distinct implementations of lists of void*, T*, and vector<T> and leave all other lists
implemented by the general case.

Consider:

template<class T> class vector<T*> { /* ... */ };

vector<int*> vi(10);

What does T refer to for vi? int or int*? The answer is (clearly?) that in this case T stands for int*
exactly as if there had been no specialization. The specialization pattern, in this example T* does not intro-
duce a new variable or in any other way affect the meaning of the defined template; it simply controls when
that template is used in instantiations.

- 13 -

Interestingly,

template<class T> class List { /* ... */ };

and

template<class T> class List<T> { /* ... */ };

become synonyms.
Should the general form of a template be required at all? The current rule is that you cannot specialize a

template that hasn’t been declared (because in that case there isn’t a template to specialize). However, hav-
ing a restricted form of some templates only appears to make perfect sense for some templates. For exam-
ple:

template<class T> class X<T*> { /* ... */ };

would be a template that could be used for pointers only. However, I would like to see some much better
examples before seriously considering relaxing the requirement that the general template be declared first
of all. Without it, spelling mistakes in specialization declarations cannot be caught.

5.1.1 Specialization and Constraints
There have been persistent and repeated requests for a way of expressing constraints on template argu-

ments. A discussion of the pros and cons of various forms of constraints on template arguments can be
found in §15.4 of Stroustrup: The Design and Evolution of C++ Addison-Wesley 1994. It has also repeat-
edly been noted that overloading is an alternative to constraints in many cases. That is, instead of saying
‘‘the parameter must have property X’’ one says ‘‘if the parameter has property X use this version other-
wise use another.’’ The partial specialization technique would extend that technique to deal with class tem-
plates.

In The Design and Evolution of C++, I observe that no constraint mechanism (that I know of) can
express every desirably constraint directly and conveniently. The partial specialization mechanism is no
exception. For example, it is easy to express ‘‘T must be a pointer,’’ but one cannot directly express ‘‘T
must not be a pointer.’’ In this case, the general template can be used to indirectly express the negative:

template<class T> class X { /* ... */ }; // non-pointer arguments only
template<class T> class X<T*> { /* ... */ }; // pointer arguments

The specialization for pointers makes the comment on the general case true.
Partial specialization according to the rules outlined above cannot express one of the most commonly

requested constraints ‘‘the template argument must be a pointer to a class derived from Base.’’ One could
extend the expressiveness of specialization patterns to cover that case:

template<class T> class Z { /* ... */ };

template<class T> class Z<T*:B*> { // specialization for T*s where
// T is derived from B

// ...
}

I am not keen on doing that, though. I have severe doubts about the kind of system architecture that results
from the use of such constraints, I like the fact that the rule for specialization patterns is exactly the existing
rule for template parameter deduction, and I like not having to invent a syntax for expressing derivation
constraints.

5.2 Template Functions
We can overload a single template by as many functions as we like, and we can specialize a template func-
tion as often as we like, but we cannot define two function templates with the same name. This is a result
of the current rules rather than of anything fundamental.

What would be the equivalent to partial specialization for template functions? Here is a first approxi-
mation of an answer: Overloading of a template function

- 14 -

template<class T> void f(T);

with another with the argument of a form that allows the deduction of the template parameter according to
the rules from [temp.deduct]. For example:

template<class T> void f(T*);

In a call, a pointer argument causes the invocation of the pointer version; non-pointer arguments cause the
invocation of the general version. For example:

void g(int i, int* pi)
{

f(i); // call f<int>(int)
f(pi); // call f<int*>(int*), the f declared f(T*)

}

This shows that the second function, f(T*), is really a specialization of the first, f(T) because both could
be called for pi and in both cases the template parameter would be int*; that is, in both cases the function
called would be f<int*>. What would be done to get the example to work as described would be to pre-
fer f(T*) over f(T) because T* is more specific, in exactly the way a specific user-defined specializa-
tion is chosen. For example:

template<class T> void ff(T);
void ff<int*>(int*);

void gg(int i, int* pi)
{

ff(i); // call f<int>(int)
ff(pi); // call f<int*>(int*), the f declared f(int*)

}

5.2.1 Specialization and Linkage
Following this line of thought, it would be logical to require the specialization syntax to be used:

template<class T> void f(T);
template<class T> void f<T*>(T*);

That is, however, rather ugly and apparently redundant. Is it logically necessary? If both functions are
within a single compilation unit, it is clearly not, but how about:

// file1.c:

template<class T> void f(T);

void g(int* pi) { f(pi); }

// file1.c:

template<class T> void f(T*);

void h(int* pi) { f(pi); }

How would a compilation system know that the two f()s were different functions and correctly
find/generate their definitions? After all, each compilation knows only one template called f and each calls
f(int*) with the template parameter int; that is, f<int>f(int*). I conjecture that few existing
implementation distinguish between the two cases (as, of course, they are not required to do), and that it
would be non-trivial to change implementations to distinguish them because of link compatibility concerns.
Thus, I conclude that even though specialization and overloading are equivalent (and trivial) within a single
compilation unit, there is a serious problem to consider if one wants to allow either and both in a multiple
compilation unit system (as one must). This will come as no surprise to people acquainted with the history
of overloading and linking in C++; the two topics are intimately intertwined.

The way this problem is addressed for specializations is first to require the template to be specialize

- 15 -

present before specialization can take place (this is violated in file2.c above), and then to require each
specialization explicitly declared to be a specialization. This would give:

// file1.c:

template<class T> void f(T);

void g(int* pi) { f(pi); }

// file1.c:

template<class T> void f(T);
template<class T> void f<>(T*);

void h(int* pi) { f(pi); }

The alternative, used for function overloading, is for each template function call to carry enough informa-
tion around at link time to distinguish it from a call of any other template function. That solution does not
appear feasible to me.

The use of the abbreviated form f<> to indicate specialization where the template parameter can be
deduced avoids the annoying redundancy and makes the notational overhead tolerable (to me at least).

Note that a similar notational convenience is neither needed nor possible for class templates because for
a class template there are no function parameters from which the template parameters could be deduced,
and thus no annoying redundancy to eliminate.

5.2.2 Partial Specialization for Functions
I conclude that we can allow partial specialization for template functions, but not simple overloading by
other template functions. A partial specialization must have its template parameter deducible according to
the usual rules. A partial specialization must be declared after its general template has been declared and
must be declared before used – exactly as the specializations we have now.

The first approximation for resolution of calls is also exactly the same as the current rule: If a special-
ization matches, it is preferred to the general template. The rules for conversions (or rather the lack thereof)
are the ones for arguments used to deduce a template parameter.

The remaining problem is what to do if two or more specializations match. I propose that a double
match is an ambiguity except that const may be used as a tiebreaker. For example:

template<class T> void f(T); // general template
template<class T> void f<>(T*); // one specialization
template<class T> void f<>(const T*); // another specialization

void g(const char* pcc, char* pc, char c)
{

f(pcc); // call f<char>(const char*)
f(pc); // call f<char>(char*)
f(c); // call f<char>(char)

}

I see no examples that tempt me to complicate the rules further.

5.2.3 Examples of Partial Specialization of Functions
Consider a copy function similar to the one in STL:

template <class T> T* copy(T* first, T* last, T* result)
{

while (first!=last) *result++ = *first++;
return result;

}

This is a rather inefficient way of moving simple objects, such as pointers, on many systems.
To avoid this overhead, we could define a specialization for the (important) case where first, last,

and result points to pointers:

- 16 -

template <class T> inline T** copy<>(T** first, T** last, T** result)
{

return (T**)memmove(result, first, (last - first)*sizeof(T*))
+ (last - first);

}

This will guarantee that no copy functions will be generated for all pointer moves; moreover, the perfor-
mance of copy will be much better.

The same kind of technique can be used for sort, etc.
The technique also solves the nagging ‘‘swap problem.’’ A general swap() must be defined like this:

template <class T> void swap(T& a, T& b)
{

T temp = a;
a = b;
b = temp;

}

If we have two vectors a and b, swap(a,b) does three vector assignments, and thereby copies 3*n
elements where n is the number of element of a vector. However, pointers or references to vectors can be
swapped much more efficiently:

template <class T> inline void swap<>(vector<T>& a, vector<T>& b) {
a.swap(b);

}

which is a constant time (and very fast) operation. That is important when you sort a vector of vectors.

5.3 Recommendation
I’m not sure. This mechanism seems right and addresses several important and well-known problems. In
particular, the definition and implementation of STL would benefit immediately and significantly. It also
seems to fit in with the rest of the language so that key syntax, linkage, type deduction, and overload reso-
lution simply follows existing rules. On the other hand, it is not absolutely essential for the completion of
C++. If any new features are considered this one ought to be.

6 Nested templates

Are there residual problems with nested templates? I would like to be sure that the answer is ‘no.’ Here, I
present an example of a nested conversion function that – to my mind – indicates that a restriction might be
needed (though I’m not sure and don’t propose one). I also present a nested template class example to give
anyone who think there might be problems lurking here a chance to air their worries; in this area, I do not
suspect problems.

6.1 Nested Conversions
One of the reasons to allow member templates was that several problems could be solved using conversions
defined as member templates (see ‘‘Stroustrup: Suggestions for Completing Templates ANSI X3J16/94-
0026, ISO WG21/N0413.’’ or ‘‘Stroustrup: The Design and Evolution of C++ Addison-Wesley 1994.’’
However, we soon discovered that the mechanism seems to be more powerful than apparently necessary
and that truly amazing examples could be constructed. For example:

- 17 -

template<class T> class B { };
template<class T> class D : B<T> { };

template<class T> class Y {
public:

template<class U> operator D<U>(); // convert any Y<T> to any D<U>
};

void f(B<int*>);

void g(Y<alpha> y)
{

f(y); // f((B<int*>) y. Y<alpha>::operator D<int*>())
}

This is a mild example. It can be handled by observing that one can get a B<int*> from a D<int*> and
then noting that a D<int*> can be obtained from any Y<T> by the user-defined conversion. Should a
compiler be that smart? Yes, I think so. In this case all that is required is a simple working backwards from
the desired parameter type towards the argument type.

Consider this variant:

template<class T> class D;

template<class T> class Y {
public:

template<class U> operator D<U>(); // convert any Y<T> to any D<U>
};

template<class T> class D : Y<T> { };

D<int*> x;

Y<double> y = x; //

To get a Y<double> we need a D<double>. A D<double> we can get from a Y<anything>, in
particular, we can get it from a Y<int*>. We can get a Y<int*> from a D<int*> by simple derivation.
Thus we can get from the D<int*> x to the Y<double> Y. I don’t like that one little bit, and would like
to outlaw it.

What I don’t like is finding the user defined conversion based on the fact that there is a built-in conver-
sion that can be used for the result of one particular user-defined conversion. In the first example above,
the algorithm proceeded smoothly by through steps each looking for a single conversion needed to reach a
known target. The second example seems to go beyond that and requiring the algorithm to look two con-
versions ahead. If this could be made precise, I think we have a basis for a rule that excludes absurdities
without interfering with desirable conversions.

<<I plan to add to this section>>

6.2 Nested Class templates
Consider:

template<class A> class X {
template<class B> class Y {

// ...
};

};

Does this imply problems about naming or instantiation? I don’t see any. To name an inner class Y
you must name some outer class X<a> so that the context for the instantiation for Y is determined
exactly as if it had been defined within an ordinary class. For example:

- 18 -

class Xa {
template<class B> class Y {

// ...
};

};

Thus, all questions of scope and instantiation reduces to previously solved problems.

6.3 Recommendation
Look carefully at examples of conversions defined as member templates. If a rule that outlaws the most
outrageous examples (apply to Erwin Unruh if you want some even weirder ones :-) can be found we would
probably be wise to adopt it. If not, do nothing.

7 Namespace Templates

Often, a class template carries no data, only static functions. For example:

template<class T> class CMP {
public:

static int eq(T a, T b) { return a==b; }
static int lt(T a, T b) { return a<b; }

};

The class itself and our use of it indicate that we don’t need any of the aspects of the class concept relating
to creating and using objects. It therefore ought to be a namespace:

template<class T> namespace CMP {
int eq(T a, T b) { return a==b; }
int lt(T a, T b) { return a<b; }

};

Allowing namespaces to be templates is a simple and logical extension.
When discussed in the extensions working group the only real worry about the soundness of namespace

templates was whether the openness of namespaces would cause problems. I would address that concern
by closing a namespace defined as a template:

template<class T> namespace X { /* ... */ };
template<class T> namespace X { /* more */ }; // error: can’t add to template

7.1 Recommendation
This feature is nice, but not necessary. I think we should forget about it for now. If people really
need/want it they will scream for it during the review period. I think they ought to have more important
things to worry about.

8 Namespace Template Arguments

A namespace cannot be a template argument. The reason is purely historical – namespaces didn’t exist
(except as an idea to be explored) when I wrote the template text. The implication is that if I want to refer
to a namespace from within a template I must either hard-wire the name of the namespace in or I must pro-
vide a global namespace alias. For example:

template<class T> void f(T)
{

// ...
Lib::g(); // calls the library

// ‘‘Lib’’ hard-wired into code
// ...

}

or

- 19 -

namespace fLib = Lib; // f() used fLib

template<class T> void f(T)
{

// ...
fLib::g(); // calls the library
// ...

}

The obvious alternative is to allow the last example to be expressed directly:

template<class T, namespace fLib> void f(T)
{

// ...
fLib::g(); // calls the library
// ...

}

When discussed in the extensions working group the only real worry about the soundness of names-
paces as template parameters was wether the openness of namespaces would cause problems. For example:

namespace A { void f(); }

template<namespace N> class X {
// ...

}

// ...

namespace A { void g(); } // add to A

// ...

The definition of X<A> would depend on whether it was instantiated before or after the extension of A. I
see this as a variant of the problem we have when people define different variant of an overloaded function
in different places. Like a namespace, a set of overloaded functions is open. Thus, I don’t see the openness
of namespaces as a reason not to allow namespaces as template parameters.

8.1 Recommendation
This feature is nice, but not necessary. I think we should forget about it for now. If people really
need/want it they will scream for it during the review period. I think they ought to have more important
things to worry about.

9 Typedef Templates

Typedefs for templates are useful. For example:

template<class T1, class T2> class X { /* ... */ };

typedef X<int,char> xic;

xic x0;

However, a typedef refers to a specific type and every parameter for the template must therefore be spec-
ified. It is not possible to use a typedef to give a name to the template that arise from specifying one
argument and leaving the other free for the user to specify later. This could be allowed. For example:

template<class T> typedef X<T,char> xc;

xc<int> x1; // same type as xic above.
xc<char> x2;

One nit is that this would be using typedef to name something that is not a type.

- 20 -

9.1 Recommendation
This feature is nice, but not necessary and not 100% clean. Most of its intended functionality is provided
by the more general mechanism of partial specialization, and by simple derivation. I think we should forget
about it for now. If people really need/want it they will scream for it during the review period. I think they
ought to have more important things to worry about.

10 Syntax of Template Types

Writing something like

vector<list<char>> vlc;

must be one of the most common and most annoying errors done by both novices and experts. The detec-
tion and repair is trivial:

vector< list<char> > vlc;

However, I still find the first – buggy – version the most visually pleasing. After years, I still haven’t
become really reconciled with the second.

We have discussed the problem with that trailing >> often enough, I don’t think there are any new solu-
tions to it to be found, and I consider every solution I know of ugly. If someone could prove me wrong and
provide a clean solution allowing

vector<list<char>> vlc;

I would be most happy. However, assuming that does not happen we have a choice between annoying
users and introducing some language-technical hack. I have come to believe that the latter is preferable.
Many implementors (who?) have – pushed by their users no doubt – have already voted with their feet.

Of the hacks I know of, introducing a state into the lexical analyzer so that >> is interpreted as > >
when preceded by two <s at the same bracket nesting level seems the least problematic. However, the
exact formulation is not a major concern to me.

10.1 Recommendation
Approve any hack that solves the problem!

11 Acknowledgements

It is had to pin down credit/blame for ideas in a note like this, but I easily spot contributions from Mike
Ball, John Barton, Sean Corfield, Andrew Koenig, Lee Nackman, John Spicer, Alex Stepanov, and Erwin
Unruh. Parts of this note are borrowed from ‘‘Stroustrup: Suggestions for Completing Templates ANSI
X3J16/94-0026, ISO WG21/N0413.’’

