
Using C++ Efficiently
In

Embedded Applications

César A Quiroz
Mentor Graphics, Microtec Division

Abstract. Moving to C++ presents opportunities for higher programmer
productivity. The requirements of embedded systems, however,
demand that the adoption of C++ be carefully measured for the
performance impact of run-time costs present in C++, but not in C.
This talk suggests strategies for developers who are starting their
acquaintance with C++.

This talk is aimed at embedded systems developers who are considering the adoption of C++[BS97] in
their projects. The material assumes professional acquaintance with embedded development, and with a
language in the general class of ANSI/ISO C[C90]. On the other hand, not much knowledge of C++ is
presumed. This talk is meant, therefore, for engineers tackling their first embedded system development
projects in C++.

There are good reasons for using C++ to implement an embedded system, for instance:

• C++ compares favorably with C (the leading alternative) in matters of syntactic convenience, compile-
time type-checking, memory allocation and initialization, and code reuse through derivation,

• The newly approved Draft Standard for C++ ends a long period of uncertainty about the ultimate shape
of the language. Conforming implementations are gradually turning up. Within a couple of years, we
should find that most implementations are fully conforming.

On the other hand, there are corresponding reasons for caution, too:

• C++ (plus its libraries) is a larger, more complex, language than C (its libraries included). A developer
who has a good understanding of the consequences of employing this or that C feature may be misled
when evaluating outwardly similar features in C++,

• The long gestation period of the C++ standard has promoted a drift in implementation. The meaning
of a C++ program (never mind its performance) does depend on what compiler it was meant for.

I assume here that the decision of adopting C++ has been made already, and that the development team is
evaluating which C++ features will be appropriate for the project at hand.

Feature Cost Evaluation
If we could give for sure advice of the form "Embedded developers should never use feature XYZ" then
this talk would not be needed. Such generalities are normally obvious (obviously right or obviously
wrong), but unlikely to be correct enough to use in real situations.

Evaluating a "feature", whatever we mean by that1, has to be always a qualified proposition. Using a
feature may be a clear win for some projects, but not for others; it will depend on the cost of the feature
relative to the project's needs and constraints.

This sort of evaluation is uncertain because it depends on how much the feature buys us, how much it takes
away from our budget, and (not the least) because different implementations cost differently.

For instance, consider the implementation of potentially unaligned accesses on processors (like most RISC
cpus) where unaligned access triggers an exception[PPC].

An example could be this function:

int fetch_from(void *p)
{

return *(int *)p; // what if 'p' points to an odd address?
}

where we may be requested to obtain an integer from a non-int-aligned address. This could be needed, for
one case, if we had to extract information from a message format that had been designed without
consideration for this problem.

The implementation could deal with this sort of access in a number of ways; two extreme ones are worth
comparing. One is pessimistic (and normally inefficient), the other optimistic (and sometimes fast).

The implementation may decide that such accesses need to be performed by fetching bytes one at a time to
ensure correct alignment. In effect, the return statement would mutate into something like:

{
int tmp;
char *dst = (char *)&tmp;
char *src = (char *)p;

while (dst < (char *)&tmp + sizeof(int)) *dst++ = *src++;
return tmp;

}

This, although legal, is likely to be inefficient always, as it dooms aligned accesses to the same treatment.

On the other hand, the implementation could be optimistic, in whose case the fetch through the argument
pointer would be implemented directly as a word load, betting that the pointer points to a well-aligned
integer. Because this implementation would trigger exceptions whenever it loses its bet, it would be part of
its duty to supply an exception handler to correct the trapped accesses transparently.

Deciding between these two decisions isn't trivial. If you assume that most of your potential misaligned
accesses will actually be misaligned, then fetching one byte at a time always is a good idea. You will be
very slow in a few cases (when the access is actually aligned) but you will have bounded the cost of the
misaligned ones. Otherwise, if most accesses are actually well aligned, then the exception handler is the
way to go. The heavy cost of the context switch will be paid only by the few accesses that fail to be
properly aligned.

Another consideration could be that you (the applications designer or implementor) don't control the
exception vectors, and can't guarantee the installation of the needed handler.

Naturally, there are other possible implementations. The above tends to indicate simply that we can't say
"you should not depend on potentially misaligned accesses"; as often, it just depends.

1 For concreteness, think of "using virtual functions", "using multiple inheritance", "using stdio", as
examples of adopting a feature. An example of a positive evaluation could be "we'll use stdio instead of
writing our own I/O system, because it only takes 600K of storage, and we can have it today". A negative
evaluation would sound like "we can't afford 600K of code for stdio alone, as we only output strings
anyway--we'll write our own string I/O functions". These examples are not a claim that stdio takes (as
much as, as little as) 600K in any given system, of course.

First Principle 2 of Feature Evaluation
Although feature evaluation must be relative to specific requirements and constraints, there is some room
for general criteria. We can at least get a first level of evaluation, based on the observation that things done
before run-time are cheaper than things done at run-time.

This observation leads to a cost evaluation principle:

Features that can be implemented at compile (or assembly, or linkage)
time are cheaper than features that require making decisions after the
program has been loaded in memory.

Consider, for emphasis, these declarations:

int i = 0; // (d1)
int *ip = &i; // (d2)
extern int ei; // (d3)
int *eip = &ei; // (d4)

In (d1) we initialize a file-local variable. Some component of the development toolkit will know where the
variable i will be located, and will be able to arrange for a zero to be copied into it. We can imagine that
either the compiler or the assembler are likely to set up this initialization completely, leaving no work to be
done at run-time.

Declaration (d2) may look the same as (d1), especially for absolute loading, but there is a difference in the
general case. It is true that the toolkit will have early access to all the needed information (where the
variable is, what the initial value should be), but it is likely that some final adjustment is needed, either by
the linker, or by the run-time support (if the code is position-independent, for instance). There isn't a whole
lot more to do in (d2) than in (d1), but there is some.

Finally, (d4) is like (d2), only more so. Even in absolute loads, the final address won't be known until the
linker is done with the program; indeed, as a quality of implementation issue, the linker may not resolve the
address completely, but could just create a little code stub to do the initialization at run-time.

Using the principle
The rest of this talk will cover uses of this principle for C++ features that the beginner designer may wish
to consider. For each of the examples that we'll go through we'll try to determine what sort of run-time
impact a feature has on code that uses it.

Limitations of the principle
The most important limitation of the principle is that it is only reliable when giving negative information.
A feature that has to be expensive (defined by work that cannot be done before run-time) will be expensive
always, but a feature that could be cheap may not be cheap at all in a given implementation.

Consequently, trust but verify. Before deciding that Feature X is so cheap that you can use it in every other
line, it doesn't hurt to test examples of the intended use against your development toolkit. If the generated
code is not as cheap as you hoped for, you have the choice of either taking the issue to your toolkit
suppliers, or of not using the feature that way. If you wait until the code is ready, you may box yourself.

Quality-of-implementation isn't always predictable from prior experience. Techniques improve over time,
and some times need to be replaced. Therefore, the advice you get from considering a given
implementation may be incorrect after only a few releases of your preferred toolkit. Periodic re-evaluation
(when considering new toolkits, for instance) is needed to make sure you don't build up dangerous
assumptions.

2 There is, so to speak, a zeroth principle: Do What You Must. From here on we assume that you have
satisfied all mandatory constraints, and are exploring the feature space for good matches to your
requirements.

A well-known example of the need for periodic assessment is the use of the register keyword in old
C[KR1]. Although that was never guaranteed by the language, most implementations considered for
register allocation first the variables declared with the register storage class, in their order of declaration.
Current implementations prefer to ignore the declaration altogether, and do their own register allocation
from scratch. Therefore, applications based on the concept that "the register feature should be used in all
inner loops" may find surprising results when running on modern implementations that disregard the hint.
In those implementations, applying the register keyword to a variable only indicates that you want an
error message if you ever take that variable's address.

Application to C++ as of Early 1998
As we examine a number of examples below, we have to keep in mind that some of the comparisons are
based on actual experience, while others are based on an educated guess. With the advent of a standard for
C++, implementors can finally concentrate on implementing one language well, instead of spreading
themselves thin by implementing many dialects. The guess is that the implementation of some of the new
features in C++ (notably, templates) will be cheaper soon than is current practice now. This is so because
the techniques needed to implement templates cheaply are well understood, and the need will be pressing as
soon as the standard C++ library becomes commonplace.

Therefore, dangerous as it may be, the advice given below is on a "best-effort assumed" basis. Claims that
a feature is expensive are generally stable if they are based on provable run-time needs. Claims to the
contrary, on the other hand, are vulnerable to changes in the implementation.

C++: Cheap features
In this section I consider a number of features whose implementation is cheap, because it can be done
entirely inside the compiler. In practice, moreover, it is done that way; there is little or no potential for
surprises here.

Initialized Static Consts (vs Preprocessor Defines)
A stated goal of C++'s design is to render the C preprocessor obsolescent. To achieve that goal one needs
to supply the functionality provided by both object-like and function-like macros [C90, §6.8.3].

C++'s replacement for object-like macros (at least, most of the interesting ones) is in the form of static
consts initialized to literals. The idea is to replace

#define EOF (-1)

with

const int EOF = -1; // static by default

The usual concern about this replacement is that the defined variable will take space at run-time. However,
if the address of the variable is never taken, the compiler is very likely to "fold" the literal into its uses (this
assumes that the value is, indeed, constant-foldable: typically this demands a scalar type).

Arbitrary Placement of Declarations
C requires a specific sequence: each block starts with declarations, then statements. C++ permits
declarations interspersed with the statements, allowing a declaration to happen nearer the point of actual
usage (often, also allowing a context-dependent initialization to happen after preliminary elaboration). This
is just syntactic convenience, and does not mean that a C++ implementation "opens" and "closes" scopes at
run-time.

This concern may come from consideration of very old C compilers, which started each block by
subtracting from the stack pointer to allocate frame space. That stopped being the case very long ago.

References
References (and reference types) are just syntactic sugar for pointers. The compiler doesn't need to
generate special code to keep track of where the reference points to, and in some cases the reference itself
does not exist at run time (the variable referred to does, of course). Passing by reference is just passing a
pointer, and leaving it to the compiler to figure out when that pointer needs dereferencing.

Namespaces
Code reuse sometimes has the disadvantage that you end up with name collisions. Think of those "sort" or
"display" functions (named with that generic lack of imagination) that appear in most code. Those
collisions sometimes can be helped by hiding things in classes, but not everything can be construed as a
class member, and C libraries don't lend themselves easily to such wrapping.

Namespaces take care of (most of) this problem. Any names appearing on your code (variables, functions,
enumerators, etc.) are resolved to one namespace or another, including the unnamed global one. There is
no run-time penalty to using namespaces.

New/Delete
The combination of new and constructors takes care of allocating and initializing a heap-based object. It is
no more expensive than what you could do by hand with malloc and initialization functions in C. This is
clearly cheap, and less prone to accidents than the malloc route.

Similarly, combining delete and destructors gives us the same functionality as free would in C. Perhaps
there is a certain run-time cost: most C structs don't get "destructed" in the C++ sense. However, the
default, compiler-provided, destructor in C++ is empty and normally costs nothing.

So, there is no reason to malloc and free things yourself.

Now, this is not the whole story. The new and delete facilities can throw exceptions; we'll address that
below.

Finally, let's evaluate array-new and array-delete. These operators incur a certain run-time cost:
someplace there has to be a way to tell, from just the address of an array, how many elements it has. This
cost cannot be less than sizeof(size_t) , if we hide the array size at a fixed offset from the heap object that
is allocated to the array. It could grow perhaps to sizeof(size_t)+K * sizeof(void *), if the mapping
from address to size is some sort of hash table (the coefficient K has to do with the hash table
implementation in use).

Typically, this added cost is negligible: maintaining the mapping is trivial in comparison to
allocating/initializing the array; and the memory used up this way is much less than the memory used up in
the array storage itself.

However, this little cost could be important if you find yourself generating a lot of small dynamic arrays, as
in this example:

double *point = new double[3]; // and then more of the same
. . .
delete[] point;

You should consider keeping those small arrays (especially if they are all of the same size) inside classes,
for the sake of decreasing the potential cost of keeping track of their sizes at run-time.

Overloading
Again, this is largely an issue of naming. The compiler needs to determine, just by looking at a call, which
of several functions identically named (but with different parameter types) most closely matches the types
of the arguments of the call.

A resolved call to an overloaded function does not look at all different (from a run-time perspective) than a
call to a non-overloaded function. Therefore, this is a trivially cheap feature when run-time space and time
consumption are considered.

Two warnings are in order, though. The first has nothing to do with run-time efficiency: there is an
intellectual cost in tracking which of a set of overloaded functions is meant. This is especially so when
overloaded operators are used. Overloading may attract beginner developers even when inappropriate (no
feature worth anything is free from this). When x+y happens to mean "open file x and append structure y as
a record, then close x again", then any amount of complexity may be hiding behind the most innocent-
looking code.

The second warning has to do with relying on overloading resolution to convert (via constructors) the
arguments to a call. For instance, in

struct S {
int i;
S(int ii) : i (ii) { };

};

extern void f(S);

int main()
{

f(1); // actually, f(S(1));
return 0;

}

it may be hard to see that the call to f(1) requires a temporary location to construct S(1) first. If that sort
of expression occurs frequently in the same function, its stack requirements may grow surprisingly.

The example above worries us because of the conversion, not of the overloading. Indeed, it can be fixed by
using overloading:

// add this line somewhere above
void f(int j) { f(S(j)); }

makes sure that only one temporary is constructed on the stack, no matter how many times expressions of
the form f(integer) appear in the code.

Yet, it is useful to mention this sort of waste in the context of overloading (instead of in the context of
construction/conversion) because some times the surprise comes from a conversion that made the
overloading resolvable. For instance:

class S;
class T;
extern void f(S);
extern void f(T);
. . .

f(1);

the call is unambiguous if one of S or T (but not the other) has a constructor that converts integers into
objects of the proper class. You normally won't get a message in this case, but you will get the temporary
variable on the stack.

C++: Maybe-cheap features
Here I consider features that could be cheap. There is no substantial reason for these features to generate
code (or take space) that couldn't be matched with something you would have to write yourself in C. On
the other hand, the state of the art may no be quite there; verification by challenging your chosen compiler
is mandatory.

Initialization/Conversion/Termination
I have already mentioned cases where implicit conversion may add unexpected costs.

Beyond that, there is a risk of code space waste. The compiler must generate special members
(constructors, destructors) if you don't provide them yourself. Regrettably, the compiler may not know that
some of those were not provided because they weren't needed. Proper dead-code elimination at link time
should take care of this, but you should make sure that your compiler doesn't leave useless special members
around.

Sometimes one hears the complaint that the run-time is calling constructors that the code doesn't even
mention. The usual reason is implicit conversion; you may not be aware that, for instance, passing an
argument by value has necessitated a copy construction. Obviously, you don't want the compiler to
eliminate the special members in that case.

Chances are, these special members by themselves are not a performance problem. Their usefulness repays
whatever expense is incurred.

Function In-lining
In-line expansion of functions is another issue altogether. If your compiler takes the inline hint as a
command to inline, you may be in trouble.

The reason is that in-lining can be very expensive in code space. Modern processors make function calling
protocols quite cheaper than was usual in the CISC era; it may not pay off to in-line even very small
functions, especially in the presence of interprocedural register allocation.

A better attitude to take is that inline hints the compiler to consider the functions so marked before
anything else is inlined, but to feel free to ignore the hint (as with register).

If you verify that your compiler in-lines excessively you should consider looking for options that limit the
in-lining, or even building your application with -Dinline= to suppress the hint.

Multiple Inheritance
Single inheritance allows you to refine (add behavior) to code written by others. Perhaps you received a
class IOPort, and refined it to a class SerialPort. Multiple inheritance allows you to combine (add among
themselves, and then add behavior) several classes. For instance, from your class SerialPort and
someone's class IP, you may be able to derive your own class SLIP.

Therefore, multiple inheritance is a good thing, but not much better than single inheritance. Nevertheless,
multiple inheritance requires larger virtual function tables.

Of course, your toolkit should make every effort to reduce the number of copies of the virtual function
tables it needs. It should also give you the option to promise not to use multiple inheritance, so that the
compiler can use thinner virtual function tables. You have matter for verification here, especially if you
want to use the full power of C++.

Using templates
Templates are very compact descriptions of parametric code. For instance, you may have types that differ
only on some count (how many widgets in a gadget, as in "reserve a queue for N characters, otherwise you
are a serial port") or on a type (as in "you are an IP stack, using a SLIP/PPP/Ethernet/… link layer").

We used to do this with pre-processor macros, as in

#define NEW(T) ((T *)malloc(sizeof(T)))
#define BUFFER(NAME,T,N)\

T NAME[N];

Templates are completely converted into normal, non-parametric code, before3 run-time (we say that they
are instantiated). Therefore, they should be very cheap. Regrettably, the mechanism that instantiates
templates may, conservatively, instantiate too much.

This is especially worrisome for the C++ standard library, as it depends heavily on templates. All toolkit
implementors are likely to optimize this aspect at least somewhat; it is only a matter of time before all
viable implementations of C++ impose no, or almost no, code space overhead for using the standard
libraries. This is something you need to verify too: to what extent does your compiler produce unneeded
instantiations, and what plans there are to reduce the waste.

Your own templates should not be any more expensive to use than standard library templates, of course.
That is worth verifying, too.

C++: The expensive stuff
Finally, I consider those features that have some unavoidable run-time impact. I am not recommending, of
course, that you never use them. Instead, I would say that beginner users of the language should think long
and hard before these features take a significant part in their designs. There is some complexity involved,
and no amount of optimization will remove all of it.

The characteristic common to all these expensive features is the need to maintain data structures at run-
time.

Run-Time Type Identification
Run-Time Type Identification (RTTI) provides answers to this question: "given that I have a pointer to type
T, is the object pointed to also of type S?". Generally, this is not true for randomly chosen types S and T.
However, if T is derived from S, it is always true; if S is derived from T, it is sometimes true. The
practical form of this test is to ask (by casting) for a pointer to the object of type S that corresponds to our
pointer to type T.

Never mind how useful this is, it requires keeping at run-time a representation of the type hierarchy, and
tracking the ultimate provenance of each object.

RTTI introduces two costs, then. In terms of space, it requires a data structure that will provide the type
correspondences, even across several steps of derivation. It also consumes time, because that data structure
needs to be maintained.

As this feature was introduced relatively late in C++'s development, it is common to find options to refuse
RTTI support. It does make sense (if you don't have a good use for it) to refuse this feature; notice that you
should also refuse Exception Handling in that case. The beginning C++ developer has other reasons to
decline the favor of Exception Handling anyway.

Exception Handling
Exception handling (EH) is, perhaps, the single most expensive feature an embedded design may consider.
On stylistic grounds it is a far superior way to capture aberrant executions than the traditional return codes;
it counts as one of the major reasons why C++ is better than C for development in large scale.

The problem is for embedded system developers. For starters, EH demands an RTTI implementation, or
something very close to it. Second, a throw (a non-recoverable bad thing being forwarded upwards in the
call chain in hopes that someone will know what to do with it) requires considerable run-time effort: for the
current scope, already built objects need to be destructed. Then, for each consecutive scope around the one
that threw, we need to find if it is capable of handling the problem (by comparing the types it is willing to
catch with the type of the object being thrown). If so, we need to reactivate that scope with the appropriate

3 I didn't say "at compile time". This is more interesting (i.e., better left for another occasion) than it looks
at first sight.

context, else we need to act as if this scope had initiated the throwing (therefore, destructing everything
constructed so far, etc.).

This is way too much help.

The typical implementation has to decide between pessimistic or optimistic approaches. In the pessimistic
approach some work will be incurred in each scope (in case it is involved in the unwinding of a throw). In
the optimistic approach, the preparation work will be postponed until the time of the throw (which is hoped
never to happen). Most implementations opt for building (at compile time) potentially large tables that
describe, for a throw within a range of addresses:

• What objects are fully constructed and need destruction,

• Where to find the types of surrounding catchers.

Discussion of the merits and costs of EH would require a talk by itself. Suffice here to recommend against
casual use of EH in embedded applications.

This is not as straightforward as it seems. First, a C++ standard system will throw under some
circumstances; you have to decide what to do with those (for instance, on memory exhaustion new will
throw an object of type bad_alloc). For some of these cases, the language offers portable ways to avoid the
exception (new(nothrow)… depends on the old method of returning a null pointer on failures).

Second, code you are reusing may depend on exceptions for error handling.

This is a suitable attitude for beginners (and, as such, can be refined as one gets confidence on the
language):

Don't use exceptions of your own. If you must, let them be catastrophic (that is, cause a reset). In
particular, don't use exceptions for communication, for event-driven programming, or for any common
situation that requires a repair (rather than a system reset).

It is possible to implement EH without RTTI (program meanings are slightly different). Indeed, there have
been catch-and-throw implementations even for Old C. So it could appear practical to have EH but no
RTTI. I discourage that thought: the cost of RTTI once you have EH is not so large that you should prefer
a departure from the standard.

Conclusions
Anticipating the performance impact of those features of C++ that distinguish it from C can be difficult.
Not only it may prove hard to estimate the run-time consequences of some of them, it just happens that
each development toolkit's choice of implementation techniques may make comparisons unpredictable.

However, even developers new to C++ can benefit from an analysis based on two pillars:

• Features that require run-time decisions should be expensive; therefore, consider them expensive.

• Features that are implementable entirely "in the compiler's head" should be cheap. However, testing
your chosen toolkit early about this assumption is easy, and can be a life-saver. Consider them cheap
only after verification.

I have tried to give above my view of what is cheap and what is not for embedded systems development.
This advice comes from the perspective of early 1998; it is, therefore, to be revised as the state of the art
advances. The aim has been to help those developers who are still making the first acquaintance of C++. I
hope that these comparisons will be useful, at least as a starting point for argument, but they do not replace
doing your own analysis based on the requirements and constraints of your project.

References

[BS94] The Design and Evolution of C++. Bjarne Stroustrup. Addison-Wesley Publishing Company,
1994. This is the definitive document as to the why of C++'s features.

[BS97] The C++ Programming Language. Bjarne Stroustrup. Third edition, Addison-Wesley Publishing
Company, 1997. The language will actually be defined by an international standard, for which a
final draft has already been approved as of this writing. This reference is likely to remain
authoritative even after publication of the international standard.

[C90] ISO/IEC 9899-1990. The international standard for C. It echoes substantially the American
National Standard for Programming Languages—C, from 1989. A number of technical
corrigenda amend or clarify its text.

[KR1] The C Programming Language. Brian W. Kernighan, Dennis M. Ritchie. First edition, Prentice-
Hall Inc., 1978.

[PPC] PowerPC™ Microprocessor Family: The Programming Environments. IBM/Motorola, 1997.
This is just a good example of a RISC processor; others abound nowadays.

	cover:
	back:

