Rationale for
International Standard -
Programming Language -
C

UNIX isatrademark of X/Open Co., Ltd..
DEC and PDP-11 are trademarks of Digital Equipment Corporation.
POSIX isatrademark of IEEE.

CONTENTS

(O g1 (0o (U o: A [0 o TSR P TSP R OPRRUPPOVRPRRRPRN 1
0.1 Organization Of the OCUMENTeiiiieiiieiee et 5
oo oL PP PPRRPRIN 6
2. NOIMELIVE REFEIENCES. ..ottt ettt ettt s b e be e sar e e neeenee 6
3. TermSand AefiNITIONS.......cc.eiiieiiii e b e sn e snn e neesane e 6
N o] 4 {011 1070 o TSP UPPOVROPRRPRN 7
ST 01V o o101 o SRS 8
5.1 CoNCEPLUAl MOUEIS.......eiiiieiiieiee ettt e b e e nne e 8
511 Trandation ENVIFONMENTEccuiiieeirieriie ettt b e sreesbe e b e e sneesneeeaes 9
5.1.2 EXECULION ENVIFONMENESeiiiiiitieitee ettt ettt sb e be e sre e e e sneesnnee s 10

5.2 Environmental CONSIAEIELIONS...........coiueiiiieiiieiie ettt 12
521 Charaller SEISueiiieeiiiieitie ettt nne e 12
5.2.2 Character display SEMEANLICS..........ooieiiiieiiieiie e 16
5.2.3 SIgNAS and INTEITUPES......eeiueieiie ittt nee s 17
5.2.4 EnVIironmental MITS.........cooiioiiiiiiiee e 17

6. LANQUABDE..... .ottt 21
5.2 CONCEPLS ..ottt ettt b e bR 21
6.2.1 SCOPES OF IHENMEITIENS.eiiiii et 21
6.2.2 Linkages Of IdeNtIfIErS.coiiiiiiieie et 22
6.2.3 Name Spaces Of IJENtIfIErS........coouiiiiiiie e 25
6.2.4 Storage durations Of ODJECES.ooiiiiiie i 25
B.2.5 TYPES. ettt ne e 27
6.2.7 Compatible type and COMPOSITE LYPEccvieiiiiiiee ittt 30

R I 001117/ £ o] o TP PR PRSP 30
6.3.1 ArthMELIC OPEraNGS.ooieiiieeiii e 30
6.3.2 Other OPEIANGS.........eeiiiiieiii ettt an e sne e nne e 33

6.4 LeXiCal EIEMENES.......coeiiiiiiiiie ettt 35
B.4.1 KEYWOITS.....uueiieiieiiie ittt ettt sttt ettt e sie e b e et e e sme e e s ne e e beenane e 35
B.4.2 TUENMEITIEIS. ...ttt e e b nne e 35
6.4.3 Universal CharaCter NAIMES........cocuiiiiiiiie ittt neenane e 36
B.4.4 CONSLANES......eeieiieie ittt ettt e e e e s e e 36
6.4.5 SHING IEEIAIS.c.eeiiiieie e 39
6.4.6 PUNCLUBLOIS.eiiiiiiee ittt ettt e e sne e nnn e 41
6.4.7 HEAOEN NAIMIES.......coiiieiiieeiie ettt e e s e s e e e neenane e 41
6.4.8 PreproCesSiNg NUMDEIS.cocuiiiiieiei ettt ettt be e san e e sneesnnee 41
6.4.9 COMIMENES.eiiiiiie ittt e s b e e e sr e e e asne e e sne e e sne e e nnneeaas 42

6.5 EXPIESSIONS ...ttt et b e b n e b b 43
6.5.1 PrimMary EXPrESSIONS.......ceeiueieiteertierieeetee st e sseeebeesseesaee e beesbeesaeeesbessnreesaneenneeanneens 46
6.5.2 POSHIX OPEILOIS. ... eeeieiieiie ittt 46
6.5.3 UNAIY OPEIELOISccoiiiiiiiie ettt ettt e e e s e nne e e 49
6.5.4 CaSt OPEIBLOIS.eee ittt 50
6.5.5 MUILIPIICALIVE OPEIBLOIS......ccotieieeieiee ettt ettt enane e 51

CONTENTS

6.5.6 AJCItIVE OPEIBLOIS......c.ueieieiiiee ittt ettt ettt neenane e 51
6.5.7 BitWiSe SNift OPEIALOrS........eiiieeiiieiee et 52
6.5.8 REELIONal OPEIGIOIS......eiiiiiiiee et 52
6.5.9 EQUAEIILY OPEIELOIS.ccueiiieiiiee ittt ne e nane e 53
6.5.15 CoNAItiONal OPEIGLONc..eiiiieieieiie ettt sane e 53
6.5.16 ASSIGNMENT OPEIAIOIS.ueiieeeiitieteeetee st et e et e et sie et e s be e sin e e saeeeneesane e 53
6.5.17 COMME OPEIELONeeiiieieeirieeiiee et sre et ab e s e e s e e ssre e s sn e e e sneeesnneenas 55
6.6 CONSLANT EXPIESSIONSveiiitieritieiee ettt ettt ettt sae e b e s b e sie e abe e eab e e sne e e nbeeenbeenaneennnas 55
6.7 DECIAIALIONS.eeieeieieeeeeee bbb 56
6.7.1 StOrage-Class SPECITIESoiiiieiiieiie e 56
6.7.2 TYPE SPECITIENS .ttt b e s ne e nane e 56
6.7.3 TYPE QUAITIEIS ...ttt et nne e ene e 61
6.7.4 Function SPeCIfiers (INMNE)cooiririi e 66
6.7.5 DECIAIAIOISot e 67
6.7.6 TYPENMAIMIES.cciiiiiiiie ittt ettt et e s b e e sr e e s asn e e e sne e e sne e e nnee e 72
6.7.7 TYPEUEINITIONS.....cuteiiiiieiei ettt nane e 72
6.7.8 INIIAIZALION ... 72
6.8 SLALEIMENES.oitieiiiee ettt 74
6.8.1 Labeled SLELEMENES.cc.eiiiiiiiee ittt 74
6.8.2 Compound statement, Or DIOCK............c.cooiiiiiiiiie e 74
6.8.3 Expression and Null SLEEEMENES.........coiiiiiiieie e 74
6.8.4 SElECION SLALEMENES.eiiiii et sane e 74
6.8.5 [TEralioN SLALEMENTS.eiiiieiiee ittt nne e 75
6.8.6. JUMP SLALEIMENES.eiiiiiiie ettt 76
6.9 EXternal defiNitiONS........ccuiiiiiiiee e 77
6.9.1 FUNCLION EfINITIONS.eoiiiiiiee it 77
6.10 PreproCesSiNg GIFECHIVES.coiiieiiieitee ettt ettt ettt et be e ene e 78
6.10.1 Conditional INCIUSION.........cccueiiiiiiiiiie e 78
6.10.2 SOUICE fIl@ INCIUSION ..ot 79
6.10.3 MACIO rEPIBCEMENL.eiiii ittt nane e 80
6.10.4 LiNE COMLIOL.....c.uiiiieeiieeitie ettt b et e b e sane e 86
6.10.5 ENTOr GIFECLIVE. ...ttt nneennne s 86
6.10.6 PragmMadifECLIVEcc.eieiiiiiee ettt 86
6.10.7 NUI IFECLIVE. ...ttt sne e 86
6.10.8 Predefined MaCro NAIMES.........cocuiiiiiiiiie ittt 86
6.10.9 Pragma OPEIBLOTcciiuieeiirie ettt 87
6.11 Future [anguage AIrECHIONSciviiiiie ettt 87
6.11.2 StOrage-Class SPECITIENS......cccueeieieiie ettt sne e 87
6.11.3 FUNCLION AECIAIEIONS.c.veieiteeiiee ettt 87

A N 1o RSO UP PP PRTUPRTRN 89
4% S 1 ¢ 0 To [§Tox1 o] o A TSP RO PR TP RTRP 89
7.1.1 DefinitioNS O TEIMS.......viiii it 91
7.1.2 Standard NEAOEIS........ooiiiii e 91
7.1.3 ReESEIVED IAENITIENS. ...t 92
7.1.4 Useof library fUNCLIONScoiiiieiiieee e 92
7.2 DIagNOSHICS <BSSENT.N> ... 93
7.2.1 Program diagNOSLICS.cccuuiiieeiiieiieeeiee sttt b e sne e nnne e 93

CONTENTS

7.3 Complex arithmetic <COMPIEX.N>.....ccveiiiiie e 94
7.3.9 Manipulation FUNCLIONS.cccueeiiieiie et 9
7.4 Character Handling <CLYPe.n>........c.oooiiiiii s 95
7.4.1 Character testing fUNCHIONS.......c..uiiiiiiiiee it 95
7.4.2 Character case mapping fUNCHIONS..........coiuiiiiiiiie e 96
7.5 EITOIrS KEITNO.N> .ottt 96
7.6 Floating-point environment <fENV.h> ... 96
7.6.1 The FENV_ACCESS PragiMal......cccoueeueeirierieeeteeseeesieeaseesseesieesssessseesseessseesneens 98
T.6.2 EXCEPLIONSeiiiiiiiee ittt ettt b e nae e ne e nane e 98
7.6.3 ROUNGINGcoiiiiiiiitie ittt sin e eeneenane e 99
T7.6.4 ENVIFONMENT ..ottt et st be e sr e e smn e e nneeenne e 99
7.7 Characteristics of floating types <float.n>ccccooviiiiiiii e 99
7.8 Format conversion of integer types <inttypes.n> ..o 99
7.10 Sizesof integer types <IMItS.N>.....ocuiiiiii e 100
7.11 Localization <IOCAIE.N>oooiiii e 100
7101 LOCAIE CONLIOL....ccutieieietee ettt ettt sttt b e nan e 102
7.11.2 Numeric formatting CONVENtION INQUITY.........eeeiveeireerieeeieeeiee e 102
7.12 MathematicsS KMath.hi>......coooiii e 102
7.12.1 Treatment Of error CONAITIONS..........coiiiiiieiie e 103
7.12.2 The FP_CONTRACT PIragMal.....cccccecueerrieieerieesieeesieesseesseessneesseesseesnessnneesnees 104
7.12.3 ClasSIfiCalION MACTOS.coiuieieiiiie ettt b e san e 104
7.12.4 TrigONOMELIIC fUNCLIONSveiiiiieiie ettt 104
7.12.6 Exponential and logarithmicC fUNCLIONS............oceiiiieiii e 104
7.12.7 Power and absolute value fUNCLIONS...........ooiiiiieiiieee e 105
7.12.8 Error and gamma fUNCLIONSueiiiiiiieniie e 106
7.12.9 Nearest integer FUNCLIONS.c.uiiiiiiiie e 106
7.12.10 RemMaiNder fUNCHIONS........ciiueeieieiie ettt 107
7.12.12 Maximum, minimum, and positive difference functions.............cccceveeeviieeennen. 109
7.12.13 Floating MUILIPIY-800.........c.ooieiiiiiie e 109
7.13 Nonlocal Jumps <SELMP.N> ... 109
7.13.1 Save calling ENVIFONMENTcoiiiiiieiieeriee et 109
7.13.2 Restore calling @NVIFONMENLcooiuieiiiiiie e 110
7.14 Signal Handling <SIgNal.ni>........oouiiiiie e 110
7.14.1 Specify Signal handlingcooeiiiiiiiiei s 111
T7.14.2 SENA SIGNEL ..ot 111
7.15 Variable arguments <SIarg.ni>.......oooveoiiiiiiii e 111
7.15.1 Variable argument liSt 8CCESS MACIOS........cocveerieerieieiee st 112
7.16 Boolean type and values <StdDOOL.h>c.ooiiiiiiii 113
7.17 Common definitions <SLAAEf.h>oooiiii e 113
7.18 Integer types SSEAINE.N> ... e 114
T.18. 1 INEEOEN TYPES ... etee ittt ettt et 114
7.19 INPUL/OULPUL SSEAION> ... e 114
7.19.1 INEFOTUCTION ..ttt b e esne e e san e e e 115
T.19.2 SHIEAIMS. ..ottt e e 116
7093 FlES et e et nae e 117
7.19.4 OperatioNS ON fIlEScoiiiiiiie s 117
7.19.5 File aCCESS fUNCLIONS.uiiiiieiei ettt 118
7.19.6 Formatted input/OUtPUL FUNCLIONSccoviiiiiiieeree e 121

CONTENTS

7.19.7 Character input/OUtPUL FUNCLIONSoeiiiiiiieiieere e 124
7.19.8 Direct iINPUL/OULPUL FUNCLIONS.......ocueiiiieiiiieiee et 126
7.19.9 File poSitioning fUNCLIONS...........cooiiiiiieiie et 126
7.19.10 Error-handling fUNCHIONS...........ooiiiiiieiiiee e 127
7.20 Genera Utilities KSLAIID. N> 127
7.20.1 String CONVErSION FUNCHIONSviiiiiiiieiie ettt 127
7.20.2 Pseudo-random sequence generation fUNCHIONS..........c.covverieereeiiee s 128
7.20.3 Memory management fUNCLIONS...........ooiiioiei e 129
7.20.4 Communication With the enVIrONMENt...........cooovieiieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee 130
7.20.5 Searching and sorting ULIHIITIES..........cceiiiiiiiieeeee e 131
7.20.6 Integer arithmetiC FUNCLIONS.........coiiiiii i 131
7.20.7 Multibyte charaCter fUNCLIONScceviiiiie e 132
7.20.8 Multibyte String fUNCLIONS.......ccouiieiiee e e e e 132
7.21 String Handling <StNG.D> ..o 133
7.21.1 String fUNCLION CONVENMTIONS........viieiiiee i estieeesieee e et see et sree e s esneeas 133
7.21.2 COPYING FUNCLIONSeiiiiiiiiiie ettt ettt et e s e e e s e e snneeesnneeas 133
7.21.3 Concatenation fUNCLIONS...........coooviiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeee 134
7.21.4 CompariSONn fUNCLIONS........cccuiiiiiiie ettt e e sneeas 134
7.21.6 Miscelaneous fUNCLIONS...........ooooeieiiiieeeeeeeeeeeeeeeeeeeee 134
7.22 Type-generic math <tgmath.n>ccoooiiiiii i 135
7 R Y/ o L= o 7= 0T o 1 01 TSR 135
7.23 Dateand time <tMEIND> ... e e e aees 136
7.23.1 COMPONENLS Of LM ...ceiiiiiiiiieiiie ettt sne e e snneeas 136
7.23.2 Time manipulation FUNCLIONS..........cociiiiiiiie e 137
7.23.3 Time conVErsion fUNCLIONS............coooiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 138

S T N 01015 S-S 139
Annex D Formal model of sequence points (INfOrMBaLIVE)cooreirieeriiienie e 139
Annex F |EC 60559 floating-point arithmetic (NOrmMative)cccveveeeiiieeiie e 139
Fi2 TS e 139
F.5 Binary-deCimal CONVEISION.oiiiiiiieii ettt 141
F.7 BNVIFONMENE ... 141
F.7.4 CONSLANT EXPIESSIONS.cuveeieieiieeireesieeetee st e sseeabeesareesbeesbeesaseesneesnneesneeenneesaneens 141
T 1 1 (1= [72= (o 141

[I 01 1 1 o >R 142
F.O.1 TrigonOMELIiC fUNCHIONS.ueiiiiiiie ittt 143
F.9.4 Power and absolute value fUNCLIONS............eeveiieeiiiiiiiiireeeeee e 144
F.9.9 Maximum, minimum, and positive difference functions..............ccccceveeeiiieeiinennns 144
Annex G |EC 60559-compatible complex arithmetic (infformative)...........cccooveeeieciieeiieeiennienne 144
(3 1Y/ oSSR 145
(3 1107 V0] 0 = = (o] = T TSP POURTOPR 145
G4l MUIPlICALIVE OPEIGIONSeeiueeeiee ettt ettt sttt n e 145

G5 <COMPIEX.S .. e e ennes 145
(S (010" 1 1 >SS 147
Annex H Language independent arighmetic (iNfOrmative)cccoevieeiieenee e 147

v

CONTENTS

Annex | Universal character names for identifiers (NOrmative)ccoovevieenieeneesiieesieesiens 147
MSE. Multibyte Support EXtensions RELIONAIEcceeiiiiiiiiiieee e 148
MSE.1 MSE BACKGIOUNGcciuiiiiiiitie ittt ettt 148
MSE.2 Programming model based on wide charaCters..........cooovvieiiiiiec i 149
MSE.3 ParallelisSm VErsuS iMproVEMENTcoieiiiieiiieiee et 150
MSE.4 Support for invariant 1SO B46...........ccueiieiiiiiee et 153
MSE.S HEAEISot bbbt b et et 154
MSE.5.1 QWCNAIN> ... e 154
MSE.5.2 QWCLYPENS ..o s 155
MSE.6 Wide-character classification fUNCLIONS.............cooveiiieiiiiiieeee e 155
MSE.6.1 Locale dependency Of iSWXXX FUNCLIONScccueeiiieiiiiiee et 155
MSE.6.2 Changed space character handlingcoooeeieeriienie e 155
MSE.7 Extensible classification and mapping fUNCLIONS............ccooieeiieenie e 156
MSE.8 Generalized multibyte CharaCters...........ccoouiiiii e 156
MSE.9 StreamS and filES.........couiiiiieie s 157
MSE.Q.1 CONVEISION SALE......ccvieiiiieiie ettt ettt sttt b e san e sneeenee 157
MSE.Q.2 IMPIEMENTELIONeiitieiiieeieie ettt sre e 157
MSE.9.3 Byte versus wide-character iNPUL/OULPUL.............cooeeiieerieiiee e 159
MSE.9.4 Text versus binary iINPUE/OULPULcooueeiieerieeeieesieesiee e 161
MSE.10 Formatted input/OUtPUL FUNCLIONS.........coiviiiiieiie e 161
MSE.10.1 Enhancing existing formatted input/output fUNCLIONS...........cccevieeiiieiienienne 161
MSE.10.2 Formatted wide-character input/output fUNCLIONS...........cccoeeiiiienieniienieeieene 162
MSE.11 Adding the fwide FUNCLION...........cooiiiieiee s 162
MSE.12 Single-byte wide-character conversion funCtions............ccccceeeveeeenieeesciee e s 162
MSE.13 Extended cONVErSION ULIHTIES.........c.coiiiiiiiiiiieeiee e 163
MSE.13.1 CONVEISION SLALE.eeiueieteeeiee it estee et e sie et se et e sseeesseesneesaneesneeenee 163
MSE.13.2 CONVEIrSION ULHITIES.c..eiiiieiiieieeeee e 164
MSE.14 COlUMN WIOEN ... 165

0 > TSP PPR PR 1

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049

0. Introduction

This Rationae summarizes the deliberations of NCITS J11 (formerly X3J11) and SC22 WG14,
respectively the ANSI Technica Committee and 1SO/IEC JTC 1 Working Group, charged with

revising the International Standard for the C programming language; and it retains much of the text of

the Rationade for the origindl ANSI Standard (ANSI X3.159-1989, the so-called “C89”). This
document has been published along with the draft Standard to assist the process of formal public
review.

There have been several changes to the Standard already. C89 was quickly adopted as an International
Standard (ISO/IEC 9899:1990, commonly called “C90”), with changes to clause and subclause
numbering to conform to ISO practices. Since then, there have been two Technical Corrigenda and
one Normative Addendum; and those three documents, together with C90 itself, comprise the current
International Standard, (“C95”). The draft Standard is often called “C9X.”

J11 represents a cross-section of the C community in the United States: it consists of about thirty

members representing hardware manufacturers, vendors of compilers and other software development
tools, software designers, consultants, academics, authors, applications programmers, and others.

WG14's participants are representatives of national standards bodies such as ANSI. In this Rationale,

the unqualified “Committee” refers to J11 and WG14 working together to create C9OX.

Upon publication of the new Standard, the primary role of the Committee wil be to offer
interpretations of the Standard. It will consider and respond to all correspondeceigdsr

The Committee’s overall goal was to develop a clear, consistent, and unambiguous Standard for the C
programming language which codifies the common, existing definition of C and which promotes the
portability of user programs across C language environments.

The original X3J11 charter clearly mandatemstiifying common existing practice, and the C89
Committee held fast to precedent wherever that was clear and unambiguous. The vast majority of the
language defined by C89 was precisely the same as defined in Appendix A of the first etit®C of
Programming Language by Brian Kernighan and Dennis Ritchie, and as was implemented in almost all

C translators of the time. (This document is hereinafter referred to as K&R.)

K&R was not the only source of “existing practice.” Much work has been done over the years to
improve the C language by addressing its weaknesses, and the C89 Committee formalized
enhancements of proven value which had become part of the various dialects of C. This practice has
continued in the present Committee.

Existing practice, however, has not always been consistent. Various dialects of C have approached
problems in different and sometimes diametrically opposed ways. This divergence has happened for
several reasons. First, K&R, which once served as the language specification for almost all C
translators, is imprecise in some areas (thereby allowing divergent interpretations), and it does not
address some issues (such as a complete specification of a library) important for code portability.
Second, as the language has matured over the years, various extensions have been added in different
dialects to address limitations and weaknesses of the language; but these extensions have not been

1

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE
congstent across diaects.

One of the C89 Committee’s goals was to consider such areas of divergence and to establish a set of
clear, unambiguous rules consistent with the rest of the language. This effort included the
consideration of extensions made in various C dialects, the specification of a complete set of required
library functions, and the development of a complete, correct syntax for C.

Much of the Committee’s work has always been in large part a balancing act. The C89 Committee
tried to improve portability while retaining the definition of certain features of C as machine-dependent,

it attempted to incorporate valuable new ideas without disrupting the basic structure and fabric of the
language, and it tried to develop a clear and consistent language without invalidating existing
programs. All of the goals were important and each decision was weighed in the light of sometimes
contradictory requirements in an attempt to reach a workable compromise.

In specifying a standard language, the C89 Committee used several principles which continue to guide
our deliberations today. The most important of these are:

Exigting code is important, exising implementations are not. A large body of C code exists of
considerable commercial value. Every attempt has been made to ensure that the bulk of this code will
be acceptable to any implementation conforming to the Standard. The @8§ittée did not want to

force most programmers to modify their C programs just to have them accepted by a conforming
translator.

On the other hand, no one implementation was held up as the exemplar by which to define C. It was
assumed that all existing implementations must change somewhat to conform to the Standard.

C code can be portable. Although the C language was originally born with the UNIX operating
system on the DEC PDP-11, it has since been implemented on a wide variety of computers and
operating systems. It has also seen considerable use in cross-compilation of code for embedded
systems to be executed in a free-standing environment. The C89 Committee attempted to specify the
language and the library to be as widely implementable as possible, while recognizing that a system
must meet certain minimum criteria to be considered a viable host or target for the language.

C code can be non-portable. Although it strove to give programmers the opportunity to write truly
portable programs, the C89 Committee did not warfiorige programmers into writing portably, to
preclude the use of C as a “high-level assembler:” the ability to write machine-specific code is one of
the strengths of C. It is this principle which largely motivates drawing the distinction bestvietgn
conforming program andconforming program (84).

Avoid “quiet changes.” Any change to widespread practice dtering the meaning of existing code
causes problems. Changes that cause code to be so ill-formed as to require diagnostic messages are at
least easy to detect. As much as seemed possible consstent with its other goals, the C89 Committee
avoided changes that quietly ater one valid program to another with different semarntics, that cause a
working program to work differently without notice. In important places where this principle is
violated, both the C89 Rationale and this Rationale point out a QUIET CHANGE.

A standard is a treaty between implementor and programmer.Some numerical limits were added
to the Standard to give both implementors and programmers a better understanding of what must be

2

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
provided by an implementation, of what can be expected and depended upon to exist. These limits
were, and gill are, presented as minimum maxima (that is, lower limits placed on the values of upper
limits specified by an implementation) with the understanding that any implementor is at liberty to
provide higher limits than the Standard mandates. Any program that takes advantage of these more
tolerant limitsis not strictly conforming, however, since other implementations are at liberty to enforce
the mandated limits.

Keep the spirit of C. The C89 Committee kept as amgjor god to preserve the traditiond spirit of C.
There are many facets of the spirit of C, but the essence is a community sentiment of the underlying
principles upon which the C language isbased. Some of the facets of the spirit of C can be summarized
in phraseslike

. Trust the programmer.

. Don't prevent the programmer from doing what needs to be done.
. Keep the language small and smple.

. Provide only one way to do an operation.

. Make it fast, even if it is not guaranteed to be portable.

The last proverb needs a little explanation. The potential for efficient code generation is one of the
most important strengths of C. To help ensure that no code explosion occurs for what appears to be a
very simple operation, many operations are defined to be how the target machine’s hardware does it
rather than by a general abstract rule. An example of this wilingness to livehaitthe machine

does can be seen in the rules that govern the widenin@&f objects for use in expressions: whether

the values othar objects widen to signed or unsigned quantities typically depends on which byte
operation is more efficient on the target machine.

One of the goals of the C89 Committee was to avoid interfering with the ability of translators to
generate compact, efficient code. In several cases the C89 Committee introduced features to improve
the possible efficiency of the generated code; for instance, floating point operations may be performed
in single-precision if both operands &teoat rather thamoubl e.

At the WG14 meeting in Tokyo, Japan, in July 1994, the original principles were re-endorsed and the
following new ones were added:

Support international programming. During the initial standardization process, support |for
internationalization was something of an afterthought. Now that internationalization has become an
important topic, it should have equal visibility. As a result, all revision proposals shall be reviewed with
regard to their impact on internationalization as well as for other technical merit.

Codify existing practice to address evident deficiencies. Only those concepts that have some prior

art should be accepted. (Prior art may come from implementations of languages other than C.) Unless
some proposed new feature addresses an evident deficiency that is actually felt by more than a few C
programmers,o new inventions should be entertained.

Minimize incompatibilities with C90 (1SO/IEC 9899:1990). It should be possible for existing C
implementations to gradually migrate to future conformance, rather than requiring a replacement of the
environment. It should also be possible for the vast majority of existing conforming C programs to run

unchanged.

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

Minimize incompatibilitieswith C++. The Committee recognizes the need for a clear and defensible
plan for addressng the compatibility issue with C++. The Committee endorses the principle of
maintaining the largest common subset clearly and from the outset. Such a principle should satisfy the
requirement to maximize overlap of the languages while maintaining a distinction between them and
allowing them to evolve separately.

The Committee is content to let C++ be the big and ambitious language. While some features of C++
may well be embraced, it is not the Committee’s intention that C become C++.

Maintain conceptual smplicity. The Committee prefers an economy of concepts that do the

job.

Members should identify the issues and prescribe the minimal amount of machinery that will soive the

problems. The Committee recognizes the importance of being able to describe and teach new
in a straightforward and concise manner.

During the revision process, it will be important to consider the following observations:

concepts

* Regarding the 11 principles, there is a tradeoff between them—none is absolute. However, the
more the Committee deviates from them, the more rationale wil be needed to explain the

deviation.

» There has been a very positive reception of the standard from both the user and
communities.

+ The standard is not considered to be broken. Rather, the revision is needed to track €
and/or changing technologies and internationalization requirements.

vendor

merging

* Most users of C view it as a general-purpose high-level language. While higher level constructs

can be added, they should be done so only if they don’'t contradict the basic principles.

* There are a good number of useful suggestions to be found from the public comments an
report processing.

Areas to which the Committee shall look when revising the C Standard include:

Incorporate Amendment 1.

* Incorporate all Technical Corrigenda and records of response.
» Current defect reports.

» Future directions in current standard.

» Features currently labeled obsolescent.

» Cross-language standards groups work.

d defect

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
* Reguirements resulting from JTC 1 SC 2 (character sets).

» Theevolution of C++.
» Theevolution of other languages, particularly with regard to interlanguage communication issues.

» Other papers and proposals from member delegations, such as the numerical extensons Technica
Report which has since been proposed by J11.

* Other comments from the public &t large.
e Other prior art.

This Rationale focuses primarily on additions, clarifications, and changes made to the C language. It is
not a rationale for the C language as a whole: the C89 Committee was charged with codifying an
exiging language, not designing a new one. No attempt is made in this Rationale to defend the
pre-existing syntax of the language, such as the syntax of declarations or the binding of operators. The
Standard is contrived as carefully as possible to permit a broad range of implementations, from direct
interpreters to highly optimizing compilers with separate linkers, from ROM-based embedded
microcomputers to multi-user multi-processng host sysems. A certan amount of specidized
terminology has therefore been chosen to minimize the bias toward compiler implementations shown in
K&R.

This Rationale discusses some language or library features which were not adopted into the Standard.
These are usudly features which are popular in some C implementations, so that a user of those
implementations might question why they do not appear in the Standard.

0.1 Organization of the document

This Rationale is organized to pardle the Standard as closdly as possible to facilitate finding relevant
discussons. Some subclauses of the Standard are absent from this Rationale: this indicates that the
Committee thought no special comment was necessary. Where a given discussion touches on several
aress, attempts have been made to include cross references within the text. Such references, unless
they specify the Standard or the Rationale, are ddliberately ambiguous.

This document has one more Annex than does C9X. Cadled Annex MSE, it brings together
information on the Multibyte Support Extensons (MSE) that were added to C90 by Normative
Addendum 1. Thisis essentialy the Rationale for NA1; and it was kept largely unchanged because it
was thought that it would be clearer to have the MSE rationale in one place, as opposed to scattered
throughout the document.

Just as the Standard proper excludes all examples, footnotes, references, and informative annexes, this
Rationale is not part of the Sandard. The C language is defined by the Standard aone. If any part of
this Rationae is not in accord with that definition, the Committee would very much like to be s0
informed.

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

1. Scope

2. Normative References

3. Termsand definitions

The definitions of object, bit, byte, and alignment reflect a strong consensus, reached after consderable
discussion, about the fundamenta nature of the memory organization of a C environment:

. All objects in C must be representable as a contiguous sequence of bytes, each of which
Is at least 8 bits wide.

. A char whether signed or unsigned, occupies exactly one byte.

(Thus, for instance, on a machine with 36alitds, abyte can be defined to consist of 9, 12, 18, or 36

bits, these numbers being all the exact divisors of 36 which are not less than 8.) These strictures codify
the widespread presumption that any object can be treated as an array of characters, the size of which is
given by thesi zeof operator with that object’s type as its operand.

These definitions do not preclude “holes’sinr uct objects. Such holes are in fact often mandated
by alignment and packing requirements. The holes simply do not participate in representing the
composite value of an object.

The definition ofobject does not employ the notion of type. Thus an object has no type in and of itself.
However, since an object may only be designated Iyahre (see 86.3.2.1), the phrase “the type of

an object” is taken to mean, here and in the Standard, “the type of the Ivalue designating this object,”
and “the value of an object” means “the contents of the object interpreted as a value of the type of the
Ilvalue designating the object.”

The concepts ofmultibyte character, wide character, universal character, and extended character
have been added to C to support very large character sets (see 85.2.1 and SMSE.1).

The termsunspecified behavior, undefined behavior, andimplementation-defined behavior are used

to categorize the result of writing programs whose properties the Standard does not, or cannot,
completely describe. The goal of adopting this categorization is to allow a certain variety among
implementations which permitgiality of implementation to be an active force in the marketplace as
well as to allow certain popular extensions, without removing the cacheinfurmance to the
Sandard. Informative Annex K of the Standard catalogs those behaviors which fall into one of these
three categories.

Unspecified behavior gives the implementor some latitude in translating programs. This latitude does
not extend as far as failing to translate the program.

Undefined behavior gives the implementor license not to catch certain program errors that are difficult
to diagnose. It also identifies areas of possible conforming language extension: the implementor may

6

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
augment the language by providing a definition of the officialy undefined behavior.

Implementation-defined behavior gives an implementor the freedom to choose the appropriate
approach, but requires that this choice be explaned to the user. Behaviors designated as
implementation-defined are generally those in which a user could make meaningful coding decisions

based on the implementation’s definition. Implementors should bear in mind this criterion when
deciding how extensive an implementation definition ought to be. As with unspecified behavior, simply
failing to translate the source containing the implementation-defined behavior is not an adequate
response.

A new feature of COX. While responding to Defect Reports filed against C89, the Committee came to
realize that the original definition of “strictly conforming program” ruled out any significant use of the
locale feature. Since this was not the intent, a new catégaale-specific behavior, was added to
address this problem.

4. Conformance

The three-fold definition of conformance is used to broaden the population of conforming programs
and distinguish between conforming programs using a single implementation and portable conforming
programs.

A drictly conforming program is another term for a maximally portable program. The goal is to give
the programmer faghting chance to make powerful C programs that are also highly portable, without
seeming to demean perfectly useful C programs that happen not to be portable, thus teeiettiverb

By defining conforming implementations in terms of the programs they accept, the Standard leaves
open the door for a broad class of extensions as part of a conforming implementation. By defining
both conforming hosted and conforming freestanding implementations, the Standard recognizes the

use of C to write such programs as operating systems and ROM-based applications, as well as more
conventional hosted applications. Beyond this two-level scheme, no additional subsetting is defined for
C, since the C89 Committee felt strongly that too many levels dilutes the effectiveness of a standard.

Conforming program is thus the most tolerant of all categories, since a conforming implementation
need accept only one strictly conforming program to make it conforming. The pimiyon on
this license is §5.1.1.3.

Diverse parts of the Standard comprise the “treaty” between programmers and implementors regarding
various name spaces—if the programmer follows the rules of the Standard the implemeiitaton w
impose any further restrictions or surprises:

. A strictly conforming program can use only a restricted subset of the identifiers that
begin with underscore (§7.1.3). Identifiers and keywords are distinct (§6.4.1).
Otherwise, programmers can use whatever internal names they wish; a conforming
implementation is guaranteed not to use conflicting names of the form reserved for the
programmer. (Note, however, the class of identifiers which are identified in §7.26 as
possible future library names.)

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

. The external functions defined in, or called within, a portable program can be named
whatever the programmer wishes, as long as these names are distinct from the external
names defined by the Standard library (87). External names in a maximally portable
program must be distinct within the first 31 characters (in C95, the first 6 characters
mapped into one case) (see 85.2.4.1 and §6.4.2).

. A maximally portable program cannot, of course, assume any language keywords other
than those defined in the Standard.

. Each function called within a maximally portable program must either be defined within
some source file of the program or else be a function in the Standard library.

One proposal long entertained by the C89 Committee was to mandate that each implementation have a
translate-time switch for turning off extensions and making a pure Standard-conforming
implementation. It was pointed out, however, that virtually every translate-time switch setting
effectively creates a different “implementation,” however close may be the effect of translating with
two different switch settings. Whether an implementor chooses to offer a family of conforming
implementations, or to offer an assortment of non-conforming implementations along with one that
conforms, was not the business of the C89 Committee to mandate. The Standard therefore confines
itself to describing conformance, and merely suggests areas where exteiisioos c@mpromise
conformance.

Other proposals rejected more quickly were to provide a validation suite, and to provide the source
code for an acceptable library. Both were recognized to be major undertakings, and both were seen to
compromise the integrity of the Standard by giving concrete examples that might bear more weight
than the Standard itself. The potential legal implications were also a concern.

Standardization of such tools as program consistency checkers and symbolic debuggers lies outside the
mandate of the C89 Committee. However, the C89 Committee took pains to allow such programs to
work with conforming programs and implementations.

5. Environment

Because C has seen widespread use as a cross-compiled cross-compilation language, a clear distinction
must be made between translation and execution environments. The preprocessor, for ingtance, is
permitted to evaluate the expression # & directive using the long integer or unsigned long integer
arithmetic { nt _max_t or ui nt _max_t in C9X) native to the translation environment: these
integers must comprise at least 64 bits (32 bits before C9X), but need not match the number of bits in
the execution environment. Other translation time arithmetic, however, such as type casting and
floating point arithmetic, must more closely model the execution environment regardless of translation
environment.

5.1 Conceptual models

Theasif principle is invoked repeatedly in this Rationale. The C89 Committee found that describing
various aspects of the C language, library, and environment in terms of concrete models best serves

8

10

15

20

25

30

35

CI9X RATIONALE WG14/N850 J11/98-049
discussion and presentation. Every attempt has been made to craft the models so that implementors
are congtrained only insofar as they must bring about the same result, as if they had implemented the
presentation model; often enough the clearest model would make for the worst implementation.

5.1.1 Translation environment
5.1.1.1 Program structure

The terms source file, external linkage, linked, libraries, and executable program al imply a
conventional compiler-linker combination. All of these concepts have shaped the semantics of C,
however, and are inescapable even in an interpreted environment. Thus, while implementations are not
required to support separate compilation and linking with libraries, in some ways they must behave as
if they do.

5.1.1.2 Trandation phases

Perhaps the greatest undesrable diversty among pre-C89 implementations can be found in
preprocessing. Admittedly a distinct and primitive language superimposed upon C, the preprocessing
commands accreted over time, with little centra direction, and with even less precison in ther
documentation. This evolution has resulted in a variety of loca features, each with its ardent
adherents. K&R offerslittle clear basis for choosing one over the other.

The consensus of the C89 Committee is that preprocessing should be smple and overt, that it should
sacrifice power for clarity. For instance, the macro invocation f (a, b) should assuredly have two
actua arguments, even if b expandsto ¢, d; and the formal definition of f must call for exactly two
arguments. Above dl, the preprocessing sub-language should be specified precisdy enough to
minimize or eiminate diaect formation. To clarify the nature of preprocessng, the trandation from
source text to tokens is spelled out as a number of separate phases. The separate phases need not
actudly be present in the trandator, but the net effect must be as if they were. The phases need not be
performed in a separate preprocessor, athough the definition certainly permits this common practice.
Since the preprocessor need not know anything about the specific properties of the target, a
machine-independent implementation is permissible. The C89 Committee deemed that it was outsde
the scope of its mandate to require that the output of the preprocessing phases be avalable as a
Separate trandator output file.

The phases of trandation are spelled out to resolve questions raised about the precedence of different
parses. Can a#def i ne begin a comment? (No.) Is backdasvnew-line permitted within a trigraph?
(No.) Must a comment be contained within one#i ncl ude file? (Yes) And so on. The Rationde

on preprocessing (86.10) discusses the reasons for many of the decisions that shaped the specification
of the phases of translation.

A backslash immediately before a new-line has long been used to continue string literals, as well as
preprocessing command lines. In the interest of easing machine generation of C, and of transporting
code to machines with restrictive physical line lengths, the C89 Committee generalized this mechanism
to permitany token to be continued by interposing a backslash/new-line sequence.

In translation phase 4, the syntactic category preprocessing-file applies to each included file se¢parately
from the file it is included into. Thus an included file cannot contain, for example, unbataiced |

9

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE
or#el i f directives |

5.1.1.3 Diagnostics

By mandating some form of diagnostic message for any program containing a Syntax error or
congraint violation, the Standard performs two important services. Firg, it gives teeth to the concept
of erroneous program, since a conforming implementation must distinguish such a program from a
vdid one. Second, it severdly condrains the nature of extensons permissble to a conforming
implementation.

The Standard says nothing about the nature of the diagnostic message, which could simply be “syntax

error”, with no hint of where the error occurs. (An implementation must, of course, describe what
translator output constitutes a diagnostic message, so that the user can recognize it as such.) The C89
Committee ultimately decided that any diagnostic activity beyond this level is an isguedityf of
implementation, and that market forces would encourage more useful diagnostics. Nevertheless, the
C89 Committee felt that at least some significant class of errors must be diagnosed, and the class
specified should be recognizable by all translators.

The Standard does not forbid extensions provided that they do not invalidate strictly conforming
programs, and the translator must allow extensions to be disabled as discussed in Ratiohale §4.

Otherwise, extensions to a conforming C implementation lie in such realms as defining semantics for
syntax to which no semantics is ascribed by the Standard, or giving meamdgfieed behavior.

5.1.2 Execution environments

The definition ofprogram startup in the Standard is designed to permit initialization of static storage
by executable code, as well as by data translated into the program image.

5.1.2.1 Freestanding environment

As little as possible is said about freestanding environments, since little is served by constraining them.
5.1.2.2 Hosted environment

The properties required of a hosted environment are spelled out in a fair amount of detail in order to
give programmers a reasonable chance of writing programs which are portable among such
environments.

5.1.22.1 Program startup

The behavior of the argumentsrai n, and of the interaction @xi t, mai n andat exit (see
87.20.4.2) has been codified to curb some unwanted variety in the representatigu sfrings, and
in the meaning of values returnedrai n.

The specification ofr gc andar gv as arguments taai n recognizes extensive prior practice.
ar gv[argc] is required to be a null pointer to provide a redundant check for the end of the list, also
on the basis of common practice.

10

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049

mai n is the only function that may portably be declared either with zero or two arguments. (The

number of other functions’ arguments must match exactly between invocation and definition.) This
special case simply recognizes the widespread practice of leaving off the argumants tehen the

program does not access the program argument strings. While many implementations support more
than two arguments toai n, such practice is neither blessed nor forbidden by the Standard; a
program that definesai n with three arguments is ndtictly conforming (see 8K.5.1.). \

Command line I/O redirection is not mandated by the Standard, as this was deemed to be a feature of
the underlying operating system rather than the C language.

5.1.2.3 Program execution

Because C expressions can contain side effects, issigegueficing are important in expression
evaluation (see 86.5 and Annexes C and D). Most operators impose no sequencing requirements, but
a few operators imposequence points upon their evaluation: comma, logical-AND, logical-OR, and
conditional. Inthe expressigm =1, a[i] =0), for example, the side effect (alteration to storage)
specified by =1 must be completed before the expresajon] = 0 is evaluated.

Other sequence points are imposed by statement execution and completion of evaluatidh of a
expression (see 86.8). Thus ihn(++a) , the incrementation & must be completed befofen is
called. Ini =1; a[i] =0;the side-effect af = 1 must be complete befoa¢ i | =0 is evaluated.

The notion ofagreement has to do with the relationship between abgract machine defining the
semantics and an actual implementation. agreement point for some object or class of objects is a
sequence point at which the value of the object(s) in the real implementation must agree with the value
prescribed by the abstract semantics.

For example, compilers that hold variables in registers can sometimes drastically reduce execution
times. In aloop like

sum = 0;
for (i =0; i <N ++i)
sum += a[i];

bothsumandi might be profitably kept in registers during the execution of the loop. Thus, the actual
memory objects designated symandi would not change state during the loop.

Such behavior is, of course, too loose for hardware-oriented applications such as device drivers and
memory-mapped 1/0. The following loop looks almost identical to the previous example, but the
specification ofvol ati | e ensures that each assignment*td yport takes place in the same
sequence, and with the same values, as the abstract machine would have done.

vol atile short *ttyport;

...

for (i =0; i <N ++i)
*ttyport = a[i];

Another common optimization is to pre-compute common subexpressions. In this loop:

11

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

vol atile short *ttyport;
short nmaskl, mask2;
...
for (i =0; i <N ++i)
*ttyport = a[i] & maskl & mask2;

evauation of the subexpresson mask1l & mask2 could be performed prior to the loop in the resl
implementation, assuming that neither mask1 nor mask?2 appear as an operand of the address-of (&)
operator anywhere in the function. In the abstract machine, of course, this subexpresson is
re-evaluated a each loop iteration, but the real implementation is not required to mimic this
repetitiveness, because the variables mask1 and mask?2 arenot vol at i | e and the same results are
obtained either way.

The previous example shows that a subexpression can be pre-computed in the real implementation. A

guestion sometimes asked regarding optimization is, “Is the rearrangement still conforming if the
pre-computed expression might raise a signal (such as division by zero)?” Fortunately for optimizers,
the answer is “Yes,” because any evaluation that raises a computational signal has fallen into an
undefined behavior (86.5), for which any action is allowable.

Behavior is described in terms of abstract machine to underscore, once again, that the Standard
mandates resultss if certain mechanisms are used, without requiring those actual mechanisms in the
implementation. The Standard specifies agreement points at which the value of an object or class of
objects in an implementation must agree with the value ascribed by the abstract semantics.

Appendix C to the Standard lists the sequence points specified in the body of the Standard. |

The class ointeractive devices is intended to include at least asynchronous terminals, or paired display
screens and keyboards. An implementation may extend the definition to include other input and output
devices, or even network inter-program connections, provided they obey the Standard’s
characterization of interactivity.

5.2 Environmental consider ations

5.2.1 Character sets

The C89 Committee ultimately came to remarkable unanimity on the subject of character set
requirements. There was strong sentiment that C should not be tied to ASCII, despite its heritage and
despite the precedent of Ada being defined in terms of ASCII. Rather, an implementation is required
to provide a unique character code for each of the printable graphics used by C, and for each of the
control codes representable by an escape sequence. (No particular graphic representation for any
character is prescribed—thus the common Japanese practice of using the glyph ¥ for the C character
"\’ is perfectly legitimate.) Translation and execution environments may have different character sets,
but each must meet this requirement in its own way. The goal is to ensure that a conforming
implementation can translate a C translator written in C.

For this reason, and for economy of description, source code is dessnib&édindergoes the same

translation as text that is input by the standard library I/O routines: each line is terminated by some
12

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
new-line character regardless of its external representation.

A new feature of COX. C9X adds the concept of universal character name (UCN) (see 86.4.3) in

order to allow the use of any character in a C source, not just English characters. The primary goal of
the Committee was to enable the use of any “native” character in identifiers, string literals and character
constants, while retaining the portability objective of C.

With the concept of multibyte characters, “native” characters could be used in string litterals and
character constants, but this use was very dependent on the implementation and did not usually work in
heterogenous environments. Also, this did not encompass identifiers.

Both the C and C++ Committees studied this situation, and the adopted solution was to introduce a
new notation for UCNs. Its general forms anennnn and \ Unnnnnnnn, to designate a given
character according to its short name as described by ISO/IEC 10646.\ Uimurs) can be used to
designate a Unicode character. This way, programs that must be fully portable may use virtually any
character from any script used in the world and still be portable, provided of course that if it prints the
character, the execution character set has representation for it.

Of course the notationunnnn, like trigraphs, is not very easy to use in everyday programming; so
there is a mapping that links UCN and multibyte characters to enable source programs to stay readable
by users while maintaining portability. Given the current state of multibyte encodings, this mapping is
specified to be implementation-defined; but an implementation can provide the users with utility
programs that do the conversion from UCNS to “native” multibytes or vice versa, thus providing a way
to exchange source files between implementations using the UCN notation.

Modds

Once this was adopted, there was still one problem, how to specify UCNs in the Standard. Both
Committees studied this situation and the available solutions, and drafted three models:

A. Convert everything to UCNSs in basic source characters as soon as possible, that is, in translation
phase 1.

B. Use native encodings where possible, UCNSs otherwise.

C. Convert everything to wide characters as soon as possible using an internal encoding that
encompasses the entire source character set and all UCNSs.

Furthermore, in any place where a program could tell which model was being used, the standard should
try to label those corner cases as undefined behavior.

The C++ committee defined its Standard in terms of model A, just because that was the clearest to
specify (used the fewest hypothetical constructs) because the basic source character set is a well-
defined finite set.

The situation is not the same for C given the already existing text for the standard, which allows
multibyte characters to appear almost anywhere (the most notable exception being in identifiers), and
given the more low-level (or “close to the metal”’) nature of some uses of the language.

13

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

Therefore, the C Committee agreed in general that model B, keeping UCNs and native characters until

as late as possible, is more in the “spirit of C” and, while probably more difficult to specify, is more able
to encompass the existing diversity. The advantage of model B is also that it might encompass more
programs and users’ intents than the two others, particulary if shift states are significant in the source
text as is often the case in East Asia.

In any case, translation phase 1 begins with an implementation-defined mapping; and such mapping can
choose to implement model A or C (but the implementation must specify it). As a by-product, a
strictly conforming program cannot rely on the specifics handled differently by the three models:
examples of non-strict conformance include handling of shift states inside strings and calls like
fopen("\\ubeda\\file.txt","r") and#i ncl ude "sys\udefaul t. h". Shift states

are guaranteed to be handled correctly, however, as long as the implementation performs no mapping
at the beginning of phase 1; and the two specific examples given above can be made much more
portable by rewriting these constructions fagpen("\\""ubeda\\file.txt","r") and

#i ncl ude "sys/ udefaul t. h".

5211 Trigraph sequences

Trigraph sequences were introduced in C89 as alternate spellings of some characters to allow the
implementation of C in character sets which do not provide a sufficient number of non-alphabetic
graphics.

Implementations are required to support these alternateggeeven if the character set in use is
ASCII, in order to allow transportation of code from systems which must use the trigraphs. Normative
Addendum 1 also addeiyraphs (see §86.4.6 and SMSE.4).

The C89 Committee faced a serious problem in trying to define a character set for C. Not all of the
character sets in general use have the right number of characters, nor do they support the graphical
symbols that C users expect to see. For instance, many character sets for languages other than English
resemble ASCII except that codes used for graphic characters in ASCII are instead used for alphabetic
characters or diacritical marks. C relies upon a richer set of graphic characters than most other
programming languages, so the representation of programs in character sets other than ASCII is a
greater problem than for most other programming languages.

ISO (the International Organization for Standardization) uses three technical terms to describe
character sets:repertoire, collating sequence, and codeset. The repertoire is the set of distinct
printable characters. The term abstracts the notion of printable character from any particular
representation; the glyphs R, R, R, R, R, andR, all represent the same element of the repertoire,
upper-case-R, which is distinct from lower-case-r. Having decided on the repertoire to be used (C
needs a repertoire of 96 characters), one can then patkating sequence which corresponds to the
internal representation in a computer. The repertoire and collating sequence togetherciodessthe

What is needed for C is to determine the necessary repertoire, ignore the collating sequence altogether
(it is of no importance to the language), and then find ways of expressing the repertoire in a way that
should give no problems with currently popular codesets.

C derived its repertoire from the ASCII codeset. Unfortunately, the ASCII repertoire is not a subset of
all other commonly used character sets; and widespread practice in Europe is not to implement all of

14

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
ASCII either, but to use some parts of its collating sequence for specia national characters.

The solution is an internationdly agreed-upon repertoire in terms of which an internationa
representation of C can be defined. 1SO has defined such a standard, 1SO 646, which describes an
invariant subset of ASCII.

The charactersin the ASCII repertoire used by C and absent from the | SO 646 repertoire are:
#LT{\ [~"

Given this repertoire, the C89 Committee faced the problem of defining representations for the absent
characters. The obvious idea of defining two-character escape sequences fails because C uses dl the
characterswhich are in the | SO 646 repertoire, SO no Single escape character isavailable. The best that
can be doneisto use atrigraph: an escape digraph followed by a distinguishing character.

?7? was selected as the escape digraph because it is not used anywhere else in C except as noted below;
it suggests that something unusua is going on. The third character was chosen with an eye to
graphica similarity to the character being represented.

The sequence ?? cannot occur in a valid pre-C89 program except in strings, character congtants,

comments, or header names. The character escape sequence’ \ ?’ (see 86.4.4.4) was introduced to

allow two adjacent question marks in such contexts to be represefte®, asform distinct from the

escape digraph. The C89 Committee makes no claims that a program written using trigraphs looks

attractive. As a matter of style, it may be wise to surround trigraphs with white space, so that they

stand out better in program text. Some users may wish to define preprocessing macros for some or all
of the trigraph sequences.

QUIET CHANGE IN C89

Programs with character sequences suéf?hdn string constants, character constants,
or header names will produce different results in C89-conforming translators.

5.2.1.2 Multibyte characters

The “a byte is a character” orientation of C works well for text in Western alphabets, where the
number of characters in the character set is under 256. The fit is rather uncomfortable for languages
such as Japanese and Chinese, where the repertoire of ideograms numbers in the thousands or tens of
thousands. Internally, such character sets can be represented as numeric codes, and it is merely
necessary to choose the appropriate integral type to hold any such character. Externally, whether in
the fles manipulated by a program, or in the text of the source files themselves, a conversion between
these large codes and the various byte media is necessary.

The support in C of large character sets is based on these principles:
. Multibyte encodings of large character sets are necessary in I/O operations, in source

text comments, in source text string and character literals, and beginning with C9X; in
native language identifiers.

15

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

. No existing multibyte encoding is mandated in preference to any other; no widespread
existing encoding should be precluded.

. The null character { 0’) may not be used as part of a multibyte encoding, except for
the one-byte null character itself. This allows existing functions which manipulate
strings to work transparently with multibyte sequences.

. Shift encodings (which interpret byte sequences in part on the basis of some state
information) must start out in a known (default) shift state under certain circumstances
such as the start of string literals.

5.2.2 Character display semantics

The Standard defines a number of internal character codes for specifying “format-effecting actions on
display devices,” and provides printable escape sequences for each of them. These character codes are
clearly modeled after ASCII control codes, and the mnemonic letters used to specify their escape
sequences reflect this heritage. Nevertheless, theytemeal codes for specifying the format of a
display in an environment-independent manner; they must be writtetextofige to effect formatting

on a display device. The Standard states quite clearly that the external representation of a text file (or
data stream) may well differ from the internal form, both in character codes and number of characters
needed to represent a single internal code.

The distinction between internal and external codes most needs emphasis with respedng

ANSI X3L2, Codes and Character Sets (and now also ISO/IEC JTC 1 SC2 WG1, 8 Bit Character
Sets), uses the term to refer to an external code used for information interchange whose display
semantics specify a move to the next line. Although ISO 646 deprecates the combination of the
motion to the next line with a motion to the initial position on the line, the C Standambudéese to
designate the end-of-line internal code represented by the escape seéduence While this
ambiguity is perhaps unfortunate, use of the term in the latter sense is nearly universal within the C
community. But the knowledge that this internal code has numerous external representations
depending upon operating system and medium is equally widespread.

The alert sequencé\(a’) was added by popular demand to replace, for instance, the ASCIl BEL
code explicitly coded ds\ 007" .

Proposals to add\ e’ for ASCIl ESC {\ 033’) were not adopted because other popular character
sets such as EBCDIC have no obvious equivalent (see §6.4.4.4.)

The vertical tab sequence\(v’) was added since many existing implementations support it, and since
it is convenient to have a designation within the language for all the defined white space characters.

The semantics of the motion control escape sequences carefully avoid the Western language
assumptions that printing advances left-to-right and top-to-bottom.

To avoid the issue of whether an implementation conforms if it cannot properly effect vertical tabs (for
instance), the Standard emphasizes that the semantics merely datsatibe

16

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
5.2.3 Signalsand interrupts

Sgnalsare difficult to specify in a system-independent way. The C89 Committee concluded that about

the only thing a gtrictly conforming program can do in a signd handler is to assign a value to a

vol ati | e st ati c variable which can be written uninterruptedly and promptly return. (The header

<si gnal . h> specifies atype si g_at om c_t which can be so written.) It is further guaranteed

that a sgnd handler will not corrupt the automatic storage of an ingtantiation of any executing

function, even if that function is called within the sgnd handler. No such guarantees can be extended

to library functions, with the explicit exceptions of | ongj np (87.13.2.1) andi gnal (87.14.1.1),

since the library functions may be arbitrarily interrelated and since some of them have profound effect
on the environment.

Calls tol ongj np are problematic, despite the assurances of §7.13.2.1. The signal could have
occurred during the execution of some library function which was in the process of updating external
state and/or static variables.

A second signal for the same handler could occur before the first is processed, and the Standard makes
no guarantees as to what happens to the second signal.

5.2.4 Environmental limits

The C89 Committee agreed that the Standard must say something about certain capacities and
limitations, but just how to enforce these treaty points was the topic of considerable debate.

5.24.1 Trandation limits

The Standard requires that an implementation be able to translate and execute some program that
meets each of the statledits. This criterion was felt to give a useful latitude to the implementor in
meeting these limits. While a deficient implementation could probably contrive a program that meets
this requirement, yet still saeed in being useless, the C8dattee felt that such ingenuity would
probably require more work than making something useful. The sense of both the C89 and C9X
Committees was that implementors should not construe the translation limits as the values of
hard-wired parameters, but rather as a set of criteria by which an implementatioruddese |

Some of the limits chosen represent interesting compromises. The goal was to allow reasonably large
portable programs to be written, without placing excessive burdens on reasonably small
implementations. Many of these limits have been increased in C9X to reflect improvements in compiler
and linker technology.

C89's minimum maximum limit 057 cases in a switch statement allows coding of lexical routines
which can branch on any character (one of at least 256 values) or on thEGRlu@his has been
extended to 1023 cases in COX.

The requirement that a conforming implementation be able to translate and execute at least one
program that reaches each of the stamaits is not meant to excuse the implementation from doing

the best it can to translate and execute other programs. It was deemed infeasible to require successful
translation and execution afl programs not exceeding thoseits. Many of these limits require
resources such as memory that a reasonable implementation might allocate from a shared pool; so there

17

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

Is no requirement that all the limits be attained smultaneoudy. Requiring just one acceptable program
that attains each limit is Smply meant to ensure conformance with these requirements.

5.2.4.2 Numerical limits
5.2.4.2.1 Sizesof integer types<linmits. h> |

Such alarge body of C code has been developed for 8-bit byte machinesthat the integer sizesin such
environments must be consdered normative. The prescribed limits are minima: an implementation on
amachine with 9-bit bytes can be conforming, as can an implementation that definesi nt to bethe
samewidth as| ong. The negative limits have been chosen to accommodate ones-complement or
sgn-magnitude implementations, as well as the more usud twos-complement. The limitsfor the
maxima and minima of unsigned types are specified as unsigned congtants (e.g., 65535u) to avoid
surprising widening of expressons involving these extrema.

The macro CHAR_BI T makes available the number of bits in a char object. The C89 Committee
saw little utility in adding such macros for other data types.

The names associated with the shor t i nt types (SHRT_M N, etc., rather than SHORT_M N, €tc.)
reflect prior art rather than obsessive abbreviation on the C89 Committee's part.

5.24.2.2 Characteristicsof floating types<f | oat . h>

The characterization of floating point follows, with minor changes, that of the Fortran standardization
committee, X3J3 The C89 Committee chose to follow the Fortran model in some part out of a
concern for Fortran-to-C translation, and in large part out of deference to the Fortran committee’s
greater experience with fine points of floating point usage. Note that the floating point model adopted
permits all common representations, including sign-magnitude and twos-complement, but precludes a
logarithmic implementation.

The C89 Committee also endeavored to accommodat&Eie 754 floating point standard by not
adopting any constraints on floating point which are contrary to that standard. In C9X, the floating
point standard is IEC 559.

The termFLT_MANT_Di G stands for “float mantissa digits.” The Standard now uses the more
precise ternsignificand rather thamantissa.

In C9X, constant expressions of floating point type may be used as static inttializers.

The overflow and/or underflow thresholds may not be the same for all arithmetic operations. For
example, there is at least one machine where the overflow threshold for addition is twice as big as for
multiplication. Another implementation uses a paidotibl es to represent bong doubl e. In

that implementation, the next representélolag doubl e value afterl. OL is1. OL + LDBL_M N,

yet, the difference bewteen those two numbé&BB(_M N) is not b*”, otherwise known as
LDBL_EPSI LON. Because of anomalies like these, there are few hard requirements on the

1
See X3J3 working document S8-112.

18

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
<f| oat.h> vadues. But, the vaues in <fl oat.h> should be in terms of the hardware
representation used to store floating point values in memory, not in terms of the effective accuracy of
operations, nor in terms of registers, and should apply to al operations. The representation stored in
memory may have padding bits and/or bytes that do not contribute to the value. The padding should
not beincluded inthe<f | oat . h> values.

Because of the practicd difficulty involved in defining a uniform metric that applies to both rea and
complex types and that all vendors would be willing to follow (just computing the accuracy reiably
could be a ggnificant burden that varied depending on the required metric), and because the
importance of floating point accuracy differs greatly among users, the standard allows a great dedl of
latitude in how an implementation documents the accuracy of the real and complex floating point
operations and functions.

Here are some ways that an implementation might address the need to define the accuracy:

digits correct

digitswrong
maximum Unitsin the Last Place (ULPs) error
maximum absolute error
maximum relative error

For complex values, some methods are:

error in terms of both real and imaginary parts
error in terms of Euclidean norm
|la + bi|| = sort(a*a + b*b)

There are two usages of theterm ULP. Oneisin the context of differences between two numbers, that
IS, f(x) differsfrom F(x) by 3 ULPs. The other isthe value of the ULP of a number, that is, an ULP of
the value 1.0 is DBL_EPSI LON. For this discussion, we are interested in the former; the difference
between the computed value and the infinitely precise value.

The error between two floating-point numbers in ULPs depends on the radix and the precision used in
representing the number, but not the exponent. With a decimal radix and 3 digits of precison, the
computed value 0. 314e+1 differsfromthevaue0. 31416e+1 by 0.16 ULPs. If both numbers are
scaled by the same power of the radix, for example, 0. 314e+49 and 0. 31416e+49, they ill differ
by 0.16 ULPs.

When the two numbers being compared span a power of the radix, the two possble ULP error
caculations differ by a factor of the radix. For a decima radix and 3 digits of precison, consder the
two values 9. 99e2 and 1. 01e3. These are the two values adjacent to the value 1. 00e3, a power
of the radix, in this number system. If 999 is the correct value and 1010 is the computed value, the
error is 11 ULPs; but, if 1010 is the correct value and 999 is the computed vaue, then the error is 1.1
ULPs.

Some math functions such as those that do argument reduction modulo an approximation of pi have
good accuracy for small arguments, but poor accuracy for large arguments. It is not unusud for an
implementation of the trigonometric functions to have zero bits correct in the computed result for large

19

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

arguments. For cases like this, an implementation might break the domain of the function into digoint
regions and specify the accuracy in each region.

If an implementation documents worst case error, there is no requirement that it be the minimum worst
caseerror. That is, if avendor believes that the worst case error for a function is around 5 ULPs, they
could document it as 7 ULPsto be safe.

The Committee could not agree on upper limits on accuracy that all conforming imlementations must
meet, for example, “addition is no worse than 2 ULPs for all implementations.” This is a quality of
implementation issue.

Implementations that conform to IEC 559 have one half ULP accuracy in round-to-nearest mode, and
one ULP accuracy in the other three rounding modes, for the basic arithmetic operations and square
root. For other floating point arithmetics, it is a rare implementation that has worse than one ULP
accuracy for the basic arithmetic operations.

The accuracy of binary-decimal converions and format conversions are discussed elsewhere in the
Standard.

For the math library functions, fast, correctly rounded 0.5 ULP accuracy remains a research problem.
Some implementations provide two math libraries, one being faster but less accurate than the other.

The C9X Committee discussed the idea of allowing the programmer to find out the accuracy of
floating point operations and math functions during compilation (say, via macros) or during execution
(with a function call), but neither got enough support to warrant the change to the Standard. The use
of macros would require over one hundred symbols to name every math function, for example,
ULP_SI NF, ULP_SI N, andULP_SI ND just for the real-valuesli n function. One possible function
implementation might be a function that takes the name of the operation or math function as a string,
ul p_err("sin") for example, that would returnrdmubl e such as 3.5 to indicate the worst case
error , with -1.0 indicating unknown error. But such a simple scheme would likely be of very limited
use given that so many functions have accuracies that differ significantly across their domains.
Constrained to worst case error across the entire domain, most implementations would wind up
reporting either unknown error or else a uselessly large error for a very large percentage of functions.
This would be useless because most programs that care about accuracy are written in the first place to
try to compensate for accuracy problems that typically arise when pushing domain boundaries; and
implementing something more useful like the worst case error for a user-specified partition of the
domain would be excessively difficult.

NaNs

C9X does not define the behavior of signaling NaNs, nor does it specify the interpretation of NaN
significands.

The IEC 559 floating-point standard specifies quiet and signaling NaNs, but these terms can be
applied for some non-IEC 559 implementations as well. For example, the VAX reserved operand
and the CRAY indefinite qualify as signaling NaNs. In IEC 559 standard arithmetic, operations
that trigger a signaling NaN argument generally return a quiet NaN result provided no trap is
taken. Full support for signaling NaNs implies restartable traps, such as the optional traps

20

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
specified in the IEC 559 floating-point standard.

The primary utility of quiet NaNs, “to handle otherwise intractable situations, such as providing a
default value for 0.0/0.0,” is supported by this specification.

Other applications of NaNs may prove useful. Available parts of NaNs have been used to encode
auxiliary information, for example about the NaN’s origin. Signaling NaNs might be candidates
for filling uninitialized storage; and their available parts could distinguish uninitialized floating
objects. IEC 559 signaling NaNs and trap handlers potentially provide hooks for maintaining
diagnostic information or for implementing special arithmetics.

However, C support for signaling NaNs, or for ilasy information that could be encoded in
NaNs, is problematic. Trap handling varies widely among implementations. Implementation
mechanisms may trigger signaling NaNs, or fail to, in mysterious ways. The IEC 559 floating-
point standard recommends that NaNs propagate; but it does not require this and not all
implementations do. And the floating-point standard fails to specify the contents of NaNs
through format conversion. Making signaling NaNs predictable imposes optimization restrictions
that anticipated benefits don't justify. For these reasons this standard does not define the behavior
of signaling NaNs nor specify the interpretation of NaN significands.

A draft version of the NCEG floating-point specification included signaling NaNs. It could serve
as a guide for implementation extensions in support of signaling NaNs.

6. Language

While more formal methods of language definition were explored, the C89 Committee decided early on
to employ the style of K&R: Backus-Naur Form for the syntax and prose for the constraints and
semantics. Anything more ambitious was considered to be likely to delay the Standard, and to make it
less accessible to its audience.

6.2 Concepts

6.2.1 Scopesof identifiers

C89 separated from the overloaded keywords for storage classes the various corsepes of
linkage, name space, andstorage duration (see 86.2.2, 86.2.3 and 86.2.4.). This has traditionally been
a major area of confusion.

One source of dispute was whether identifiers with external linkage should have file scope even when
introduced within a block. K&R was vague on this point, and has been interpreted differently by
different pre-C89 implementations. For example, the following fragment would be valid in the file
scope scheme, while invalid in the block scope scheme:

typedef struct data d_struct;

first(){
extern d_struct func(); //

21

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

}

second() {
d_struct n = func();
}

While it was generdlly agreed that it is poor practice to take advantage of an externa declaration once
it had gone out of scope, some argued that a trandator had to remember the declaration for checking
anyway, so why not acknowledge this? The compromise adopted was to decree essentialy that block
scope rules apply, but that a conforming implementation need not diagnose a failure to redeclare an
externa identifier that had gone out of scope (undefined behavior).

QUIET CHANGE

A program relying on file scope rules may be valid under block scope rules but behave
differently—for instance, ifd_struct were defined as typ&l oat rather than
struct dat a in the example above.

Although the scope of an identifier in a function prototype begins at its declaration and ends at the end
of that function’s declarator, this scope is ignored by the preprocessor. Thus an identifier in a
prototype having the same name as that of an existing macro is treated as an invocation of that macro.
For example:

#defi ne status 23
void exit(int status);

generates an error, since the prototype after preprocessing becomes
void exit(int 23);
Perhaps more surprising is what happens if status is defined
#define status []
Then the resulting prototype is
void exit(int []);
which is syntactically correct but semantically quite different from the intent.
To protect an implementation’s header prototypes from such misinterpretation, the implementor must

write them to avoid these surprises. Possible solutions include not using identifiers in prototypes, or
using names (such asst at us or_St at us) in the reserved name space.

6.2.2 Linkagesof identifiers

The first declaration of an identifier, including implicit declarations before C9X, must specify by the
presence or absence of the keywstat i ¢ whether the identifier has internal or external linkage.

22

CI9X RATIONALE WG14/N850 J11/98-049
This requirement alows for one-pass compilation in an implementation which must treat internal
linkage items differently from externa linkage items. An example of such an implementation is one
which produces intermediate assembler code, and which therefore must construct names for internal
linkage items to circumvent identifier length and/or case restrictionsin the target assembler.

Pre-C89 practice in this area is inconsgtent. Some implementations have avoided the renaming
problem smply by restricting internal linkage names by the same rules as the ones used for externa
linkage. Others have disalowed a static declaration followed later by a defining instance, even though
such congtructs are necessary to declare mutually-recursive static functions. The requirements adopted
in C89 cdled for changes in some existing programs, but alowed for maximum flexibility.

The definition model to be used for objects with externa linkage was a mgor C89 standardization
issue. The basic problem was to decide which declarations of an object define storage for the object,
and which merely reference an existing object. A related problem was whether multiple definitions of
storage are dlowed, or only one is acceptable. Pre-C89 implementations exhibit at least four different
models, listed herein order of increasing restrictiveness:

Common Every object declaration with external linkage, regardless of whether the keyword ext er n
appears in the declaration, creates a definition of storage. When dl of the modules are
combined together, each definition with the same name is located a the same address in
memory. (The name is derived from common storage in Fortran.) This model was the intent of
the origina designer of C, Dennis Ritchie,

Relaxed Ref/Def The appearance of the keyword ext er n in adeclaration, regardless of whether it is
used insde or outside of the scope of a function, indicates a pure reference (ref), which does
not define storage. Somewhere in al of the trandation units, at least one definition (def) of the
object must exist. An externa definition is indicated by an object declaration in file scope
containing no storage class indication. A reference without a corresponding definition is an
error. Some implementations also will not generate a reference for items which are declared
with the ext er n keyword but are never used in the code. The UNIX operating syssem C
compiler and linker implement this model, which is recognized as a common extension to the C
language (see §K.5.11). UNIX C programs which take advantage of this model are standard
conforming in their environment, but are not maximally portable (not strictly conforming).

Strict Ref/Def This is the same as the relaxed ref/def model, save that only one definition is allowed.
Again, some implementations may decide not to put out references to items that are not used.
This is the model specified in K&R.

Initialization This model requires an explicit initialization to define storage. All other declarations are
references.

Figure 6.1 demonstrates the differences between the models. The intent is that Figure 6.1 shows
working programs in which the symbol i is neither undefined nor multiply defined.

The model adopted in the Standard is a combination of features of the strict ref/def model and the
initialization model. As in the strict ref/def model, only a single translation unit contains the definition
of a given object—many environments cannot effectively or efficiently support the “distributed
definition” inherent in the common or relaxed ref/def approaches. However, either an inttialization, or

23

WG14/N850 J11/98-049 C9I9X RATIONALE

an appropriate declaration without storage class specifier (see 86.9), serves as the external definition.

This composite approach was chosen to accommodate as wide a range of environments and existing
implementations as possible.

24

10

15

20

25

CO9X RATIONALE

Figure 6.1: Comparison of identifier linkage models

WG14/N850 J11/98-049

Modd Flel File2
extern int i: extern int i;
common int min() { void second() {
| = 1 third(i);
second(); }
}
int i, int I;
Relaxed Ref/Def int main() { void second() {
| = 1 third(i);
second(); }
}
] int i: extern int i;
Strict Ref/Def int min() { voi d second() {
| = 1 third(i);
second(); }
}
int i =0; int I;
Initializer int min() { voi d second() {
| = 1 third(i);
second(); }
}

6.2.3 Name spaces of identifiers

Pre-C89 implementations varied consderably in the number of separate name spaces maintained. The
position adopted in the Standard isto permit as many separate name spaces as can be

distinguished by context, except that al tags (st r uct, uni on, and enum) comprise a Sngle name
Space.

6.2.4 Storage durations of objects

It was necessary to clarify the effect on automatic storage of jumping into a block that declares loca

storage (see 86.8.2.). While many implementations could traditionally allocate the maximum depth of
automatic storage upon entry to a function, the addition to C9X of the variable length array feature
(86.7.5.2) forces the implementation to allocate some objects when the declaration is encountered.

A newfeature of C9X. C89 requires all declarations in a block to occur before any statements. On the

other hand, many languages related to C (such as Algol 68 and C++) permit declarations and
statements to be mixed in an arbitrary manner. This feature has been found to be useful and has been
added in C9X.

Declarations which initialize variables can contain complex expressions and have arbitrary side-effects,
and it is necessary to define when these take place, particularly when the flow of control involves
arbitrary jumps. There is a simple rule of thumb: the variable declared is created with an unspecified
value when the block is entered, but the initializer is evaluated and the value placed in the variable when
the declaration is reached in the normal course of execution. Thus a jump forward past a declaration
leaves it uninitialized, while a jump backwards will cause it to be initialized more than once. If the
declaration does not initialize the variable, it sets it to an unspecified value even if this is not the first
25

WG14/N850 J11/98-049 C9X RATIONALE
time the declaration has been reached.

The scope of a variable starts a its declaration. Therefore, athough the varigble exists as soon as the
block is entered, it cannot be referred to by name until its declaration is reached.

Example:
int j = 42
{
int i = 0;
| oop:
printf("l = 9%d, ", i);
printf("J1 = %d, ", ++);
int j =1;
printf("J2 = %d, ", ++);
int k;
printf("KL = %d, ", k);
k =1 * 10;
printf("K2 = %d, ", k);
iIf (i %2 == 0) goto skip;
int m=1 * 5;
ski p:
printf("M= %ld\n", n;
If (++i < 5) goto | oop;
}
will output
I = 0, J1 = 43, J2 = 1, KL = ?2???, K2 = 0, M= ??2??
| = 1, J1 = 44, J2 = 2, KL =7????, K2 = 10, M= 5
I = 2, J1 = 45, J2 = 3, KL =7????, K = 20, M= ????
I = 3, J1 = 46, J2 = 4, K1 = ????, K = 30, M= 15
I = 4, J1 = 47, J2 = 5 Kl =7????, K2 = 40, M= ??2??

where ???7?” indicates an unspecifed value (and any use of an unspecified value is undefined
behavior).

These rules have to be modified slightly for variable length arrays. The implementation will not know

how much space is required for the array until its declaration is reached, and so cannot create it until
then. This has two implications for jumps:

26

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049

A jump forward past the declaration of a VLA is forbidden, because it would be possble to
refer to the VLA without creating it. Such ajump requires a diagnostic.

A jump backward past the declaration of aVLA destroysthe VLA.

A number of other approaches were consdered, but there were problems with al of them. In
particular, this choice of rules ensures that VLAS can dways be destroyed in the reverse order of their
creation, which is essentid if they are placed on the stack.

To effect true reentrancy for functionsin the presence of signals raised asynchronously (see 85.2.3), an
implementation must assure that the storage for function return values has automatic duration. This
means that the caller must allocate automatic storage for the return value and communicate its location
to the called function. (The typical case of return registers for small-sized types conforms to this
requirement: the calling convention of the implementation implicitly communicates the return location
to the called function.)

6.25 Types

Several new types were added in C89:

voi d

voi d*

s gned char

unsi gned char

unsi gned short

unsi gned | ong

| ong doubl e |

And new designations for existing types were added:

si gned short for short
si gned int for int |
si gned | ong for | ong

C9X also adds new types:

fl oat _Conpl ex
doubl e _Conpl ex

| ong doubl e _Conpl ex
| ong | ong

C9X also allows extended integer types (see & .Bf t ypes. h>, and §7.18<st di nt . h>) and \
a boolean type (see 87.%&t dbool . h>).

voi d is used primarily as the typemark for a function that returns no result. It may also be used as the
cast(voi d) to indicate explicitly that the value of an expression is to be discarded while retaining the
expression’s side effects. Finally, a function prototype list that has no arguments is written as
f (voi d), becausé () retains its old meaning that nothing is said about the arguments. Note that

27

10

15

20

25

30

35

45

WG14/N850 J11/98-049 CI9X RATIONALE
there is no such thing as a “void object.”

A “pointer tovoi d,” voi d*, is a generic pointer capable of pointing to any object (except for bit-
fields and objects declared with thegi st er storage-class) without loss of information. A pointer

to voi d must have the same representation and alignment as a pogttar tathe intent of this rule

Is to allow existing programs which call library functions suchescpy andf r ee) to continue to

work. A pointer tovoi d cannot be dereferenced, although such a pointer can be converted to a
normal pointer type which can be dereferenced. Pointers to other types coerce silently to and from
voi d* in assignments, function prototypes, comparisons, and conditional expressions, whereas other
pointer type clashes are invalid. It is undefined what will happen if a pointer of some type is converted
tovoi d*, and then theoi d* pointer is converted to a type with a stricter alignment requirement.
Three types othar are specified: si gned, plain, andunsi gned. A plain char may be
represented as either signed or unsigned depending upon the implementation, as in prior practice. The
typesi gned char was introduced in C89 to make available a one-byte signed integer type on those
systems which implement plarhar asunsi gned char. For reasons of symmetry, the keyword

si gned is allowed as part of the type name of other integer types. Two varieties of the integer types
are specified:si gned andunsi gned. If neither specifier is usedj gned is assumed. The only
unsigned type in K&R isinsi gned i nt .

The keywordunsi gned is something of a misnomer, suggesting as it does in arithmetic thall it is
non-negative but capable of overflow. The semantics of the Qihgiegned is that of modulus, or
wrap-around, arithmetic for which overflow has no meaning. The resultwfsingned arithmetic
operation is thus always defined, whereas the result of a signed operation may be undefined. In
practice, on twos-complement machines, both types often give the same result for all operators except
division, modulus, right shift, and comparisons. Hence there has been a lack of sensitivity in the C
community to the differences between signed and unsigned arithmetic.

The C89 Committee explicitly required binary representation of integers on the grounds that this
stricture was implicit in any case:

. Bit-fields are specified by a number of bits, with no mention of “invalid integer”
representation. The only reasonable encoding for such bit-fields is binary.

. The integer formats for printf suggest no provision ikagal integer” values, implying
that any result of bitwise manipulation produces an integer result which can be printed
byprintf.

. All methods of specifying integer constants—decimal, hex, and octal—specify an

integer value. No method independent of integers is defined for specifying “bit-string
constants.” Only a binary encoding provides a complete one-to-one mapping between
bit strings and integer values.

The restriction to binary numeration systems rules out such curiosities as Gray code and makes
possible arithmetic definitions of the bitwise operators on unsigned types.

A new floating type] ong doubl e, was added in C89. Theng doubl e type must offer at least
as much precision as th@ubl e type. Several architectures support more than two floating point

28

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049

types and thus can map a distinct machine type onto this additional C type. Severa architectures which

support only two floating point types can also take advantage of the three C types by mapping the less

precise type onto both f | oat and doubl e, and designating the more precise type | ong doubl e.
Architectures in which this mapping might be desirable include those in which single-precision types

offer at least as much precision as most other machines’ double-precision, or those on which
single-precision arithmetic is considerably more efficient than double-precision. Thus the common C
floating types would map onto an efficient implementation type, but the more precise type would stil
be available to those programmers who require its use. |

To avoid confusion, ong f | oat as a synonym fatoubl e was retired in C89.

Floating types of different widthgl¢ubl e wider thanf | oat andl ong doubl e wider than

doubl e) facilitate porting code that, intentionally or not, depends on differences in type widths.
Many results are exact or correctly rounded when computed with twice the number of digits of
precision as the data. For example, the calculation

float d, x, y, z, w
d = (double) x * y - (double) z * w,

yields a correctly rounded determinantdibubl e has twice the precision dfl oat and the
individual operations are correctly rounded. (The castsldabl e are unnecessary if the
minimum evaluation format idoubl e orl ong doubl e.)

A new feature of C9X. Complex types were added to C as part of the effort to make C suitable
and attractive for general numerical programming. Complex arithmetic is used heavy in certain
important application areas.

The underlying implementation of the complex types is Cartesian, rather than polar, for overall
efficiency and consistency with other programming languages. The implementation is explicitly
stated so that characteristics and behaviors can be defined simply and unambiguously.

Enumerations permit the declaration of named constants in a more convenient and structured fashion
than doe#def i ne. Both enumeration constants and variables behave like integer types for the sake
of type checking, however.

The C89 Committee considered several alternatives for enumeration types in C:

1. leave them out;

2. include them as definitions of integer constants;

3. include them in the weakly typed form of the UNIX C compiler;
4. include them with strong typing as in Pascal.

The C89 Committee adopted the second alternative on the grounds that this approach most clearly
reflects common practice. Doing away with enumerations altogether would invalidate a fair amount of
existing code; stronger typing than integer creates problems, for example, with arrays indexed by

29

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE
enumerations.

6.2.7 Compatibletype and composite type

The concepts of compatible type and composite type were been introduced to alow C89 to discuss
those situations in which type declarations need not be identical. These terms are especially useful in
explaining the relationship between an incomplete type and a completed type. With the addition of
variable length arrays (86.7.5.2) in C9X, array type compatibility was extended so that variable length
arrays are compatible with both an array of known constant size and an array with an incomplete type.

Structure, union, or enumeration type declarations in two different translation units do not formally

declare thesame type, even if the text of these declarations come from the same header file, since the
translation units are themselves disjoint. The Standard thus specifies additional compatibility rules for
such types so that two such declarations are compatible if they are sufficiently similar. |

6.3 Conversions

6.3.1 Arithmetic operands
6.3.1.1 Charactersand integers

Between the publication of K&R and the development of C89, a serious divergence had occurred
among implementations in the evolution of integral promotion rules. Implementations fell into two
major camps which may be characterizedrasgned preserving andvalue preserving. The difference
between these approaches centered on the treatmemsiofjned char andunsi gned short

when widened by thetegral promotions, but the decision had an impact on the typing of constants as
well (see 86.4.4.1).

Theunsigned preserving approach calls for promoting the two smaller unsigned typesato gned
I nt. Thisis a simple rule, and yields a type which is independent of execution environment.

The value preserving approach calls for promoting those typesstayned i nt if that type can
properly represent all the values of the original type, and otherwise for promoting those types to
unsi gned i nt. Thus, if the execution environment represstisrt as something smaller than

I nt,unsi gned short becomes nt ; otherwise it becomamsi gned i nt .

Both schemes give the same answer in the vast majority of cases, and both give the same effective
result in even more cases in implementations with twos-complement arithmetic and quiet wraparound
on signed overflow—that is, in most current implementations. In such implementations, differences
between the two only appear when these two conditions are both true:

1. An expression involving annsi gned char or unsi gned short produces an
I nt -wide result in which the sign bit is set, that is, either a unary operation on such a
type, or a binary operation in which the other operandiisi&nor “narrower” type.

2. The result of the preceding expression is used in a context in which its signedness is
significant:
30

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049

. si zeof (int) <sizeof (long) and it is in a context where it must be
widened to & ong type, or

. it is the left operand of the right-shift operator in an implementation where this
shift is defined as arithmetic, or

. it is either operand of , % <, <=, >, or>=.

In such circumstances a genuine ambiguity of interpretation arises. The result must be dubbed
questionably signed, since a case can be made for either the signed or unsigned interpretation. Exactly
the same ambiguity arises whenever uarsi gned i nt confronts asi gned i nt across an
operator, and thei gned i nt has a negative value. Neither scheme does any better, or any worse,
in resolving the ambiguity of this confrontation. Suddenly, the negatigeed i nt becomes a very

large unsi gned i nt, which may be surprising, or it may be exactly what is desired by a
knowledgeable programmer. Of couraié of these ambiguities can be avoided by a judicious use of

cads.

One of the important outcomes of exploring this problem is the understanding that high-quality
compilers might do well to look for such questionable code and offer (optional) diagnostics, and that
conscientious instructors might do well to warn programmers of the problems of implicit type
conversions.

The unsigned preserving rules greatly increase the number of situationsumkemgned i nt
confrontssi gned i nt to yield a questionably signed result, whereas the value preserving rules
minimize such confrontations. Thus, the value preserving rules were considered to be safer for the
novice, or unwary, programmer. After much discussion, the C89 Committee decided in favor of value
preserving rules, despite the fact that the UNIX C compilers had evolved in the direction of unsigned
preserving.

QUIET CHANGE
A program that depends upon unsigned preserving arithmetic conversions will behave
differently, probably without complaint. This was considered the most serious
semantic change made by the C89 Committee to a widespread current practice.
The Standard clarifies that the integral promotion rules also apply to bit-fields.
6.3.1.2 Boolean type
6.3.1.3 Signed and unsigned integers
Precise rules are now provided for converting to and from unsigned integers. On a twos-complement
machine, the operation is still virtual (no change of representation is required), but the rules are now

stated independent of representation.

6.3.1.4 Real floating and integer |

31

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

There was strong agreement in the C89 Commiittee that floating values should truncate toward zero
when converted to an integrd type, the specification adopted in the Standard. Although K&R
permitted negative floating values to truncate avay from zero, no C89 Committee member knew of an
implementation that functioned in such a manner.?

Note that conversion from integer to floating may indeed require rounding if the integer is too
wide to represent exactly in the floating-point format.

6.3.1.5 Real floating types |

C89, unlike K&R, did not require rounding in the doubl e to f | oat converson. Some widely used

|EC 559 floating point processor chips control floating to integral converson with the same mode bits

asfor double-precison to single-precision converson. Since truncation-toward-zero is the appropriate

setting for C in the former case, it would be expensive to require such implementations to round to

fl oat. In C9X, however, 8F.7.3 requires round-to-nearest, which makes floating point to integer
conversions expensive.

6.3.1.8 Usual arithmetic conversions \

The rules in the Standard for these conversions are slight modifications of those in K&R: the
modifications accommodate the added types and the value preserving rules. Explicit license was added
to perform calculations in a “wider” type than absolutely necessary, since this can sometimes produce
smaller and faster code, not to mention the correct answer more often. Calculations can also be
performed in a “narrower” type by tlas if rule so long as the same end result is obtaibeglicit

casting can always be used to obtain exactly the intermediate types required.

The C9X Committee relaxed the requirement tHabat operands be converted doubl e. An
implementation may still choose to convert.

QUIET CHANGE

Expressions withf | oat operands may be computed at lower precision. K&R
specified that all floating point operations be dorgauabl e.

Real and imaginary operands are not converted to complex because doing so would require extra
computation, while producing undesirable results in certain cases involving infinities, NaNs and
signed zeros. For example, with automatic conversion to complex,

2.0 * (3.0 +o0i) => (2.0 + 0.0i) * (3.0 4o0i) =>
(2.0%3.0 - 0.0%0) + (2.0%0 + 0.0*3.0)i => NaN i

rather than the desired result, 6.0 Optimizers for implementations with infinities, including
all IEC 559 ones, would not be able teneate the operations with the zero imaginary part of
the converted operand.

2
The Committee has since learned of one such implementation.

32

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
The following example illustrates the problem with signed zeros. With automatic conversion to
complex,

2.0* (3.0- 0.0i) => (2.0 + 0.0i) * (3.0 - 0.0i) =>
(2.03.0 + 0.0*0.0) + (-2.0*0.0 + 0.0*3.0)i => 6.0 + 0.0i

rather than the desired result, 6.0 - 0.0i.

The problems illustrated in the examples above have counterparts for imaginary operands. The
mathematical product 2.0i * (e + 3.0i) should yield -6.0 + ool, but with automatic conversion to
complex,

2.0 * (c0 + 3.0i) => (0.0 + 2.0i) * (o0 + 3.0)) =>
(0.0% 0 - 2.0+3.0) + (0.0*3.0 + 2.0*0)i => NaN + ooi

This also demonstrates the need for imaginary types. Without them, 2. Ol would have to be
represented as 0.0 + 2.0i, implying that NaN + ooi would be the semantically correct result
regardless of conversion rules; and optimizers for implementations with infinities would not be
able to eliminate the operations with the zero real part.

6.3.2 Other operands
6.3.2.1 Lvaluesand function designators

A difference of opinion within the C community centered around the meaning of Ivalue, one group
conddering an Ivalue to be any kind of object locator, another group holding that an Ivalue is
meaningful on the left side of an assigning operator. The C89 Committee adopted the definition of
lvalue as an object locator. The term modifiable lvalue is used for the second of the above concepts.

The role of array objects has been a classic source of confusion in C, in large part because of the
numerous contexts in which an array reference is converted to a pointer to its first eement. While this
conversion nestly handles the semantics of subscripting, the fact that af i | is a modifiable Ivalue while
a is not has puzzled many students of the language. A more precise description was incorporated in
C89 in the hope of combetting this confusion.

6.3.2.2 void

The description of operators and expressions is smplified by saying that voi d yields a vaue, with the
understanding that the value has no representation, and hence requires no storage.

6.3.2.3 Pointers
C has now been implemented on a wide range of architectures. While some of these architectures
feature uniform pointers which are the size of some integer type, maximaly portable code cannot

assume any necessary correspondence between different pointer types and the integra types. On some
implementations, pointers can even be longer than any integra type.

33

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

The use of voi d* (“pointer tovoi d”) as a generic object pointer type is an invention of the C89
Committee. Adoption of this type was stimulated by the desire to specify function prototype
arguments that either quietly convert arbitrary pointers (asead) or complain if the argument type
does not exactly match (asshr cnp). Nothing is said about pointers to functions, which may be
incommensurate with object pointers and/or integers.

Since pointers and integers are now considered incommensurate, the only integer value that can be
safely converted to a pointer is the constant 0. The result of converting any other integer value to a
pointer is implementation-defined.

Consequences of the treatment of pointer types in the Standard include:

. A pointer tovoi d may be converted to a pointer to an object of any type.
. A pointer to any object of any type may be converted to a pointeritd.
. If a pointer to an object is converted to a pointevtd d and back again to the

original pointer type, the result compares equal to original pointer.

. It is invalid to convert a pointer to an object of any type to a pointer to an object of a
different type without an explicit cast.

. Even with an explicit cast, it is invalid to convert a function pointer to an object pointer
or a pointer to void, or vice-versa.

. It is invalid to convert a pointer to a function of one type to a pointer to a function of a
different type without a cast.

. Pointers to functions that have different parameter-type information (including the
“old-style” absence of parameter-type information) are different types.

Implicit in the Standard is the notioniokalid pointers. In discussing pointers, the Standard typically
refers to “a pointer to an object” or “a pointer to a function” or “a null pointer.” A special case in
address arithmetic allows for a pointer to just past the end of an array. Any other pointer is invalid.

An invalid pointer might be created in several ways. An arbitrary value can be assigned (via a cast) to a
pointer variable. (This could even create a valid pointer, depending on the value.) A pointer to an
object becomes invalid if the memory containing the object is deallocated or mowealldyoc.

Pointer arithmetic can produce pointers outside the range of an array.

Regardless how an invalid pointer is created, any use of it yields undefined behavior. Even assignment,
comparison with a null pointer constant, or comparison with itself, might on some systems result in an
exception.

Consider a hypothetical segmented architecture on which pointers comprise a segment descriptor and
an offset. Suppose that segments are relatively small so that large arrays are allocated in multiple
segments. While the segments are valid (allocated, mapped to real memory), the hardware, operating
system, or C implementation can make these multiple segments behave like a single object: pointer

34

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
arithmetic and relational operators use the defined mapping to impose the proper order on the elements
of thearray. Once the memory is dedllocated, the mapping is no longer guaranteed to exist. Use of the
segment descriptor might now cause an exception, or the hardware addressing logic might return
meaningless data

6.4 Lexical Elements

The Standard endeavors to bring preprocessing more closely into line with the token orientation of the

language proper. To do o requires that at least some information about white space be retained

through the early phases of translation (see 85.1.1.2). It also requires that an inverse mapping be
defined from tokens back to source characters (see §86.10.3).

6.4.1 Keywords

Several keywords were added in C8%onst , enum si gned, voi d andvol atil e. New in
C9X are the keywordsestri ct, i nl i ne, if the headexconpl ex. h> is included, Conpl ex \
and_| magi nary, and if the headerst dbool . h> is included, Bool . \

Where possible, however, new features have been added by overloading existing keywords, as, for
example,| ong doubl e instead ofext ended. It is recognized that each added keyword will
require some existing code that used it as an identifier to be rewritten. No meaningful programs are
known to be quietly changed by adding the new keywords.

The keywordent ry, f or t r an, andasmhave not been included since they were either never used,
or are not portable. Usesfadr t r an andasmas keywords are noted @snmon extensions.

_Conpl ex and_I magi nary, notconpl ex andi magi nary, are keywords in order that
freestanding implementations are not required to support complex. Old code using the names
conmpl ex or i magi nary will still work (assuming<conpl ex. h> is not included), and
combined C/C++ implementations will not have to finesse C-only public keywords.

6.4.2 ldentifiers

Because of the linkers available at the time, the C8fhmilibee made the decision to restrict
significance of identifiers with external linkage to six case-insensitive characters. This limit is increased
in C9X to 31 case-sensitive characters.

While an implementation is not obliged to remember more than the first 63 characters of an identifier
with internal linkage, or the first 31 characters of an identifier with external linkage, the programmer is
effectively prohibited from intentionally creating two different identifiers that are the same within the
appropriate length. Implementations may therefore store the full identifier; they are not obliged to
truncate to 63 or 31.

QUIET CHANGE

A program that depends on identifiers matching only in the first few characters
may change to one with distinct objects for each variailingpef the identifier.

35

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

6.4.2.2 Predefined identifiers |

A new feature of COX. C9X introduces predefined identifiers, which have block scope (as distinct |
from predefined macros which have file scope), and one such predefined identifier, __f unc__, which
allows the function name to be used at execution time.

6.4.3 Universal character names

A new feature of C9X. Note that, to allow for Universa Character Names (UCNSs), a new production

has been added to the grammar that encompases al forms of identifier elements (basic letter, UCN, or

extended character). There was some discussion about the need to require an implementation to

handle al digits, Arabic or otherwise, in a Smilar way. The generd feeling was that detecting the
“extended digits” might be an undesirable burden for many implementations and should be avoided if
possible.

Note that a strictly conforming program may use in identifiers only the extended characters listed in
Annex I, and may not begin an identifier with an extended digit.

QUIET CHANGE IN C9X

Note that the escape sequence beginning\witis reserved in C9X, but was not reserved in C89.

6.4.4 Constants

In folding and converting constants, an implementation must use at least as much precision as is
provided by the target environment. However, it is not required to use exactly the same precision as
the target, since this would require a cross compiler to simulate target arithmetic at translation time.

The C89 Committee considered the introduction of structure constants. Although it agreed that
structure literals would occasionally be useful, its policy was not to invent new features unless a strong
need exists. Since then, such structure constants have been shown to be quite useful, so C9X
introducescompound literals (see §86.5.2.5).

6.4.4.1 Integer constants

The C90 rule that the default type of a decimal integer constant isieithel ong, orunsi gned

| ong, depending on which type is large enough to hold the value without overflow, simplifies the use
of constants. The choices in C9X ard , | ong andl ong | ong.

C89 added the suffixé$andu to specify unsigned numbers. C9X attdsto specifyl ong | ong.

Unlike decimal constants, octal and hexadecimal constants too large itot beare typed as

unsi gned i nt if within range of that type, since it is more likely that they represent bit patterns or

masks, which are generally best treated as unsigned, rather than “real” numbers.

Little support was expressed for the old practice of permitting the digits 8 and 9 in an octal constant, so
36

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049
it was dropped in C89.

A proposal to add binary constants was rejected due to lack of precedent and insufficient utility.

Despite a concern that a lower-case L could be taken for the numerd one at the end of a numeric
literd, the C89 Committee rejected proposals to remove this usage, primarily on the grounds of
sanctioning existing practice.

The rules given for typing integer constants were carefully worked out in accordance with the C89
Committee's deliberations on integral promotion rules. In C9X, this is clarified and extended with the
notion of “rank” (see 86.3.1.1).

QUIET CHANGE

Unsuffixed integer constants may have different types. In K&R, unsuffixed decimal
constants greater thdnNT_MAX, and unsuffixed octal or hexadecimal constants
greater that)l NT_MAX are of typd ong.

6.4.4.2 Floating constants

Consistent with existing practice, a floating point constant is defined to hawviéoiypée. Since C89
allows expressions that contain ohlyoat operands to be performedfih oat arithmetic rather
thandoubl e, a method of expressing expli€it oat constants is desirable. Theng doubl e \
type raises similar issues.

The F andL suffixes have been added to convey type information with floating constants, much like
the L suffix does for long integers. The default type of floating constants redhairtsl e for
compatibility with prior practice. Lower cabeandl are also allowed as suffixes.

Note that the run-time selection of the decimal point characteebyocal e (§7.11.1.1) has nd

effect on the syntax of C source text: the decimal point character is always period. Also, since
floating constants are converted to appropriate internal representations at translation time, default
rounding direction and precision will be in effect and execution-time exceptions will not be raised,
even under the effect of an enablFgNV_ACCESS pragma. Library functions such ssrt od

provide execution-time conversion of decimal strings.

A new feature of C9X. C9X adds hexadecimal notation because it more clearly expresses the
significance of floating constants. The binary-exponent part is required to avoid ambiguity
resulting from arf suffix being mistaken as a hexadecimal digit.

Constants ofl ong doubl e type are not generally portable, even among IEC 559
Implementations.

Unlike integers, floating values cannot all be represented directly by hexadecimal constant syntax.
A sign can be prefixed for negative numbers and -0. Infinities might be produced only by
hexadecimal constants that overflow. NaNs require some other mechanism. Note that
Ox1. FFFFFEp128f, which might appear to be an IEC 559 single-format NaN, in fact
overflows to an infinity in the single format.

37

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

An dternate approach might have been to represent bit patterns. For example

#define FLT_MAX Ox.7F7FFFFF

This would have allowed representation of NaNs and infinities, however numerical values would
have been more obscure owing to hias in the exponent and the implicit significand bit, and NaN
representations would still not have been portable: even the determination of 1EC 559 quiet NaN
vs. signaling NaN is implementation-defined. NaNs and infinities are provided through macros in
<mat h. h>.

The straightforward approach of denoting octal constants by a O prefix would have been
inconsistent with allowing a leading 0 digit—a moot point as the need for octal floating constants
was deemed insufficient.

The caret* was ruled out as a character to introduce the exponent because doing so would have
used up a potential operator.

6.4.4.3 Enumeration constants

Whereas an enumeration variable may have any integer type that correctly represents all its values
when widened to nt , an enumeration constant is only usable as the value of an expression. Hence its
type is simplyi nt .

6.4.4.4 Character constants
C89 removed the digits 8 and 9 from octal escape sequences (see 86.4.4.4).
The alert escape sequence was added in C89 (see 85.2.2).

Hexadecimal escape sequences beginning \withwvere adopted in C89, with precedent in several
existing implementations. There was little sentiment for providkags well. The escape sequence
extends to the first non-hex-digit character, thus providing the capability of expressing any character
constant no matter how large the tgter is.

The C89 Committee chose to reserve all lower case letters not currently used for future escape
sequencesu(defined behavior). C9X adds\ U from Java. All other characters with no current
meaning are left to the implementor for extensiomplémentation-defined behavior). No portable

meaning is assigned to multi-character constants or ones containing other than the mandated source
character setrfplementation-defined behavior).

The C89 Committee considered proposals to add the character cohgtarto represent the ASCII

ESC (\ 033") character. This proposal was based upon the use of ESC as the initial character of
most control sequences in common terminal driving disciplines such as ANSI X3.64. However, this
usage has no obvious counterpart in other popular character codes such as EBCDIC.

A programmer merely wishing to avoid having to typ€33" to represent the ESC character in an
ANSI/X3.64 environment, instead of
38

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049

printf("\033[10; 10h%\ n", soneval ue);

may write

#define ESC "\033"
printf(ESC "[10; 10h%l\ n", soneval ue);

Notwithstanding the genera rule that literal constants are non-negative’, a character constant
containing one character is effectively preceded with a (char) cast and hence may yield a negative
vaue if plain char is represented the same as si gned char . This smply reflects widespread past
practice and was deemed too dangerous to change.

QUIET CHANGE

A congant of the form *\ 078’ is valid, but now has different meaning. It now
denotes a character constant whose vaue is the (implementation-defined) combination
of the values of the two characters’ \ 07° and’ 8’ . In some implementations the old

meaning is the character whose codeis078 = 0100 = 64.
QUIET CHANGE

A congant of the form’\a’ or "\ x’ now may have different meaning. The old
meaning, if any, was implementation dependent.

An L prefix distinguishes wide character constants.

6.4.5 Stringliterals

String literals are not required to be modifiable. This specification alows implementations to share
copies of strings with identical text, to place string literals in read-only memory, and to perform certain
optimizations. However, dtring literals do not have the type array of const char in order to avoid the
problems of pointer type checking, particularly with library functions, since assigning a pointer to const
char to a plain pointer to char is not valid. Those members of the C89 Committee who insisted that
string literals should be modifiable were content to have this practice designated a common extension
(see 8K.5.5).

Existing code which modifies string literals can be made strictly conforming by replacing the string

literal with an initialized static character array. For instance,

char *p, *make_tenp(char *str);
...
p = make_tenp("tenmpXXX");
/'l make_t enp overwritesliteral with unique name

3. . . .
-3 isan expression: unary minuswith operand 3.

39

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE
can be changed to:

char *p, *make_tenp(char *str);
/1

{
static char tenplate[] = "tenmpXXX";

p = make_tenp(tenplate);
}

A dtring can be continued across multiple lines by using the backsash-newline line continuation, but

this requires that the continuation of the string start in the first postion of the next line. To permit

more flexible layout, and to solve some preprocessing problems (see 86.10.3), the C89 Committee
introduced string literal concatenation. Two string literals in a row are pasted together, with no null
character in the middle, to make one combined string literal. This addition to the C language allows a
programmer to extend a string literal beyond the end of a physical line without having to use the
backslash-newline mechanism and thereby destroying the indentation scheme of the program. An
explicit concatenation operator was not introduced because the concatenation is a lexical construct
rather than a run-time operation.

A new feature of C9X. In C89, attempting to concatenate a character string literal and a wide string
literal resulted in undefined behavior, primarily because the C8@r@itee saw little need to do so.
However, there are a number of macros defined by the standard as expanding into character string
literals which are frequently needed as wide strings instead (the format specifier macros in
<i nttypes. h> are particularly notable examples, as are the predefined mackid E |,
__DATE__,and__TI ME_). Rather than specifying two forms of each macro, one character string
literal and one wide string literal, the Committee decided to go ahead and define concatenating a
character string literal and a wide string literal as resulting in a wide string literal. This solves the
problem not only for the library and predefined macros, but for similar user-defined macros as well.

Without concatenation:
/| say the columm is this w de

al pha = "abcdef ghij kl m
nopgr st uvwxyz" ;

With concatenation:

Il say the columm is this w de
al pha = "abcdef ghi j kI n¥
"nopgr st uvwxyz";

String concatenation can be used to specify a hex-digit character following a hexadecimal escape
sequence:

char af]
char b[]

"\ xff"o"f" o
{"\xtf, *f, "\0};

These two initializations give andb the same string value.

40

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049
QUIET CHANGE IN C89

A gring of theform "\ 078" isvalid, but now has different meaning.
QUIET CHANGE IN C89

A gring of theform™\ a" or "\ x" now has different meaning.
QUIET CHANGE IN C9X

Character literdls of the form '\ unnnn’ or '\ Unnnnnnnn’ and strings of the form
"\ unnnn" or "\ Unnnnnnnn" now have different meanings (see §6.4.3).

QUIET CHANGE IN C89

It is neither required nor forbidden that identical string literals be represented by a single copy
of the string in memory; a program depending upon either scheme may behave differently.

An L prefix distinguishes wide string literals. A prefix rather than a suffix notation was adopted so that
a translator can know at the start of the processing of a string literal whether it is dealing with ordinary
or wide characters.

6.4.6 Punctuators

C89 added the punctuator. (ellipsis) to denote a variable number of trailing arguments in a function
prototype (see 86.7.5.3); and C9X extends this to function-like macros (see 8§6.10.3). |

The constraint that certain punctuators and operators must occur in pairs only applies after
preprocessing. Syntactic constraints are checked during syntactic analysis, and this follows
preprocessing.

6.4.7 Header names

Header names i ncl ude directives obey distinct tokenization rules; hence they are identified as
distinct tokens. Attempting to treat quote-enclosed header names as string literals creates a contorted
description of preprocessing, and the problems of treating angle-bracket-enclosed header names as a
sequence of C tokens is even more severe.

6.4.8 Preprocessing numbers

The notion of preprocessing numbers was introduced to simplify the description of preprocessing. It
provides a means of talking about the tokenization of strings that look like numbers, or initial
substrings of numbers, prior to their semantic interpretation. In the interests of keeping the description
simple, occasional spurious forms are scanned as preprocessing numbers. ForGxbRgHs;1 is

a single token under the rules. The C89 Committee felt that it was better to tolerate such anomalies
than burden the preprocessor with a more exact, and exacting, lexical specification. It felt that this
anomaly was no worse than the principle under which the chara¢ters-+b are tokenized as ++

41

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

++ + b (aninvalid expression), even though the tokenization a ++ + ++ b would yield a syntacticaly
correct expresson. In both cases, exercise of reasonable precaution in coding style avoids surprises.

A new feature of C9X. C9X replaces nondigit with identifier-nondigit in the grammear to alow the
token pasting operator, ##, to work as expected. Given the code

#define nkident(s) s ## 1m
...
int nkident(int) = 0O;

if an identifier is passed to the nki dent macro, then 1mis parsed as a pp-number, a valid (single)
identifier is produced by the ## operator, and hothing harmful happens. But consder a smilar
construction that might appear using Greek script:

#define pk(p) p ## 1p
...
int pk(int) = 0;

For this code to work, 11 must be parsed as only one pp-token. Redtricting pp-numbers to only the
basic letters will break this.

6.49 Comments

The C89 Committee consdered proposals to alow comments to nest. The main argument for nesting
comments is that it would allow programmers to “comment out” code. The C89 Committee rejected
this proposal on the grounds that comments should be used for adding documentation to a program,
and that preferable mechanisms already exist for source code exclusion. For example,

#f 0

/| codeto be excluded
#endi f

Preprocessing directives such as this prevent the enclosed code from being scanned by later translation
phases. Bracketed material can include comments and other nested regions of bracketed code.

Another way of accomplishing these goals is with an if statement:
if (0) {
/1 codeto be excluded
}

Many modern compilers will generate no code forithistatement.

/| comments were added for C9X due to their utility and widespread existing practice, especially
in dual C/C++ translators.

QUIET CHANGE IN C9X

42

10

15

20

25

30

35

45

CO9X RATIONALE WG14/N850 J11/98-049
In certain unusua Situations, code could have different semantics for C90 and
C9IX, for example

a b //*divisor:*/ c
+

o I

In C90 this was equivalent to
a=Db/ c+d;

but in C9X it is equivalent to

a=>b + d;

6.5 Expressions

Severd closdly-related topics are involved in the precise specification of expresson evauation:
precedence, associativity, grouping, sequence points, agreement points, order of evaluation, and
interleaving.

The rules of precedence are encoded into the syntactic rules for each operator. For example, the
syntax for additive-expression includes therule

additive-expression + multiplicative-expresson

which implies that a+b* ¢ parses asa+(b*c). Therules of associativity are Smilarly encoded into
the syntactic rules. For example, the syntax for assignment-expression includes the rule

unary-expression assignment-operator ass gnment-expresson
which impliesthat a=b=c parsesasa=(b=c) .

With rules of precedence and associativity thus embodied in the syntax rules, the Standard specifies, in
generd, the grouping (association of operands with operators) in an expression.

K&R describes C as a language in which the operands of successive identical commutative associative
operators can be regrouped. The C89 Committee decided to remove this license from the Standard,
thus bringing C into accord with most other mgjor high-level languages.

This change was motivated primarily by the desre to maeke C more suitable for floating point
programming. Floating point arithmetic does not obey many of the mathematical rules that real
arithmetic does. For instance, the two expressions (a+b) +c¢ and a+(b+c) may well yield different
results. Suppose that b is greater than 0, a equals - b, and ¢ is posgitive but substantialy smaler than
b. (That is, suppose c/ b is less than DBL_EPSI LON.) Then (a+b) +c is O+c, or c, while
a+(b+c) equds a+b, or 0. That is to say, floating point addition and multiplication are not
associative.

K&R's rule imposes a high cost on translation of numerical code to C. Much numerical code is written

43

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

in Fortran, which does provide a no-regrouping guarantee; indeed, this is the normal semantic
interpretation in most high-level languages other than C. K&R's advice, “rewrite using explicit
temporaries,” is burdensome to those with tens or hundreds of thousands of lines of code to convert, a
conversion which in most other respects could be done automatically.

Loss of the regrouping rule does not in fact prohibit much regrouping of integer expressions. The
bitwise logical operators can be arbitrarily regrouped since any regrouping gives the saras ifesult

the expression had not been regrouped. This is also true of integer addition and multiplication in
implementations with twos-complement arithmetic and silent wraparound on overflow. Indeed, in any
implementation, regroupings which do not introduce overflows bebsvé no regrouping had
occurred. (Results may also differ in such an implementation if the expression as written results in
overflows: in such a case the behavior is undefined, so any regrouping couldn’t be any worse.)

The types of Ivalues that may be used to access an object have been restricted so timesrisopt
not required to make worst-case aliasing assumptions (see also 86.7.3.1)

In practice, aliasing arises with the use of pointers. A contrived example to illustrate the issues is
int a;

void f(int * b) {
a =1;
*b = 2;
g(a);

}

It is tempting to generate the callgaas if the source expression wglel) , butb might point toa,
so this optimization is not safe. On the other hand, consider

int a;

void f(double * b) {
a =1;
*h = 2.0;
g(a);

}

Again the optimization is incorrect oniyafpoints toa. However, this would only have come about if
the address ai were somewhere cast toubl e*. The C89 Committee has decided that such
dubious possibilities need not be allowed for.

In principle, then, aliasing only need be allowed for when the Ivalues all have the same type. In
practice, the C89 Committee has recognized certain prevalent exceptions:

. The Ivalue types may differ in signedness. In the common range, a signed integral type
and its unsigned variant have the same representation; and it was felt that an
appreciable body of existing code is not “strictly typed” in this area.

. Character pointer types are often used in the bytewise manipulation of objects; a byte
stored through such a character pointer may well end up in an object of any type.

5

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049

. A qualified version of the object’s type, though formally a different type, provides the
same interpretation of the value of the object.

Structure and union types also have problematic aliasing properties:
struct fi{ float f; int i;};

void f(struct fi * fip, int * ip)

{
static struct fi a = {2.0F, 1};

*Iip = 2
*fip = a
a(*ip);

*fip = a

*Ip = 2;

g(fip->i);
}

It is not safe to optimize the first call ¢pasg(2) , or the second ag 1) , since the call tdé could
quite legitimately have been

struct fi x;
f(&, &.i);

These observations explain the other exception to the same-type principle.
Floating-point Contractions:

An implementation that is able to multiply twdmubl e operands and producd &oat result in
just one machine instruction might contract the multiplication and assignment in

float f;
doubl e d1, d2z;
1. ..

f =dl1 * dz;

Other examples of potential contraction operators include compound assignients,(etc.),
ternary addX +y + 2), and multiply-addxy + 2).

Contractions can lead to subtle anomalies even while increasing accuracy. The value of C
expressions lika * b + ¢ * d will depend on how the translator uses a contracted multiply-add.
The Intel 860’s multiply-add is slightly more problematic: since it keeps a wide but partial
product,a * b + z may differ fromc * d + z even though the exact mathematical prodatts

and c*d are equal; the result depends not just on the mathematical result and the format, as
ordinarily expected for error analysis, but also on the particular values of the operands.

The programmer can control the use of fused multiply-adds by disabling use of contractions with

45

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

an FP_CONTRACT pragma and using the f ma function where desired. The extra accuracy of a
fused multiply-add, which produces a result with just one rounding, can be exploited for simpler
and faster code.

6.5.1 Primary expressions

A primary expresson may be voi d (parenthesized cdl to a function returning voi d), a function
designator (identifier or parenthesized function designator), an Ivaue (identifier or parenthesized
Ivalue), or smply a value expresson. Congraints ensure that a void primary expression is no part of a
further expression, except that a void expresson may be cast to voi d, may be the second or third
operand of a conditiond operator, or may be an operand of acomma operator.

6.5.2 Postfix operators
6.5.2.1 Array subscripting

The C89 Committee found no reason to disdlow the symmetry that permits a[i | to be written as
i[a].

The syntax and semantics of multidimensional arrays follow logicaly from the definition of arrays and
the subscripting operation. The materia in the Standard on multidimensiona arrays introduces no new
language features, but clarifies the C treatment of thisimportant abstract data type.

6.5.2.2 Function calls

Pointers to functions may be used either as (*pf) () or as pf(). The latter construct, not
sanctioned in K&R, appears in some present versons of C, is unambiguous, invaidates no old code,
and can be an important shorthand. The shorthand is useful for packages that present only one externa
name, which designates a structure full of pointers to objects and functions: member functions can be
cdledasgr aphi cs. open(fil e) instead of (*gr aphi cs. open) (file).

The treatment of function designators can lead to some curious, but vaid, syntactic forms. Given the
declarations

int £(), (*pf)();
then al of the following expressions are valid function calls:

(&) () 10 ()05 (*H) O (***1) ()
pf(): (*pf)) (**pf)(); (***pf) ()

The first expression on each line was discussed in the previous paragraph. The second is conventional
usage. All subsequent expressions take advantage of the implicit conversion of a function designator to
a pointer value, in nearly all expression contexts. The C89 Committee saw no real harm in alowing
these forms; outlawing forms like (*f) () , while till permitting *a for a[] , Smply seemed more
trouble than it was worth.

46

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
A new feature of C9X. The rule for implicit declaration of functions has been removed in C9X.

The effect is to guarantee the production of a diagnostic that will catch an additional category of
programming errors. After issuing the diagnostic, an implementation may choose to assume an
implicit declaration and continue trandation in order to support existing programs that exploited
this feature.

For compatibility with past practice, dl argument promotions occur as described in K&R in the
absence of a prototype declaration, including the not aways desrable promotion of f | oat to
doubl e. A prototype givesthe implementor explicit licenseto passaf | oat asaf | oat rather than
adoubl e, or achar asachar rather thanani nt, or an argument in a special register, etc. If the
definition of afunction in the presence of a prototype would cause the function to expect other than the
default promotion types, then clearly the cdls to this function must be made in the presence of a
compatible prototype.

To clarify this and other relationships between function calls and function definitions, the Standard
describes an equivaence between a function cal or definition which does occur in the presence of a
prototype and one that does not.

Thus a prototyped function with no “narrow” types and no variable argument list must be callable in
the absence of a prototype, since the types actually passed in a call are equivalent to the explicit
function definition prototype. This constraint is necessary to retain compatibility with past usage of
library functions (see §7.1.4).

This provision constrains the latitude of an implementor because the parameter passing conventions of
prototype and non-prototype function calls must be the same for functions accepting a fixed number of
arguments. Implementations in environments where efficient function calling mechanisms are available
must, in effect, use the efficient calling sequence either in all “fixed argument list” calls or in none.
Since efficient calling sequences often do not allow for variable argument functions, the fixed part of a
variable argument list may be passed in a completely different fashion than in a fixed argument list with
the same number and type of arguments.

The existing practice of omitting trailing parameters in a call if it is known that the parameters will not
be used has consistently been discouraged. Since omission of such parameters creates an inequivalence
between the call and the declaration, the behavior in such cases is undefined, and a maximally portable
program will avoid this usage. Hence an implementation is free to implement a function calling
mechanism for fixed argument lists which would (perhaps fatally) fail if the wrong number or type of
arguments were to be provided.

Strictly speaking then, calls tpri ntf are obliged to be in the scope of a prototype (as by
#i ncl ude <st di 0. h>), but implementations are not obliged to fail on such a lapse. (The behavior
IS undefined).

6.5.2.3 Structure and union members

Since the language now permits structure parameters, structure assignment and functions returning
structures, the concept ofaucture expression is now part of the C language. A structure value can

be produced by an assignment, by a function call, by a comma operator expression or by a conditional
operator expression:

47

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

sl = (s2 = s3)
sf (x)

(x, sl)

X ?sl: s2

In these cases, the result is not an Ivalue; hence it cannot be assigned to nor can its address be taken.

Smilarly, x. y is an Ivaue only if x is an Ivalue. Thus none of the following valid expressons are
lvalues.

sf(3).a
(s1=s2).a
((1==6)7sl1l:s2).a
(x,s1).a

Evenwhen x. y isan Ivalue, it might not be modifiable:

const struct S sli;
sl.a = 3; /] invalid

The Standard requires that an implementation diagnose a congtraint error in the case that the member
of a structure or union designated by the identifier following a member sdlection operator (. or - >)
does not gppear in the type of the structure or union designated by the first operand. K&R is unclear
on this point.

6.5.2.4 Postfix increment and decrement operators

The C89 Committee has not endorsed the practice in some implementations of consdering
post-increment and post-decrement operator expressionsto be Ivalues.

Increment and decrement operators are not defined for complex or imaginary types. Given the
regular definition, they would be surprising for imaginary types, as the operators would have no
effect. It is sometimes desirable to use the same source code with types being complex or
imaginary depending on the implementation. In this scenario, increment or decrement of the
complex O+yi would differ from increment or decrement of the imaginary yi. Allowing increment
and decrement of complex but not imaginary objects would not be helpful here either.

6.5.2.5 Compound literals
A new feature of C9X. Compound literals provide a mechanism for specifying constants of aggregate
or union type. This diminates the requirement for temporary variables when an aggregate or union
vaue will only be needed once.

Compound literds integrate easly into the C grammar and do not impose any additiond run-time

overhead on auser’s program. They also combine well with designated initializers (86.7.8) to for
even more convenient aggregate or union constant notation. Their initial C implementation a|

in a compiler by Ken Thompson at AT&T Bell Laboratories.

48

m an
ppeared

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049

6.5.3 Unary operators

6.5.3.1 Prefixincrement and decrement operators
See 86.5.2.4.

6.5.3.2 Addressand indirection operators

Some implementations have not allowed&heperator to be applied to an array or a function. (The
construct was permitted in early versions of C, then later made optional.) The C89 Committee has
endorsed the construct since it is unambiguous, and since data abstraction is enhanced by allowing the
important& operator to apply uniformly to any addressable entity.

6.5.3.3 Unary arithmetic operators

Unary plus was adopted by the C89 Committee from several implementations, for symmetry with
unary minus.

The bitwise complement operater, and the other bitwise operators, have now been defined
arithmetically for unsigned operands. Such operations are well-defined because of the restriction of
integral representations to “binary numeration systems.”

6.5.3.4 Thesi zeof operator

It is fundamental to the correct usage of functions suchmasl oc and fread that

si zeof (char) be exactly one. In practice, this means thati@in C terms is the smallest unit of
storage, even if this unit is 36 bits wide; and all objects are comprised of an integral number of these
smallest units.

The Standard, like K&R, defines the result of shezeof operator to be a constant of an unsigned
integral type. Common implementations, and common usage, have often assumed that the resulting
type isi nt . Old code that depends on this behavior has never been portable to implementations that
define the result to be a type other thah. The C89 Committee did not feel it was proper to change

the language to protect incorrect code.

The type ofsi zeof , whatever it is, is published (in the library headst ddef . h>) assi ze_t,

since it is useful for the programmer to be able to refer to this type. This requirement implicitly restricts
si ze_t to be a synonym for an existing unsigned integer type, thus quashing any notion that the
largest declarable object might be too big to span even witanangned | ong in C89 or

I nt max_t in C9X. This also restricts the maximum number of elements that may be declared in an
array, since for any array aMNelements,

N == si zeof (a)/si zeof (a[0])

Thussi ze_t is also a convenient type for array sizes, and is so used in several library functions.

49

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

The Standard specifies that the argument to si zeof can be any value except a hit field, a void
expression, or a function designator. This generdity alows for interesting environmental enquiries.
Given the declarations

int *p, *q;
these expressons determine the size of the type used for:

si zeof (F(x)) Il ... Fsreurnvalue
si zeof (p-Q) Il ... pointer difference

(The last type is of course availablgpas di ff _t in<st ddef. h>.)

With the addition of variable length arrays (86.7.5.2) in C9X,stheeof operator is a constant
expression only if the type of the operand is not a variable length array type. However, the notion of
“size” is consistently maintained for important operations such as pointer increment, subscripting, and
pointer difference. That is, it is still possible to determine the number of elements in a variable length
array with

sizeof (vla) / sizeof(vla[O0])

Finally, si zeof can still be used in an argument torttaé | oc function.

6.5.4 Cast operators
A (voi d) cast is explicitly permitted, more for documentation than for utility.

Nothing portable can be said about casting integers to pointers, or vice versa, since the two |are now
Incommensurate.

The definition of these conversions adopted in the Standard resembles that in K&R, but with several
significant differences. K&R required that a pointer successfully converted to an integer must be
guaranteed to be convertible back to the same pointer. This integer-to-pointer conversion is now
specified asmplementation-defined. While a high-quality implementation would preserve the same
address value whenever possible, it was considered impractical to require that the identical
representation be preserved. The C89 Committee noted that, on some current machine
implementations, identical representations are required for efficient code generation for pointer
comparisons and arithmetic operations.

The conversion of the integer constant O to a pointer is defined similarly to K&R. The resulting pointer
must not address any object, must appear to be equal to an integer value of 0, and may be assigned to
or compared for equality with any other pointer. This definition does not necessarily imply a
representation by a bit pattern of all zeros: an implementation could, for instance, use some address
which causes a hardware trap when dereferenced.

The typechar must have the least strict alignment of any type;lsar * has often been used as a
portable type for representing arbitrary object pointers. This usage creates an unfortunate confusion

between the ideas efbitrary pointer andcharacter or string pointer. The new type&oi d*, which
50

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
has the same representation aschar * , istherefore preferable for arbitrary pointers.

It is possible to cast a pointer of some qualified type (86.7.3) to an unqualified version of that type.
Since the qualifier defines some special access or aliasing property, however, any dereference of the
cast pointer results imdefined behavior.

Because of the requirements of 86.3.1.5, a cast of an expression with a floating-point type to a
smaller floating-point type (for examplgpubl e tof | oat) cannot be optimized away.

6.5.5 Multiplicative operators

In C89, division of integers involving negative operands could round upward or downward in an
implementation-defined manner; the intent was to avoid incurring overhead in run-time code to check
for special cases and enforce specific behavior. In Fortran, however, the result will always truncate
toward zero, and the overhead seems to be acceptable to the numericrpigreommunity.
Therefore, C9X now requires similar behavior, which should faciltate porting of code from Fortran to
C. The table in §7.10.6.2 of this document illustrates the required semantics.

The C89 Committee rejected extending ¥b@perator to work on floating types as such usage would
duplicate the facility provided dynod (see §7.12.10.1). \

6.5.6 Additive operators

As with thesi zeof (see 86.5.3.4) operator, implementations have taken different approaches in
defining a type for the difference between two pointers. It is important that this type be signed in order
to obtain proper algebraic ordering when dealing with pointers within the same array. However, the
magnitude of a pointer difference can be as large as the size of the largest object that can be declared,;
and since that is an unsigned type, the difference between two pointers can cause an overflow.

The C9X variable length array type (86.7.5.2) does not affect the semantics of pointer difference.
Similarly, incrementing a pointer to a variable length array increments by the number of elements in the
array just like a fixed length array.

Void ptr_to_vla_incr(int n)

{ int a[2][n];
int (*p)[n] = &
p++ /1 p == &al[1]
Il

}

If the declarations o andp used an integer constant instead of the parametben the increment
of pointerp still results inp pointing to the second row af That is,p is incremented by the number
of elements in each row af and it doesn’'t matter whetheris a variable length array or a fixed length

51

10

15

20

25

30

35

45

WG14/N850 J11/98-049 CI9X RATIONALE
array. The expected behavior is preserved.

The type of pointer minus pointer is defined to be i nt in K&R. The Standard defines the result of
this operation to be asigned integer, the size of which isimplementation-defined. The type is published
as ptrdiff_t, in the standard header <st ddef. h>. Old code recompiled by a conforming
compiler may no longer work if the implementation defines the result of such an operation to be a type
other than i nt and if the program depended on the result to be of type i nt. This behavior was
consdered by the C89 Committee to be correctible. Overflow was consdered not to break old code
since it was undefined by K&R. Mismatch of types between actua and formal argument declarationsis
correctible by including a properly defined function prototype in the scope of the function invocation.

An important endorsement of widespread practice is the requirement that a pointer can aways be
incremented to just past the end of an array, with no fear of overflow or wraparound:

SOVETYPE ar r ay[SPAN ;
...
for (p = &rray[0]; p < &array[SPAN; p++)

This dipulation merely requires that every object be followed by one byte whose address is
representable. That byte can be the first byte of the next object declared for all but the last object
located in a contiguous segment of memory. (In the example, the address ar r ay + SPAN must
address a byte following the highest element of ar r ay.) Since the pointer expression p+1 need not,
and should not, be dereferenced, it is unnecessary to leave room for a complete object of size
si zeof (*p).

In the case of p- 1, on the other hand, an entire object would have to be alocated prior to the array of
objects that p traverses, so decrement loops that run off the bottom of an aray can fall. This
restriction alows segmented architectures, for instance, to place objects at the start of a range of
addressable memory.

6.5.7 Bitwise shift operators

The description of shift operatorsin K& R suggests that shifting by al ong count should force the left
operand to be widened to | ong before being shifted. A more intuitive practice, endorsed by the C89
Committee, isthat the type of the shift count has no bearing on the type of the result.

QUIET CHANGE
Shifting by al ong count no longer coerces the shifted operand to | ong.
The C89 Committee has affirmed the freedom in implementation granted by K&R in not requiring the
signed right shift operation to sign extend, since such a requirement might dow down fast code and

snce the usefulness of sign extended shifts is marginal. (Shifting a negative twos-complement integer
arithmetically right one place is not the same as dividing by twol)

6.5.8 Relational operators

52

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
For an explanation of why the pointer comparison of the object pointer P with the pointer expression
P+1 is always safe, see Rationale §6.5.6.

Some mathematical practice would be supported by defining the relational operators for complex
operands so thal op z2 would be true if and only if botbr eal (z1) opcreal (z2) and
cimag(zl) == cimag(z2). Believing such use to be uncommon, NCEG voted against
including this specification.

6.5.9 Equality operators

The C89 Committee considered, on more than one occasion, permitting comparison of structures for
equality. Such proposals foundered on the problem of holes in structures. A byte-wise comparison of
two structures would require that the holes assuredly be set to zero so that all holes would compare
equal, a difficult task for automatic or dynamically allocated variables. The possibility of union-type
elements in a structure raises insuperable problems with this approach. Without the assurance that all
holes were set to zero, the implementation would have to be prepared to break a structure comparison
into an arbitrary number of member comparisons; a seemingly simple expression could thus expand
into a substantial stretch of code, which is contrary teging of C.

In pointer comparisons, one of the operands may be of/typd* . In particular, this allowsIULL,
which can be defined évoi d*) 0, to be compared to any object pointer.

6.5.15 Conditional operator

The syntactic restrictions on the middle operand of the conditional operator have been relaxed to
include more than justogical-OR-expresson: several extant implementations have adopted this
practice.

The type of a conditional operator expression candied, a structure, or a union; most other
operators do not deal with such types. The rules for balancing type between pointer and integer have,
however, been tightened, since now only the constant O can portably be coerced to a pointer.

The Standard allows one of the second or third operands to be wbtyge, if the other is a pointer
type. Since the result of such a conditional expressiom id* , an appropriate cast must be used.

6.5.16 Assignment operators
Certain syntactic forms of assignment operators have been discontinued, and others tightened up.

The storage assignment need not take place until the next sequence point. As a consequence, a
straightforward syntactic test for ambiguous expressions can be stated. Some defintidesffekt

IS a storage to any data object, or a read\oflaat i | e object. Anambiguous expresson is one

whose value depends upon the order in which side effects are evalugback fkction is one with

no side effects; an impure function is any otherseguenced expression is one whose major operator

defines a sequence point: comi®&, | | , or conditional operator; amsegquenced expression is any

other. We can then say that an unsequenced expression is ambiguous if more than one operand
invokes any impure function, or if more than one operand contains an Ivalue referencing the same

53

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

object and one or more operands specify a side-effect to that object. Further, any expresson
containing an ambiguous expression is ambiguous.

The optimization rules for factoring out assignments can also be stated. Let X(i, S) be an expression
which contains no impure functions or sequenced operators, and suppose that X contains a storage
S(i) toi . Thestorage expressions, and related expressions, are

S(i): Sval (i): Snew(i):
++i i +1 i +1

i ++ [i +1

- -1 i-1 i-1

i-- [i-1
=y y y

I op=y I opy I opy

Then X(i, S) can bereplaced by either

(T=1i, i =Snewi), X(T,Sval))
or

(T = X(i,Sval), i = Snew(i), T)

provided that neither i nor y have side effects themselves.
6.5.16.1 Simple assgnment

Structure assgnment was added: its use was foreshadowed even in K&R, and many existing
implementations aready support it.

The rules for type compatibility in assgnment also apply to argument compatibility between actua
argument expressions and their corresponding argument types in a function prototype.

An implementation need not correctly perform an assgnment between overlapping operands.
Overlapping operands occur most naturaly in a union, where assigning one field to another is often
desrable to effect a type conversion in place. The assgnment may well work properly in al smple
cases, but it is not maximally portable. Maximally portable code should use atemporary variable as an
intermediate in such an assignment.

6.5.16.2 Compound assignment

The importance of requiring that the left operand Ivalue be evaluated only once is not a question of
efficiency, dthough that is one compelling reason for using the compound assgnment operators.
Rather, it isto assure that any side effects of evauating the left operand are predictable.

Assgnment operators of the form =+, described as old fashioned even in K&R, were dropped in C89.
The form += is now defined to be a single token, not two, so no white space is permitted within it.
No compelling case could be made for permitting such white space.

QUIET CHANGE

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049

Expressons of the form x=- 3 change meaning with the loss of the old-style
assignment operators.

6.5.17 Comma operator

The left operand of a comma operator may be voi d, since only the right-hand operator is relevant to
the type of the expression.

The example in the Standard clarifies that commas separating arguments “bind” tighter than the comma
operator in expressions.

6.6 Constant expressions
To clarify existing practice, several varieties of constant expression have been identified.

The expression followingfi f (86.10.1) must expand to integer constants, character constants, the
special operatodef i ned, and operators with no side effects. No environmental inquiries can be
made, since all arithmetic is done at translation time, signed or unsigned long integers, and casts are
disallowed. The restriction to translation-time arithmetic frees an implementation from having to
perform execution-environment arithmetic in the host environment. It does not preclude an
implementation from doing so—the implementation may simply define “translation-time arithmetic” to

be that of the target. Unsigned arithmetic is performed in these expressions according to the default
widening rules when unsigned operands are involved; this rule allows for unsurprising arithmetic
involving very large constants since they cannot be represerteth@or constants explicitly marked

as unsigned.

Character constants, when evaluate#tiih expressions, may be interpreted in the source character
set, the execution character set, or some other implementation-defined character set. This latitude
reflects the diversity of existing practice, especially in cross-compilers.

An integral congtant expresson must involve only numbers knowable at translation time, and
operators with no side effects. Casts andstheeof operator whose operand does not have a
variable length array type (86.7.5.2) may be used to interrogate the execution environment.

Satic initializers include integral constant expressions, along with floating constants and simple
addressing expressions. An implementation must accept arbitrary expressions involving floating and
integral numbers and side-effect-free operators in arithmetic initializers, but it is at liberty to turn such
initializers into executable code which is invoked prior to program startup. This scheme might impose
some requirements on linkers or runtime library code in some implementations.

The translation environment must not produce a less accurate value for a floating-point initializer than
the execution environment, but it is at liberty to do better. Thus a static initializer may well be slightly
different from the same expression computed at execution time. However, while implementations are
certainly permitted to produce exactly the same result in translation and execution environments,
requiring this was deemed to be an intolerable burden on many cross-compilers.

QUIET CHANGE
55

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

A program that uses #i f expressons to determine properties of the execution
environment may now get different answers.

6.7 Declarations

The C89 Committee decided that empty declarations are invalid, except for a specia case with tags

(see 86.7.2.3) and the case of enumerations suehuas{ zer o, one}; (see 86.7.2.2). While

many seemingly silly constructs are tolerated in other parts of the language in the interest of facilitating
the machine generation of C, empty declarations were considered sufficiently easy to avoid.

6.7.1 Storage-class specifiers

Because the address of a register variable cannot be taken, objects of storagegclaser

effectively exist in a space distinct from other objects. (Functions occupy yet a third address space).
This makes them candidates for optimal placement, the usual reason for declaring registers, but it also
makes them candidates for more aggressive optimization.

The practice of representing register variables as wider types (as adiest er char is quietly
changed t@ egi st er i nt) is no longer acceptable.

6.7.2 Type specifiers

Several new type specifiers were added to C89gned, enum andvoi d. | ong f| oat was
retired and ong doubl e was added, along with many integer types.

A new feature of COX. C9X adds a new integer data typeng | ong, as consolidation of priof
art, whose impetus has been three hardware developments. First, disk density and capacity used
to double every 3 years, but after 1989 has quadrupled every 3 years, yielding low-cost, physically
small disks with large capacities. Although a fixed size for file pointers and file system structures

IS necessary for efficiency, eventually it is overtaken by disk growth and limits need fo be
expanded. In the 1970s, 16-bit C (for the Digital PDP-11) first represented file information with
16-bit integers, which were rapidly obsoleted by disk progress. People switched to a 32:bit file
system, first using nt [2] constructs which were not only awkward, but also not efficiently
portable to 32-bit hardware.

To solve the problem, tHeong type was added to the language, even though this required |C on
the PDP-11 to generate multiple operations to simulate 32-bit arithmetic. Even as |32-bit
minicomputers became available alongside 16-bit systems, pediplesestii nt for efficiency,
reserving ong for cases where larger integers were truly needed, Isortg was noticeably less
efficient on 16-bit systems. Boshort andl ong were added to C, makirghort available
for 16-bits,| ong for 32-bits, and nt as convenient for performance. There was no desirg to
lock the numbers 16 or 32 into the language, as there existed C compilers for at least 24-|and 36-
bit CPUs, but rather to provide names that could be usedfor 32-bits as needed.

56

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
PDP-11 C might have been re-implemented with i nt as 32-bits, thus avoiding the need for
| ong; but that would have made people change most uses of i nt to short or suffer serious
performance degradation on PDP-11s. In addition to the potential impact on source code, the
impact on existing object code and data files would have been worse, even in 1976. By the
1990s, with an immense installed base of software, and with widespread use of dynamic linked
libraries, the impact of changing the size of a common data object in an existing environment is so
high that few people would tolerate it, although it might be acceptable when creating a new
environment. Hence, many vendors, to avoid namespace conflicts, have added a 64-hit integer to
their 32-bit C environments using a new name, of which | ong | ong has been the most widely
used.

CIX has therefore adopted | ong | ong as the name of an integer type with at least 64 hits of
precision. People can and do argue about the particular choice of name, but it has been difficult
to pick a clearly better name early enough, and by now it is fairly common practice, and may be
viewed as one of the least bad choices.

To summarize this part: 32-bit CPUs are coming to need clean 64-bit integers, just as 16-bit
CPUs came to need 32-bit integers, and the need for longer integers happens irrespective of other
CPUs. Thus, 32-bit C has evolved from a common | LP32 model (integer, long, pointer are 32
bits) to | LP32LL (I LP32 + 64-bit | ong | ong), and this still runs on 32-bit CPUs with
sequences to emulate 64-bit arithmetic.

In the second and third interrelated trends, DRAM memories continue to quadruple in size every
3 years, and 64-bit microprocessors started to be widely used in 1992. By 1995, refrigerator-
Sized, microprocessor-based servers were being sold with 8GB-16GB of memory, which required
more than 32-bits for straightforward addressing. However, many 64-bit microprocessors are
actually used in video games, X-Terminals, network routers, and other applications where pointer
size islessimportant than performance for larger integers.

The memory trend encourages a C programming model in which pointers are enlarged to 64-bits
(called *P64), of which the consensus choice seems to be LP64 (I ongs, pointers and | ong
| ongs are 64 hits; i nt s are 32-hits), with | ong | ong in some sense redundant, just as| ong
was on the 32-bit VAX. It isfairly difficult to mix this object code with the | LP32 model, and
S0 it isa new environment to which people must port code, but for which they receive noticeable
benefits: they can address large memories, and file pointers automatically are enlarged to 64-hits.
There do exist, of course, 32-bit CPUs with more-than-32-bit addressing, although C
environments become much more straightforward on 64-bit CPUs with simple, flat addressing. In
practice, people do not move from | LP32LL to LP64 unless they have no choice, or gain some
clear benefit.

If people only consider LP64 in isolation, | ong is 64-bit, and there seems no need for | ong
| ong, just as the VAX 32-bit environment really did not need | ong. However, this view
ignores the difficulty of getting compilers, linkers, debuggers, libraries, etc., to exist for LP64. In
practice, these programs need to dea with 64-bit integers long before an LP64 environment
exists, in order to bootstrap, and later support, all these tools. Put another way, people must:

1. Usingi nt [2], upgrade compilers and a minimal set of tools to compile and debug code that
uses| ong | ong.

57

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

2. Recode the compilers, and all of the tools, to actually usel ong | ong.

This ends up with a set of tools that run as | LP32LL, on existing 32-bit CPUs and new 64-bit
CPUs, and can compile code to either | LP32LL or LP64. This is yet another reason where
| ong | ong isimportant, not for the LP64 model, but for the tools that support that model.

Most 64-bit micros can, and for commercia reasons must, continue to run existing | LP32LL
object programs, alongside any new LP64 programs. For example, database server processes
often desire LP64 to access large memory pools, but the implementers prefer to leave the client
code as | LP32 so that it can run on existing 32-bit CPUs as well, and where LP64 provides no
obvious value.

In mixed environments, it is of course very useful for programs to share data structures, and
specifically for 32-bit programs to be able to cleanly describe aligned 64-bit integers, and in fact
for it to be easy to write structure definitions whose size and alignment are identical between
| LP32LL and LP64. This can be straightforwardly done usingi nt and | ong | ong, just asit
was doable inthe 1970sviashor t and | ong.

Finally, one more important case occurs, in which people want performance benefits of 64-bit
CPUs, while wishing to maintain source compatibility, but not necessarily binary compatibility,
with related 32-bit CPUs. 1n embedded control and consumer products, people have little interest
in 64-bit pointers, but they often like 64-bit integer performance for bit-manipulation, memory
copies, encryption, and other tasks. They like | LP32LL, but with | ong | ong compiled to use
64-bit registers, rather than being smulated via 32-bit registers. While this is not binary-
compatible with existing | LP32LL binaries, it is source-compatible; and it runs faster and uses
less space than LP64, both of which are important in these markets. 1t is worth noting that of the
many millions of 64-bit CPUs that exist, a very large mgority are actually used in such
applications rather than traditional computer systems.

Thus, there are 3 choices, all of which have been done already, and different customers choose
different combinations:

| LP32LL, compiled 32-bit-only, runs on 32- and 64-bit CPUs
- Needs| ong | ong to express 64-bit integers without breaking existing source and
object code badly.

LP64, runs on 64-bit CPUs
- Doesnot need | ong | ong inisolation, but needed its earlier | LP32LL toolsto have
| ong | ong for sensible bootstrapping and later support.

| LP32LL, compiled to 64-bit registers, runs on 64-bit CPUs
- Wants| ong | ong to express 64-hit integers and get better performance, and till
have source code that runs on related 32-bit CPUs.

A new integer data type is needed that can be used to express 64-bit integers efficiently and
portably among 32- and 64-bit systems. It must be a new name to avoid a disastrous set of
incompatibilities with existing 32-bit environments since one cannot safely change | ong to 64
58

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
bits and mix with existing object code. It is needed to deal with disk file size increases, but also to
help bootstrap to 64-bit environments, and then longer, so that many programs can be compiled
to exactly one binary that runs on both 32- and 64-bit CPUs.

While there is more argument about the specific syntax, nobody has seemed able to provide a
compellingly better syntax than | ong | ong, which at least avoided gratuitous namespace
pollution. Proposalslikel nt 64_t seem very awkward for 36-bit CPUs, for example.

Given the various complex interactions, | ong | ong seems a reasonable addition to C, as existing
practice has shown the need for a larger integer, and | ong | ong syntax seems one of the least
bad choices.

POTENTIAL QUIET CHANGE IN C9X

In some environments such as LP64 and | LP64, | ong | ong and | ong are equivaent. In the
others (I LP32LL and LLP64), | ong | ong is larger than | ong. If the system environment
also changes standard definitions such as si ze_t to become | ong | ong, then existing correct
code can be broken. For example,

| ong X;
size_ t vy;
X=y;

slently truncates y. If there is a quiet change, it is not because long long is provided, but
because some part of the system environment is changed to use long long in a way that
propagates into the user’s code.

A new feature of COX. In C89, all type specifiers could be omitted from the declaration spec
in a declaration. In such a casat was implied. The Committee decided that the inher
danger of this feature outweighed its convenience, and so it was removed. The effe(
guarantee the production of a diagnostic that will catch an additional category of progra
errors. Implementations may also choose to assume an impliciand continue to translate th

program, in order to support existing source code that exploited this feature.

6.7.2.1 Structure and union specifiers

Three types of bit fields are now defined: plairt calls forimplementation-defined signedness (as in

K&R), si gned i nt calls for assuredly signed fields, analsi gned i nt calls for unsigned fields.

fiers
ent

it is to
mming
e

The old constraints on bit fields crosswmgrd boundaries have been relaxed, since so many properties

of bit fields are implementation dependent anyway.

The layout of structures is determined only to a limited extent:

. no hole may occur at the beginning;
. members occupy increasing storage addresses; and
. if necessary, a hole is placed on the end to make the structure big enough to pack

tightly into arrays and maintain proper alignment.
59

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

Since some existing implementations, in the interest of enhanced access time, leave internal holes
larger than absolutely necessary, it is not clear that a portable deterministic method can be given for
traversing a structure member by member.

To clarify what is meant by the notion that “all the members of a union occupy the same storage,” the
Standard specifies that a pointer to a union, when suitably cast, points to each member (or, in the case
of a bit-field member, to the storage unit containing the bit field).

A new feature of COX. There is a common idiom known as the “struct hack” for creating a structure
containing a variable-size array:

struct s

{
int n_itens;
/' | possbly other fields
int itens[1];

i

struct s *p;

sizet n, i;

/| codethat setsn omitted
p = malloc(sizeof(struct s) + (n - 1) * sizeof(int));
/' | codeto check for failure omitted
p->n_itens = n;
/| example usage
for (i =0; I < p->n_itens; i++)
p->tens[i] =1i;

The validity of this construct has always been questionable. In the response to one Defect Report,
WG14 decided that it was undefined behaviour because theparsay ens contains only one item,
irrespective of whether the space exists. An alternative construct was suggested: make the array size
larger than the largest possible case (for example, usingit ens[| NT_MAX];), but this
approach is also undefined for other reasons.

WG14 felt that, although there was no way to implement the “struct hack” in C89, it was nontheless a
useful facility. Therefore the new feature of “flexible array members” was introduced. Apart from the
empty brackets, and the removal of thé™ in themal | oc call, this is used in the same way as the
struct hack, but is now explicitly valid code.

There are a few restrictions on flexible array members to ensure that code using them makes sense.
For example, there must be at least one other member, and the flexible array must occur last.
Similarly, structures containing flexible arrays can't occur in the middle of other structures or in
arrays. Finallysi zeof applied to the structure ignores the array but counts any padding before it.
This makes theal | oc call as simple as possible.

6.7.23 Tags

60

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
As with all block-structured languages that adso permit forward references, C has a problem with
structure and union tags. 1f one wants to declare, within a block, two mutually-referencing structures,
one must write something like

struct x { struct y *p; /*...*/ };
struct y { struct x *q; /*...*/ };

Butif st ruct y isdready defined in a containing block, the first field of st r uct x will refer to the
older declaration.

Thus specia semantics were given to the form

struct v;
which now hides the outer declaration of y, and “opens” a new instance in the current block.
QUIET CHANGE IN C89

The empty declaratiosit r uct x; is not innocuous.

6.7.3 Typequalifiers

The C89 Committee added to C tiype qualifiers, const andvol ati | e; and C9X adds a third,
restrict. Individually and in combination they specify the assumptions a compiler can and must
make when accessing an object through an Ivalue.

The syntax and semanticsaminst were adapted from C++; the concept itself has appeared in other
languages. vol atil e andrestrict are inventions of the Committee; and both follow the
syntactic model ofonst .

Type qualifiers were introduced in part to provide greater control over optimization. Several
important optimization techniques are based on the principle of “cacheing”. under certain
circumstances the compiler can remember the last value accessed (read or written) from a location,
and use this retained value the next time that location is read. (The memory, or “cache”, is typically a
hardware register.) If this memory is a machine register, for instance, the code can be smaller and
faster using the register rather than accessing external memory.

The basic qualifiers can be characterized by the restrictions they impose on access and cacheing:

const No writes through this lvalue. In the absence of this qualifier, writes may otcur
through this Ivalue.

vol atil e No cacheing through this Ivalue: each operation in the abstract semantics must be
performed (that is, no cacheing assumptions may be made, since the location is not
guaranteed to contain any previous value.) In the absence of this qualifier, the
contents of the designated location may be assumed to be unchanged except for
possible aliasing.

61

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

restrict Objectsreferenced through ar est ri ct -qualified pointer have a special association
with that pointer. All referencesto that object must directly or indirectly use the value
of this pointer. In the absence of this qualifier, other pointers can dias this object.
Cacheing the value in an object designated through ar est ri ct -qualified pointer is
safe at the beginning of the block in which the pointer is declared, because no pre-
existing aliases may also be used to reference that object. The cached vaue must be
restored to the object by the end of the block, where pre-existing diases again become
available. New aliases may be formed within the block, but these must al depend on
the value of the rest ri ct -qudified pointer, so that they can be identified and
adjusted to refer to the cached value. For arestri ct -qudified pointer at file
scope, the block isthe body of mai n.

A trandator design with no cacheing optimizations can effectively ignore the type qualifiers, except
insofar asthey affect assgnment compatibility.

It would have been possible, of course, to specify nonconst instead of const , etc. The senses of
these concepts in the Standard were chosen to assure that the default, unqudified, case is the most
common, and that it corresponds most clearly to traditiona practice in the use of Ivalue expressions.

Several combinations of the three qualifiers are possible; most define useful sets of Ivalue properties.
The next several paragraphs describe typical uses of the const and vol ati | e qudifiers. The
restrict qualfier is discussed in 86.7.3.1.

The translator may assume, for an unqualified Ivalue, that it may read or write the referenced object,
that the value of this object cannot be changed except by explicitly programmed actions in the current
thread of control, but that other Ivalue expressions could reference the same object.

const is specified in such a way that an implementation is at liberty tc@ust objects in
read-only storage, and is encouraged to diagnose obvious attempts to modify them, but is not required
to track down all the subtle ways that such checking can be subverted. If a function parameter is
declaredconst , then the referenced object is not changed (through that Ivalue) in the body of the
function, that is, the parameter is read-only.

A static volatile object is an appropriate model for a memory-mapped 1/O register.
Implementors of C translators should take into account relevant hardware details on the target
systems when implementing accessegdbat i | e objects. For instance, the hardware logic of a
system may require that a two-byte memory-mapped register not be accessed with byte operations;
and a compiler for such a system would have to assure that no such instructions were generated, even
if the source code only accesses one byte of the register. Whether read-modify-write instructions can
be used on such device registers must also be considered. Whatever decisions are adopted on such
iIssues must be documentedyas at i | e access is implementation-defined.vél ati | e object

Is also an appropriate model for a variable shared among multiple processes.

A static const vol ati | e object appropriately models a memory-mapped input port, such as a
real-time clock. Similarly, @onst vol ati | e object models a variable which can be altered by
another process but not by this one.

62

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049

Although the type qudlifiers are formaly treasted as defining new types, they actudly serve as
modifiers of declarators. Thusthe declarations

const struct s {int a,b;} x;
struct s v;

declare x asaconst object, but not y. The const property can be associated with the aggregate
type by means of atype definition:

typedef const struct s {int a,b;} stype;
stype X;
stype y;

In these declarations the const property is associated with the declarator stype, so x and y are both
const objects.

The C89 Committee consdered making const andvol at i | e storage classes, but this would have
ruled out any number of desrable congructs, such as const members of structures and variable
pointersto const types.

A cast of a vaue to a qudified type has no effect; the qudification (vol ati | e, say) can have no
effect on the access since it has occurred prior to the cast. If it is necessary to access a non-
vol ati | e object usng vol ati | e semantics, the technique is to cast the address of the object to
the appropriate pointer-to-qualified type, then dereference that pointer.

6.7.3.1 Formal definitionof restri ct

A new feature of COX. The restrict type quaifier allows programs to be written so that
trandators can produce significantly faster executables. Anyone for whom this is not a concern can
safely ignore this feature of the language.

The problem that the restrict quaifier addresses is that potentia diasng can inhibit
optimizations. Specifically, if atrandator cannot determine that two different pointers are being used
to reference different objects, then it cannot apply optimizations such as maintaining the vaues of the
objects in registers rather than in memory, or reordering loads and stores of these values. This
problem can have a Significant effect on a program that, for example, performs arithmetic calculations
on large arrays of numbers. The effect can be measured by comparing a program that uses pointers
with a amilar program that uses file scope arrays (or with a smilar Fortran program). The array
verson can run faster by a factor of ten or more on a system with vector processors. Where such
large performance gains are possible, implementations have of course offered their own solutions,
usudly in the form of compiler directives that specify particular optimizations. Differences in the
gpelling, scope, and precise meaning of these directives have made them troublesome to use in a
program that must run on many different systems. Thiswas the motivation for a standard solution.

The restrict qudifier was desgned to express and extend two types of aliasing information
aready specified in the language.

63

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

Firgt, if asingle pointer is directly assgned the return value from an invocation of mal | oc, then that
pointer is the sole initial means of access to the alocated object (that is, another pointer can gain
access to that object only by being assigned a value that is based on the vaue of the first pointer).
Declaring the pointer to be restrict-qualified expresses this information to a trandator. Furthermore,

the qudifier can be used to extend a trandator’s special treatment of such a pointer to more general
situations. For example, an invocationnafl | oc might be hidden from the translator in another
function, or a single invocation afl | oc might be used to allocate several objects, each referenced
through its own pointer.

Second, the library specifies two versions of an object copying function, because on many systems a
faster copy is possible if it is known that the source and target arrays do not overlagsihect

qualifier can be used to express the restriction on overlap in a new prototype that is compatible with
the original version:

void *mencpy(void * restrict sl1l, const void * restrict s2,
size_ t n);
voi d *memmove(void * sl1, const void * s2, size t n);

With the restriction visible to a translator, a straightforward implementatisarafpy in C can now

give a level of performance that previously required assembly language or other non-standard means.
Thus ther est ri ct qualifier provides a standard means with which to make, in the definition of any
function, an aliasing assertion of a type that could previously be made only for library functions.

The complexity of the specification of thest ri ct qualifier reflects the fact that C has a rich set of
types and a dynamic notion of the type of an object. Recall, for example, that an object does not have
a fixed type, but acquires a type when referenced. Similarly, in some of the library functions, the
extent of an array object referenced through a pointer parameter is dynamically determined, either by
another parameter or by the contents of the array.

The full specification is necessary to determine the precise meaning of a qualifier in any context, and
so must be understood by compiler implementors. Fortunately, most others will need to understand
only a few simple patterns of usage explained in the following examples.

A translator can assume that a file scopst ri ct -qualified pointer is the sole initial means of
access to an object, much as if it were the declared name of an array. This is useful for a dynamically
allocated array whose size is not known until run time. Note in the example how a single block of
storage is effectively subdivided into two disjoint objects.

float * restrict al, * restrict az2;

void init(int n) {

float * t = malloc(2 * n * sizeof(float));
al = t; [l alrefersto 14 half
a2 =t +n; [/l aZreesto2ndhalf

}

A translator can assume that ast ri ct -qualified pointer that is a function parameter is, at the
beginning of each execution of the function, the sole means of access to an object. Note that this

64

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
assumption expires with the end of each execution. In the following example, parametersal and a2

can be assumed to refer to digoint array objects because both arer est r i ct -qudified. Thisimplies
that each iteration of the loop is independent of the others, and so the loop can be aggressively

optimized.

void f1(int n, float * restrict al,
const float * restrict a2)
{

int i;
for (i =0; i <n; i++)
al[i] += a2[i];
}

A trandator can assume that ar estri ct -qudified pointer declared with block scope is, a the
beginning of each execution of the block, the sole means of access to an object. An invocation of the
macro shown in the following example is equivaent to an inline verson of a cal to the function f 1
above.

define f2(N, Al, A2) \

{ int n = (N); \
float * restrict al = (Al); \
float * restrict a2 = (A2); \
int i; \
for (i =0; i <n; i++) \

al[i] += a2[i]; \

}

Therestrict qudifier can be used in the declaration of a structure member. A trandator can
assume, when an identifier is declared that provides a means of access to an object of that structure
type, that the member provides the sole initial means of access to an object of the type specified in the
member declaration. The duration of the assumption depends on the scope of the identifier, not on
the scope of the declaration of the structure. Thus a trandator can assume that s1. al and s1. a2
below are used to refer to digoint objects for the duration of the whole program, but that s2. al and
s2. a2 are used to refer to digoint objects only for the duration of each invocation of the f 3
function.

struct t {
int n;
float * restrict al, * restrict az2;

s
struct t si;

void f3(struct t s2) { /* ... *| }

The meaning of ther est ri ct qudifier for aunion member or in atype definition is analogous. Just
as an object with a declared name can be diased by an unqudified pointer, so can the object
associated with ar est ri ct -qualified pointer. The restri ct qudlifier is therefore unlike the
regi st er storage class, which precludes such diasing.

65

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

This dlows therest ri ct qudlifier to be introduced more easlly into existing programs, and also
alowsrestrict to beusedin new programs that cal functions from libraries that do not use the
qudifier. In particular, arestri ct -qudified pointer can be the actua argument for a function
parameter that is unqualified. On the other hand, it is easier for a trandator to find opportunities for
optimization if as many as possible of the pointersinaprogramarer est r i ct -qudified.

6.7.4 Function specifiers(i nl i ne) ‘

A new feature of COX. Thei nl i ne keyword, adapted from C++, is afunction-specifier that can be
used only in function declarations. It is useful for program optimizations that require the definition of
afunction to be visble at the site of a call. (Note that the Standard does not attempt to specify the
nature of these optimizations.)

Vighility isassured if the function has internal linkage, or if it has external linkage and the call isin the
same trandation unit as the external definition. In these cases, the presence of thei nl i ne keyword
in a declaration or definition of the function has no effect beyond indicating a preference that calls of
that function should be optimized in preference to calls of other functions declared without the
I nl i ne keyword.

Vighility is a problem for a call of a function with externa linkage where the cal is in a different
translation unit from the function’s definition. In this case, itm i ne keyword allows the
translation unit containing the call to also contain a local, or inline, definition of the function.

A program can contain a translation unit with an external definition, a translation unit with an inline
definition, and a trnaslation unit with a declaration but no definition for a function. Calls in the latter
translation unit will use the external definition as usual.

An inline definition of a function is considered to be a different definition than the external definition.
If a call to some functiohunc with external linkage occurs where an inline definition is visible, the
behavior is the same as if the call were made to another function,fsagc, with internal linkage.

A conforming program must not depend on which function is called. This is the inline model in the
Standard.

A conforming program must not rely on the implementation using the inline definition, nor may it rely
on the implementation using the external definition. Another way to say this is that the address of a
function is always the address corresponding to the external definition. It is only when this address is
used to call the function that the inline definition might be used. Therefore, the following example
might not behave as expected.

inline const char *saddr(void) {

static const char nane[] = "saddr";
return nane;

I nt conpare_nane(void) {
return saddr() == saddr(); // unspecified behavior

66

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049

Since the implementation might use the inline definition for one of the calls to saddr and use the
externa definition for the other, the equality operation is not guaranteed to evaluate to 1 (true). This
shows that static objects defined within the inline definition are distinct from their corresponding
object in the externa definition. This motiviated the constraint against even defining a nonconst
object of thistype.

Inlining was added to the Standard in such a way that it can be implemented with existing linker
technology and is compatible with C++. This was achieved by requiring that exactly one trandation
unit containing the definition of an inline function be specified as the one that provides the external
definition for the function. Because that specification conssts smply of a declaration that either lacks
thei nl i ne keyword, or contains both i nl i ne and ext er n, it will aso be accepted by a C++
trandator.

Inlining in C9X does extend the C++ specification in two ways. Fird, if a function is declared
I nl i ne inone trandation unit, it need not be declared i nl i ne in every other trandation unit. This
alows, for example, alibrary function that is to be inlined within the library but available only through
an externd definition elsawhere. The dternative of using a wrapper function for the externa function
requires an additiona name; and it may also adversely impact performance if a trnadator does not
actudly do inline subgtitution.

Second, the requirement that all definitions of an inline function be “exactly the same” is replaced by
the requirement that the behavior of the program should not depend on whether a call is implemented
with a visible inline definition, or the external definition, of a function. This allows an inline definition

to be specializad for its use within a particular translation unit. For example, the external definition of

a library function might include some argument validation that is not needed for calls made from other
functions in the same library. These extensions do offer some advantages; and programmers who are
concerned about compatibility can simply abide by the stricter C++ rules. |

6.7.5 Declarators ‘
The function prototype syntax was adapted from C++ (see 86.5.2.2 and 86.7.5.3). |

Some current implementations have a limit of six type modifiengc{ion returning, array of, pointer

to, the limit used in Ritchie’s original compiler. This limit was raised to twelve since the original limit
has proven insufficient in some cases; in particular, it did not allow for Fortran-to-C translation, since
Fortran allows for seven subscripts. (Some users have reported using nine or ten levels, particularly in
machine-generated C code.

6.7.5.1 Pointer declarators \

A pointer declarator may have its own type qualifiers to specify the attributes of the pointer itself, as
opposed to those of the reference type. The construct is adapted from C++.

const i nt * meangvariable) pointer to constant i nt , andi nt * const meansconstant pointer
to (variable) i nt, just as in C++, from which these constructs were adopted. njdtatls mutandis
for the other type qualifiers.) As with other aspects of C type declarators, judicious ygedéf

statements can clarify the code.

67

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

6.7.5.2 Array declarators |

The concept of composite types (86.2.7) was introduced to provide for the accretion of information
from incomplete declarations, such as array declarations with missing size, and function declarations
with missing prototype (argument declarations). Type declarators are therefore said to specify
compatible types if they agree except for the fact that one provides less information of this sort than
the other.

In general, the declaration of O-length arrays is invalid under the principle of not providing for O-length
objects. One common use of this construct has been in the declaration of dynamically allocated
variable-size arrays, such as

struct segnent ({
short int count;

char c[N;
}
struct segnment * new segnment(const int length)
{
struct segnent * result;
result = malloc(sizeof segnent + (length-N));
resul t->count = | ength,;
return result;
}

In such usage\ would be 0 and | engt h - N) would be written abengt h. But this paradigm
works just as well, as written,Nfis 1. (Note an alternate way of specifying the sizeesful t :

result = malloc(offsetof(struct segnent,c) + length);
This illustrates one of the uses of tid set of macro.)

C9X adds a new array type called a variable length array type. The inability to declare arrays whose
size is known only at execution time was often cited as a primary deterrent to using C as a numerical
computing language. Adoption of some standard notion of execution time arrays was considered
crucial for C’s acceptance in the numerical computing world.

The number of elements specified in the declaration of a variable length array type is a runtime
expression. Before C9X, this size expression was required to be an interger constant expression.

C9X makes a distinction betweemriable length array types and variably modified types, for
example, a pointer to a variable length array. Variable length array types are a subset of all possible
variably modified types.

All variably modified types must be declared at either block scope or function prototype scope. File
scope identifiers cannot be declared with a variably modified type. Furthermore, array objects
declared with either thet ati ¢ or ext er n storage class specifiers cannot be declared with a
variable length array type, although block scope pointers declared with #e ¢ storage class

68

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
specifier can be declared as pointersto variable length array types. Findlly, if the identifier that is being
declared has a varidble length array type (as opposed to being a pointer to a variable length array),
then it must be an ordinary identifier. This eiminates structure and union members.

Redtricting variable length array declarators to identifiers with automatic storage duration is natural

since “variableness” at file scope requires some notion of parameterized typing. There was sentiment
for allowing structure members to be variably modified; however allowing structure members to have

a variable length array type introduces a host of problems such as the treatment when passing these
objects, or even pointers to these objects, as parameters. In addition, the semantics of the
of f set of macro would need to be extended and runtime semantics added. Finally, there was
disagreement whether the size of a variable length array member could be determined using one of the
other members. The Committee decided to limit variable length array types to declarations outside
structures and unions.

It is unspecified whether side effects are produced when the size expression of a variable length array
declaration is encountered. In general, side effects are not considered either useful or necessary in the
size expression. Forbidding them, however, was problematic in that all referemmdsatd | e

variables are considered to be side effects, and calling functions (which might use local variables) is
useful.

6.7.5.3 Function declarators (including prototypes) |

The function prototype mechanism is one of the most useful additions to the C language. The feature,
of course, has precedent in many of the Algol-derived languages of the past 25 years. The particular
form adopted in the Standard is based in large part upon C++.

Function prototypes provide a powerful translation-time error detection capability. In traditional C
practice without prototypes, it is extremely difficult for the translator to detect errors (wrong number
or type of arguments) in calls to functions declared in another source file. Detection of such errors
has occurred either at runtime or through the use of auxiliary software tools.

In function calls not in the scope of a function prototype, integer arguments haveeghal

widening conversions applied and | oat arguments are widened doubl e. It is not possible in

such a call to pass an unconvertdtar or fl oat argument. Function prototypes give the
programmer explicit control over the function argument type conversions, so that the often
inappropriate and sometimes inefficient default widening rules for arguments can be suppressed by the
implementation.

Modifications of function interfaces are easier in cases where the actual argumeititassigrsnent
compatible with the new formal parameter type: only the function definition and its prototype need to
be rewritten in this case; no function calls need be rewritten. Allowing an optional identifier to appear
in a function prototype serves two purposes:

. the programmer can associate a meaningful name with each argument position for
documentation purposes.

. a function declarator and a function prototype can use the same syntax. The
consistent syntax makes it easier for new users of C to learn the language. Automatic

69

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

generation of function prototype declarators from function definitions is aso
facilitated.

Optimizers can aso take advantage of function prototype information. Consder this example:

extern int conpare(const char * stringl,
const char * string2);

void func2(int x) {
char * strl1, * str2;
...
X = conpare(strl, str2);
Il

}

The optimizer knows that the pointers passed to conpar e are not used to assign new vaues of any
objects that the pointers reference. Hence the optimizer can make less conservative assumptions
about the side effects of conpar e than would otherwise be necessary. The Standard requires that
cals to functions taking a variable number of arguments must occur in the presence of a prototype
using the trailing elipsis notation ,. . . . An implementation may thus assume that al other functions
are called with afixed argument list, and may therefore use possibly more efficient calling sequences.
Programs using old-style headers in which the number of arguments in the cals and the definition
differ may not work in implementations which take advantage of such optimizations. This is not a
quiet change, gtrictly spesking, since the program does not conform to the Standard. A word of
warning is in order, however, since the style is not uncommon in existing code, and since a
conforming trandator is not required to diagnose such mismatches when they occur in separate
trandation units. Such trouble spots can be made manifest (assuming an implementation provides
reasonable diagnostics) by providing new-style function declarations in the trandation units with the
non-matching calls. Programmers who currently rely on being able to omit trailing arguments are
advised to recode usng the <st dar g. h> paradigm.

Function prototypes may be used to define function types aswell:
typedef double (*d_binop) (double A, double B);

struct d_funct {

d_bi nop f1;

int (*f2)(double, double);
b

struct d_funct hastwo members, both of which hold pointers to functions taking two doubl e
arguments, the function types differ in their return type.

A function prototype can have parameters that have variable length array types (86.7.5.2) using a

special syntax as in

int mininun(int, int [*][*]);

This is consistent with other C prototypes where the name of the parameter need not be specified.

70

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049

There was consderable debate about whether to maintain the current lexical ordering rules for
varigble length array parameters in function definitions. For example, the following old-style
declaration

void f(double a[*][*], int n);
void f(a, n)

int n;

double a[n][n];

{
}

cannot be expressed with a definition that has a parameter typelist asin

Il

void f(double a[n][n], int n) { // eror
...
}

Previoudy, programmers did not need to concern themselves with the order in which formal
parameters are specified, and one common programming style is to declare the most important
parameters first. With Standard C’s lexical ordering rules, the declara@wowaoild forcen to be
undefined or captured by an outside declaration. The possibility of allowing the scope of parameter
to extend to the beginning of the parameter-type-list was explored (relaxed lexical ordering), which
would allow the size of paramet@rto be defined in terms of parameterand could help convert a
Fortran library routine into a C function. Such a change to the lexical ordering rules is not considered
to be in the “Spirit of C,” however. This is an unforeseen side effect of Standard C prototype syntax.

The following example demonstrates how to declare parameters in any order and avoid lexical
ordering issues.

voi d g(double *ap, int n) {
double (*a)[n] = (double (*)[n]) ap;

[* ... *%] a[1][2] /* ... *I
}

In this case, the parametap is assigned to a local pointer that is declared to be a pointer to a
variable length array. The functigrcan be called as in

{
doubl e x[10][10];

9(&[0][0], 10);

which allows the array address to be passed as the first argument. The strict lexical ordering rules
remain in place.

71

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE
6.7.6 Typenames

Empty parentheses within a type name are adways taken as meaning function with unspecified
arguments and never as unnecessary parentheses around the elided identifier. This specification
avoids an ambiguity by fiat.

6.7.7 Typedéefinitions

At ypedef may only beredeclared in an inner block with a declaration that explicitly contains a type
name. This rule avoids the ambiguity about whether to take the t ypedef as the type name or the
candidate for redeclaration.

Some pre-C89 implementations allowed type specifiers to be added to a type defined using
t ypedef . Thus

typedef short int small
unsi gned smal | x;

would give x the type unsi gned short int. The C89 Committee decided that since this
interpretation may be difficult to provide in many implementations, and since it defeats much of the
utility of t ypedef as a data abstraction mechanism, such type modifications are invdid. This
decision is incorporated in the rules of §6.7.2.

A proposed ypeof operator was rejected on the grounds of insufficient utility.
Using at ypedef to declare a variable length array object (see 86.7.5.2) could have two possible

meanings. Either the size could be eagerly computed wherypgedef is declared, or the size
could be lazily computed when tbigject is declared. For example

{
t ypedef VLA n];
n++;
VLA obj ect;
/1
}

The question arises whetheshould be evaluated at the time the type definition itself is encountered
or each time the type definition is used for some object declaration. Thmitze decided that if

the evaluation were to take place each time fhgedef name is used, then a single type definition
could yield variable length array types involving many different dimension sizes. This possibility
seemed to violate the spirit of type definitions. The decision was made to force evaluation of the
expression at the time the type definition itself is encountered.

6.7.8 Initialization

An implementation might conceivably have codes for floating zero and/or null pointer other than all

72

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
bits zero. In such a case, the implementation mugt fill out an incomplete initializer with the various
appropriate representations of zero; it may not just fill the areawith zero bytes.

The C89 Committee considered proposals for permitting automatic aggregate initializers to consist of
a brace-enclosed series of arbitrary execution-time expressions, instead of just those usable for a
trandate-time gatic initializer. However, cases like thiswere troubling:

int x[2] ={ f(x[1]), g(x[0]) };

Rather than determine a set of rules which would avoid pathologica cases and yet not seem too
arbitrary, the C89 Committee elected to permit only datic initidizers. Consequently, an
implementation may choose to build a hidden static aggregate, using the same machinery as for other
aggregate initidizers, then copy that aggregate to the automatic variable upon block entry.

A dructure expression, such as a cdl to a function returning the appropriate structure type, is
permitted as an automatic structure initializer, since the usage seems unproblemétic.

For programmer convenience, even though it isaminor irregularity in initializer semantics, the trailing
null character in astring literal need not initidlize an array element, asin

char nesg[5] = "hel p!'";
Some widely used implementations provide precedent.

K&R alows a trailing comma in an initidlizer a the end of an initidizer-lig. The Standard has
retained this syntax, since it provides flexibility in adding or deleting members from an initializer ligt,
and smplifies machine generation of such lists.

Various implementations have parsed aggregate initidizers with partiadly elided braces differently.

The Standard has reeffirmed the top-down parse described in K&R. Although the congtruct is
allowed, and its parse well defined, the C89 Committee urges programmers to avoid partialy elided
initializers because such initidizations can be quite confusing to read.

QUIET CHANGE

Code which relies on a bottom-up parse of aggregate initidizers with partidly dided
braces will not yield the expected initialized object.

The C89 Committee has adopted the rule (already used successtully in some implementations) that the
first member of the union is the candidate for initialization. Other notations for union initialization were
consdered, but none seemed of sufficient merit to outweigh the lack of prior art.

This rule has a pardlel with the initialization of structures. Members of structures are initidized in the
sequence in which they are declared. The same could be said of C89 unions, with the significant
difference that only one union member, the first, can beinitialized.

A new feature of C9X. Designated initializers provide a mechanism for initidizing sparse arrays, a |
practice common in numerica programming. They add useful functionality that aready exists in
Fortran so that programmers migrating to C need not suffer the loss of a program-text-saving

73

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE
notational feature.

This feature dso alows initidization of sparse structures, common in systems programming, and
alowsinitidization of unions viaany member, regardless of whether or not it isthe first member.

Designated initidizers integrate easily into the C grammar and do not impose any additiona run-time

overhead on a user’s program. Their initial C implementation appeared in a compiler by Ken
Thompson at AT&T Bell Laboratories. |

6.8 Statements

6.8.1 Labeled statements

Since label definition and label reference are syntactically distinctive contexts, labels are established as a
separate name space.

6.8.2 Compound statement, or block
The C89 Committee considered proposals for forbiddmgta into a block from outside, since such
a restriction would make possible much easier flow optimization and would avoid the whole issue of

initializing auto storage; but it rejected such a ban out of fear of invalidating working code, however
undisciplined, and out of concern for those producing machine-generated C.

6.8.3 Expression and null statements

Thevoi d cast is not needed in an expression statement, since any value is always discarded. Some
compilers prefer this reassurance, however, for functions that return objects of types otrair dhan

6.8.4 Selection statements
6.84.1 Theif statement

See §6.8.2.

6.8.4.2 Thesw t ch statement

The controlling expression ofsa t ch statement may now have any integral type, evesi gned
| ong | ong. Floating types were rejected fewi t ch statements since exact equality in floating
point is not portable.

case labels are first converted to the type of the controlling expression s#ttech, then checked
for equality with other labels. No two may match after conversion.

Case ranges of the form, lo .. hi, were seriously considered, but ultimately not adopted in the $tandard
on the grounds that it added no new capability, just a problematic coding convenience. The construct
seems to promise more than it could be mandated to deliver:

74

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049

. A great deal of code or jump table space might be generated for an innocent-looking
case range such as 0 .. 65535.

. The range 'A'.."”Z' would specify all the integers between the character code for A and
that for Z. In some common character sets this range would include non-alphabetic
characters, and in others it might not include all the alphabetic characters, especially in
non-English character sets.

No serious consideration was given to maldmg t ch more structured, as in Pascal, out of fear of
invalidating working code.

QUIET CHANGE IN C89

| ong expressions and constantswi t ch statements are no longer truncatedno.

6.8.5 Iteration statements
6.8.5.3 Thef or statement

A new feature of COX. It is common for & or loop to involve one or more counter variables which

are initialized at the start of the loop and never used again. In C89 it was necessary to declare those
variables at the start of the enclosing block with a subsequent risk of accidentally reusing them for
some other purpose. It is now permitted to declare these variables as pafrioof staéement itself.

Such a loop variable is in a new scope, so it does not affect any other variable with the same name and
Is destroyed at the end of the loop, which can lead to possible optimizations.

To simplify the syntax, each loop limited to a single declaration (though this can declare several
variables), and these must hawe o orr egi st er storage class.

Example:

int i = 42;

for (int i =5, j =15; i < 10; i++, j--)
printf("Loop % %\n", i, j);

printf("l = %l\n", i); [/ thereisnoj inscope

will output:

Loop 5 15
Loop 6 14
Loop 7 13
Loop 8 12
Loop 9 11
| = 42

Note that the syntax allows loops like:

75

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

for (struct s *p = list, **q; p != NULL; p = *q);
g = &(p->next);

6.8.6. Jump statements
6.8.6.1 Thegot o statement

With the combination of variable length arrays (see 86.7.5.2) and mixed code and declarations,
situations can arise where a variable length array definition is skipped. In the following example

t
int n =1;
goto | abel;

int a[n];
| abel :

/1
}

it is problematic to allocate the arrayecause thgot o statement causes a jump past the declaration.
Therefore, it is forbidden to branch from outside the scope of a variably modified declaration to a point
that is inside the scope, although it is permitted to jump from inside the scope to a point outside the
scope. In the latter case the translator is expected to deallocate the memory associated with the
variable length array. In the following example

L

int n =1;
| abel :

int a[n];

...

I f (n++ < 10) goto | abel;
}

thegot o statement causes the areajo be deallocated. It is reallocated with a new size that is the
value ofn each time the declaration is encountered. Other automatic objects are not deallocated if a
got o causes them to go out of scope.

See also 86.8.2.

6.8.6.2 Theconti nue statement

The C89 Committee rejected proposed enhancemeatsntiol nue andbr eak which would allow
specification of an iteration statement other than the immediately enclosing one on grounds of
insufficient prior art.

6.8.6.3 Thebr eak statement

See 86.8.6.2.

76

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049
6.9 External definitions

6.9.1 Function definitions

A function definition may have its old form and say nothing about arguments on cdls, or it may be
introduced by a prototype which affects argument checking and coercion on subsequent calls.

To avoid a nasty ambiguity, the Standard bans the use of t ypedef names as formal parameters. For
instance, in trandating the text

int f(size_t, at, bt, ct, dt, et, f_t, g.t,
ht, i_t, j_t, kt, |I_t, mt, nt, o_t,
p_t, q.t, r_t, s_t)

the trandator determines that the construct can only be a prototype declaration as soon as it scans the
first si ze_t and following comma. In the absence of thisrule, it might be necessary to see the token
following the right parenthesis that closes the parameter ligt, which would require a sizeable
look-ahead, before deciding whether the text under scrutiny is a prototype declaration or an old-style
function header definition.

An argument list must be explicitly present in the declarator; it cannot be inherited from at ypedef
(see §6.7.5.3). That is to say, given the definition |

typedef int p(int q, int r);
the following fragment is invalid.

p funk /1 weird
{ return g +r ; }

Some current implementations rewrite the type of, for instanchaa parameter as if it were
declared nt , since the argument is known to be passed asfain the absence of a prototype. The
Standard requires, however, that the received argument be comagfteyg assignment upon function
entry. Type rewriting is thus no longer permissible.

QUIET CHANGE IN C89

Functions that depend aar orshort parameter types being widened tat , or
f | oat widened tadoubl e, may behave differently.

Notes for implementors: the assignment conversion for argument passing often requires no executable
code. In most twos-complement machineshart or char is a contiguous subset of the bytes
comprising thel nt actually passed for even the most unusual byte orderings, so that assignment
conversion can be effected by adjusting the address of the argument if necessary.

For an argument declarétl oat , however, an explicit conversion must usually be performed from the

doubl e actually passed to thié oat desired. Not many implementations can subset the bytes of a
77

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

doubl e to get af | oat . Even those that apparently permit simple truncation often get the wrong
answer on certain negative numbers.

Some current implementations permit an argument to be masked by a declaration of the same identifier
in the outermost block of a function. This usage is dmost aways an erroneous attempt by a novice C
programmer to declare the argument; it is rarely the result of a deiberate attempt to render the
argument unreachable. The C89 Committee decided, therefore, that arguments are effectively declared
in the outermost block, and hence cannot be quietly redeclared in that block.

The C89 Committee congdered it important that a function taking a variable number of arguments,

printf for example, be expressible portably in C. Hence, the C89 Committee devoted much time to
exploring methods of traversing variable argument lists. One proposal was to require arguments to be

passed as a “brick,” that is., a contiguous area of memory, the layout of which would be sufficiently
well specified that a portable method of traversing the brick could be determined.

Several diverse implementations, however, can implement argument passing more efficiently if the
arguments are not required to be contiguous. Thus, the C89 Committee decided to hide the
implementation details of determining the location of successive elements of an argument list behind a
standard set of macros (see §7.15).

The rule which caused undeclared parameters in an old-style function definition to be implicitly
declaredi nt has been removed: undeclared parameters are now a constraint violatior]. The
effect is to guarantee production of a diagnostic that will catch an additional category of
programming errors. After issuing the diagnostic, an implementation may choose to assume an
implicit i nt declaration and continue translation in order to support existing programs that
exploited this feature.

6.10 Preprocessing directives

Different implementations have had different notions about whether white space is permissible before
and/or after the¢ signalling a preprocessor line. The C89 Committee decided to allow any white space
before the#, and horizontal white space (spaces or tabs) betweeh dahd the directive, since the

white space introduces no ambiguity, causes no particular processing problems, and allows maximum
flexibility in coding style. Note that similar considerations apply for comments, which are reduced to
white space early in the phases of translation (85.1.1.2):

/* here a cooment */ #if BLAH
#/* there a comment */ if BLAH
#if /] every-

/* where a comment */ BLAH

The lines all illustrate legitimategaement of comments.

6.10.1 Conditional inclusion

For a discussion of evaluation of expressions following), see 86.6.

78

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
The operator def i ned was added to C89 to make possible writing boolean combinations of defined
flags with one another and with other inclusion conditions. If the identifier def i ned were to be
defined asamacro, def i ned(X) would mean the macro expansion in C text proper and the operator
expression in a preprocessing directive (or else that the operator would no longer be available). To
avoid this problem, such a definition is not permitted (86.10.8).

#el i f was added to minimize the stackingtehdi f directives in multi-way conditionals.

Processing of skipped material is defined such that an implementation need only examine a logical line
for the# and then for a directive name. Thus, assumingtbats undefined, in this example:

i fndef xxx

define xxx "abc"

#elif xxx >0
[o...

endif

an implementation is not required to diagnose an error fatehef directive, even though if viere
processed, a syntax error would be detected.

Various proposals were considered for permitting text other than comments at the end of directives,
particularly #endi f and #el se, presumably to label them for easier matchup with their
corresponding#i f directives. The C89 Committee rejected all such proposals because of the
difficulty of specifying exactly what would be permitted and how the translator would have to process
it.

Various proposals were considered for permitting additional unary expressions to be used for the
purpose of testing for the system type, testing for the presence of a filethefaieude, and other

extensions to the preprocessing language. These proposals were all rejected on the grounds of
insufficient prior art and/or insufficient utility.

6.10.2 Sourcefileinclusion

Specification of theti ncl ude directive raises distinctive grammatical problems because the file name
Is conventionally parsed quite differently from an “ordinary” token sequence:

. The angle brackets are not operators, but delimiters.
. The double quotes do not delimit a string literal with all its defined escape sequences
(in some systems, backslash is a legitimate character in a flename), the construct just

looks like a string literal.

. White space or characters not in the C repertoire may be permissible and significant
within either or both forms.

These points in the description of phases of translation are of particular relevance to the parse of the
#i ncl ude directive:

79

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

. Any character otherwise unrecognized during tokenization is an instance of an “invalid
token.” As with valid tokens, the spelling is retained so that later phases can map a
token sequence back into a sequence of characters if necessary.

. Preprocessing phases must maintain the spelling of preprocessing tokens; the flename
is based on the original spelling of the tokens, not on any interpretation of escape
sequences.

. The filename on th&i ncl ude and#l i ne directives, if it does not begin withor

<, is macro-expanded prior to execution of the directive. Allowing macros in the
#i ncl ude directive faciltates the parameterization of include file names, an
important issue in transportability.

The file search rules used for the flename in thencl ude directive were left as
implementation-defined. The Standard intends that the rules which are eventually provided by the
implementor correspond as closely as possible to the original K&R rules. The primary reason that
explicit rules were not included in the Standard is the infeasibility of describing a portable file system
structure. It was considered unacceptable to include UNIX-like directory rules due to significant
differences between this structure and other popular commercial file system structures.

Nested include files raise an issue of interpreting the file search rules. In UNIXi @Gch ude
directive found within an included file entails a search for the named file relative to the file system
directory that holds the oute#i ncl ude. Other implementations, including the earlier UNIX C
described in K&R, always search relative to the saument directory. The C89 Committee decided

in principle in favor of K&R approach, but was unable to provide explicit search rules as explained
above.

The Standard specifies a set of include file names which must map onto distinct host file names. In the
absence of such a requirement, it would be impossible to write portable programs using included files.

Subclause 85.2.4.1 on translation limits contains the required number of nesting levels for included
fles. The limits chosen were intended to reflect reasonable needs for users constrained by reasonable
system resources available to implementors.

By defining a failure to read an included file as a syntax error, the Standard requires that the failure be
diagnosed. More than one proposal was presented for some form of conditional include, or a directive
such agti fi ncl udabl e, but none were accepted by the C8nBittee due to lack of prior art.

6.10.3 Macroreplacement

The specification of macro definition and replacement in the Standard was based on these principles:

. Interfere with existing code as little as possible.
. Keep the preprocessing model simple and uniform.
. Allow macros to be used wherever functions can be.

80

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
. Define macro expansion such that it produces the same token sequence whether the
macro calls appear in open text, in macro arguments, or in macro definitions.
Preprocessing is specified in such a way that it can be implemented either as a separate text-to-text
pre-pass or as a token-oriented portion of the compiler itself. Thus, the preprocessing grammar is
specified in terms of tokens.

However the new-line character must be a token during preprocessing because the preprocessing
grammar is line-oriented. The presence or absence of white space is also important in several contexts,
such as between the macro name and a following parenthesigdief ane directive. To avoid

overly constraining the implementation, the Standard allows both the preservation of each white space
character (which is easy for a text-to-text pre-pass) and the mapping of white space into a single “white
space” token (which is easier for token-oriented translators).

The C89 Committee desired to disallow “pernicious redefinitions” such as
(in headerl.h)

#defi ne NBUFS 10
(in header2.h)

#def i ne NBUFS 12

which are clearly invitations to serious bugs in a program. There remained, however, the question of
“benign redefinitions,” such as

(in headerl.h)

#defi ne NULL_DEV O
(in header2.h)

#defi ne NULL_DEV O
The C89 Committee concluded that safe programming practice is better served by allowing benign
redefinition where the definitions are the same. This allows independent headers to specify their
understanding of the proper value for a symbol of interest to each, with diagnostics generated only if

the definitions differ.

The definitions are considered “the same” if the identifier-lists, token sequences, and occurrences of
white space (ignoring the dlpgg of white sgace) in the two definitions are identical.

Pre-C89 implementations differed on whether keywords could be redefined by macro definitions. The
C89 Committee decided to allow this usage; it saw such redefinition as useful during the transition
from existing to Standard-conforming translators.

These definitions illustrate possible uses:

81

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

define char si gned char
define sizeof (int) sizeof
define const

The first case might be useful in moving extant code from an implementation in which plain char is
signed to one in which it isunsigned. The second case might be useful in adapting code which assumes
that the si zeof operator yields an i nt vaue. The redefinition of const could be useful in
retrofitting more modern C code to an older implementation.

As with any other powerful language feature, keyword redefinition is subject to abuse. Users cannot
expect any meaningful behavior to come about from source files starting with

#define i nt doubl e
#i ncl ude <stdi o. h>

or smilar subversons of common sense.

A new feature of COX. C89 introduced a standard mechanism for defining functions with variable
numbers of arguments, but did not allow any way of writing macros with the same property. For
example, there is no way to write ameacro that lookslikeacal topri nt f .

This facility is now avallable. The macro definition uses an dlipss in the same way to indicate a
variable argument lis. However, since macro subgtitution is textua rather than run-time, a different
mechanism is used to indicate where to subgtitute the arguments. the identifier _ VA ARGS_ . This
is replaced by dl the arguments that match the dlipss, including the commas between them.

For example, the following macro gives a “debuggingnt f "

#i f def DEBUG
#define dfprintf(stream ...) \

fprintf(stream "DEBUG " _ VA ARGS)
#el se
#define dfprintf(stream ...) ((stream _ VA ARGS , 0))
#endi f

#define dprintf(...) dfprintf(stderr, _ VA ARGS)
For example,

dprintf("X = %\ n", x);
expands to

dfprintf(stderr, "X = %l\n", Xx);
and thus to one of

fprintf(stderr, "DEBUG " "X = %\ n", Xx);

82

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049
or

((stderr, "X =9%l\n", x, 0));

If DEBUG s true, thiscdls f print f, but first catenating " DEBUG " to the format (which must
therefore be a smple string). Otherwise it creates a comma expression (so that the arguments are ill
evauated) with the value zero.

There must be at least one argument to match the dlipss. This requirement avoids the problems that
occur when the trailing arguments are included in alist of arguments to another macro or function. For
example, if dpr i nt f had been defined as

#define dprintf(format,...) \
dfprintf(stderr, format, _ VA ARGS)

and it were alowed for there to be only one argument, then there would be a trailling comma in the
expanded form. While some implementations have used various notations or conventions to work
around this problem, the Committee felt it better to avoid the problem dtogether. Similarly, the
VA ARGS__ notation was preferred to other proposasfor this syntax.

A new feature of COX. Function-like macro invocations may also now have empty arguments, thet is,
an argument may condst of no preprocessing tokens. In C89, any argument that consisted of no
preprocessing tokens had undefined behavior, but was noted as a common extension.

A function-like macro invocationf () hasthe form of ether a call with no arguments or a call with one
empty argument. Which form it actually takes is determined by the definition of f , which indicates the
expected number of arguments.

The sequence
#define TENTH 0. 1
#define F f
#define D /| expandsinto no preprocessng tokens

#define LD L
#define glue(a, b) a # b
#defi ne xglue(a, b) glue(a, b)

f 1 oat f = xglue(TENTH, F) ;

doubl e d = xglue(TENTH, D) ;

| ong doubl e |d = xgl ue(TENTH, LD);
resultsin

fl oat f = 0.1f ;

doubl e d=0.1;

| ong double |d = 0. 1L;

The expanson of xgl ue(TENTH, D) first expandsinto gl ue(0. 1,) which is amacro invocation
with an empty second argument, which then expandsinto 0. 1.

83

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

6.10.3.2 The# operator |

Some pre-C89 implementations decided to replace identifiers found within a string literal if they match

a macro argument name. The replacement text is a “stringized” form of the actual argument token
sequence. This practice appears to be contrary to K&R’s definition of preprocessing in terms of token
sequences. The C89 Committee declined to elaborate the syntax of string literals to the point where
this practice could be condoned; however, since the facility provided by this mechanism seems to be
widely used, the C89 Committee introduced a more tractable mechanism of comparable power.

The# operator, which may be used only i#@ef i ne expansion, was introduced for stringizing. It
causes the formal parameter name following to be replaced by a string literal formed by stringizing the
actual argument token sequence. In conjunction with string literal concatenation (see 86.4.5), use of
this operator permits the construction of strings as effectively as by identifier replacement within a
string. An example in the Standard illustrates this feature.

One problem with defining the effect of stringizing is the treatment of white space occurring in macro
definitions. Where this could be discarded in the past, now upwards of one logical line may have to be
retained. As a compromise between token-based and character-based preprocessing disciplines, the
C89 Committee decided to permit white space to be retained as one bit of information: none or one.
Arbitrary white space is replaced in the string by one space character.

The remaining problem with stringizing was to associate a “spelling”esith token. The problem

arises in token-based preprocessors that might, for instance, convert a numeric literal to a canonical or
internal representation, losing information about base, leading zeros, etc. In the interest of simplicity,
the C89 Committee decided that each token should expand to just those characters used to specify it in
the original source text.

QUIET CHANGE IN C89

A macro that relies on formal parameter substitution within a string literal will produce
different results.

6.10.3.3 The## operator

Another facility relied on in much current practice but not specified in K&R is “token pasting,” or
building a new token by macro argument substitution. One pre-C89 implementation replaced a
comment within a macro expansion by no characters instead of the single space called for in K&R.
The C89 Committee considered this practice unacceptable.

As with “stringizing,” the facility was considered desirable, but not the extant implementation of this
facility, so the C89 Committee invented another preprocessing operator## Tdygerator within a

macro expansion causes concatenation of the tokens on either side of it into a new composite token.

The specification of this pasting operator is based on these principles:

. Paste operations are explicit in the source.

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
. The## operator is associative.

. A formal parameter as an operand#éris not expanded before pasting.
The actual parameter is substituted for the formal parameter; but the
actual parameter is not expanded. Given, for example

#define a(n) aaa ## n
#define b 2

the expansion cd(b) isaaab, notaaa2 oraaan.

. A normal operand fo## is not expanded before pasting.
. Pasting does not cross macro replacement boundaries.
. The token resulting from a paste operation is subject to further macro expansion.

These principles codify the essential features of prior art and are consistent with the specification of the
stringizing operator.

6.10.3.4 Rescanning and further replacement

A problem faced by most current preprocessors is how to use a macro name in its expansion without
suffering “recursive death.” The C89 Committee agreed simply to turn off the definition of a macro for
the duration of the expansion of that macro. An example of this feature is included in the Standard.

The rescanning rules incorporate an ambiguity. Given the definitions

#define f(a) a*g
#define g f

it is clear (or at least unambiguous) that the expansiér 2f (9) is 2*f (9), thef in the result
being introduced during the expansion of the oridinand so is not further expanded.

However, given the definitions

#define f(a) a*g
#define g(a) f(a)

the expansion rules allow the result to be eigttdr(9) or 2*9*g: there are no clear grounds for
making a decision whether th¢ 9) token string resulting from the initial expansionfofind the
examination of the rest of the source file should be considered as nested within the expénsion of
not. The C89 Committee intentionally left this behavior ambiguous as it saw no useful purpose in
specifying all the quirks of preprocessing for such questionably useful constructs.

6.10.3.5 Scope of macro definitions

Some pre-C89 implementations maintained a stackdef i ne instances for each identifier, and

85

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

#undef smply popped the stack. The C89 Committee agreed that more than one level of #def i ne
was more prone to error than utility.

It isexplicitly permitted to #undef ameacro that has no current definition. This capability is exploited
in conjunction with the standard library (see 87.1.4).

6.10.4 Linecontrol

Aside from giving values to LINE __ and__ FILE _ (see 86.10.8), the effect &t i ne is
unspecified. A good implementation will presumably provide line and file information in conjunction
with most diagnostics.

A new proposal for C9X to allow th#l i ne directive to appear within macro invocations was
considered. The Committe decided to not allow any preprocessor directives to be recongnized as such
inside of macros.

6.10.5 Error directive

The#er r or directive was introduced in C89 to provide an explicit mechanism for forcing translation
to fail under certain conditions. Formally, the Standard can require only that a diagnostic be issued
when thetter r or directive is processed. It is the intent of the Committee, however, that translation
ceaseémmediately upon encountering this directive if this is feasible in the implementation. Further
diagnostics on text beyond the directive are apt to be of little value.

6.10.6 Pragmadirective

The #pr agnma directive was added in C89 as the universal method for extending the space of
directives. |

A new feature of COX. Somef#pr agna directives have been standardized; and directives whosé first
preprocessing token&I'DC are reserved for standardized directives. \

6.10.7 Null directive

The existing practice of using emgtyines for spacing is supported in the Standard.

6.10.8 Predefined macro names

The rule that these macros may not be redefined or undefined reduces the complexity of the name
space that the programmer and implementor must understand; and it recognizes that these macros have
special built-in properties.

The macros DATE __and__TI ME__ were added in C89 to make available the time of translation.
A particular format for the expansion of these macros was specified to aid in parsing strings initialized
by them.

86

10

15

20

25

30

35

COX RATIONALE WG14/N850 J11/98-049
Themacros __ LINE__ and _ FILE _ were added in C89 to give programmers access to the
source line number and file name.

The macro _ STDC _ dlows for conditiona trandation on whether the trandator clams to be
standard-conforming. It is defined as having the value 1. Future versons of the Standard could define
it as 2, 3, etc., to dlow for conditiona compilation on which verson of the Standard a trandator
conforms to. The C89 Committee felt that this macro would be of use in moving to a conforming
implementation.

A new feature of COX. The macros _ STDC VERSIQN, _ STDC | EC 559 and
___STDC | EC 559 COWPLEX were added.

6.10.9 Pragma operator

A new feature of COX. As an dternative syntax for a#pr agna directive, the Pr agna operator has
the advantage that it can be used in a macro replacement list. If a trandator is directed to produce a
preprocessed verson of the source file, then expressions involving the unary Pr agnma operator and
#pr agna directives should be treated consstently in whether they are preserved and in whether
macro invocations within them are expended.

6.11 Futurelanguage directions

This subclause includes specific mention of the future direction in which the Committee intends to
extend and/or regtrict the language. The contents of this subclause should be consdered as quite likely
to become a part of the next verson of the Standard. Implementors are advised that falure to take
heed of the points mentioned herein is considered undesirable for a conforming implementation. Users
are advised that fallure to take heed of the points mentioned herein is consdered undesirable for a
conforming program.

6.11.2 Storage-class specifiers

The practice of placing the storage class specifier other than first in a declaration was branded as
obsolescent. The Committee fdlt it desirable to rule out such constructs as

enum { aaa, aab,
/'l ec.
zzy, zzz } typedef a2z;

in some future standard.

6.11.3 Function declarators

The characterization as obsolescent of the use of the “old style” function declarations and definitions—
that is, the traditional style not using prototypes—signals the Committee’s intent that the new
prototype style should eventually replace the old style.

The case for the prototype style is presented in §6.5.2.2 and §6.7.5.3. The gist of this case i$ that the
87

WG14/N850 J11/98-049 C9I9X RATIONALE

new syntax addresses some of the most glaring weaknesses of the language defined in K&R, that the
new style is superior to the old style on every count.

It was obvioudly out of the question to remove syntax used in the overwhelming mgjority of extant C
code, s0 the Standard specifies two ways of writing function declarations and function definitions.
Characterizing the old style as obsolescent is meant to discourage its use and to serve as a strong
endorsement by the Committee of the new style. It confidently expects that approva and adoption of
the prototype style will make it feasible for some future C Standard to remove the old style syntax.

88

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049

7. Library

7.1 Introduction

The base document for this part of the Standard was the 1984 /usr/group Sandard. The /usr/group
document contains definitions of some facilities which were specific to the UNIX Operating System
and not relevant to other operating environments, such as pipes, i oct | , file access permissions and
process control facilities. Those definitions were dropped from C89. Other functions were excluded
as well because they were non-portable or were ill-defined.

Other facilities not in the /usr/group library but present in many UNIX implementations, such as the
curses (termina-independent screen handling) library were considered to be more complex and less
essentid than the facilities of /usr/group; these functions were not added to the Standard.

The prototypes for severd library routines were changed in C9X and they now contain the new
keyword restri ct as part of some parameter declarations. Therestri ct keyword dlows the
prototype to express what was previoudy expressed by words.

The definition of certain C library routines such asnentpy contain the words:
If copying takes place between objects that overlap, the behavior is undefined.

These words are present because copying between overlapping objects is quite rare, and this alowed
vendors to provide efficient implementations of these library routines. Now that restri ct alows
users to express these same non-overlapping semantics, it is used in prototype declarations to
demonstrate the utility of the keyword, and to act as guidance to those wishing to understand how to
useit correctly.

In the case of mentpy above, the prototype is now declared as.

void *mencpy(void * restrict sl1l, const void * restrict s2,
size_ t n);

andther estri ct keywordstell the trandator that the first two parameters, s1 and s2, are pointers
that point to digoint data objects. Essentidly, this keyword provides the same informétion as the
words that indicate copying between overlapping objects is not alowed.

Besides the library functions whose specification states that copying between overlapping objects is not
allowed, severa others have adso had their prototype adorned with the restri ct keyword. For
example:

int printf(const char * restrict format, ...);

A critical question that one asks when deciding if a pointer parameter should be restrict-qualified or not
IS, if copying takes place between overlapping objects, will the function behave as expected. In the
caseof thepri nt f function, unexpected behavior occursinacall such as:

89

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

{
int *p = malloc(n * sizeof(int));
char *cp = (char *) p;
strcpy(cp, "% % 9%\n");
printf(cp, "stringl", p, "string2");
}

The unexpected behavior occurs because:

1. character pointers can dias other pointersto objects.
2. p and cp are diasesfor the same dynamic object alocated by the call to theal | oc function.
3. the % specifier causes an integer value to overwrite the string pointed to by cp through p.

Remember that the const qudifier in the pri ntf prototype only guarantees that the parameter
pointing at the format string is read-only. Another dias, p, is dlowed to modify the same format

gring.

Since the implementation costs are high if vendors are forced to cater to this extremely rare case, the
restrict keywordisused to explicitly forbid Stuations like these.

Another library routine that usesr estri ct is

char *fgets(char * restrict s, int n,
FILE * restrict strean);

Again, since a character pointer can be a potentia dias with other pointers, restri ct is used to
make it clear to the trandator that parameter s is never an alias with parameter st r eamwhen the
f get s functioniscalled in a gtrictly conforming program.

Findlly, the prototypes of certain library functions are adorned with r est ri ct only if the pointer is
used to accessdata. For example:

wchar _t *wcstok(wchar _t * restrict si,

const wchar t * restrict s2,
wchar _t ** restrict ptr);

The parameter ptr only hasar estri ct qudifier on the top-level pointer type. The reason the
parameter declaration is not

wchar _t * restrict * restrict ptr

isthat only the top-level pointer type is used to access an object. The lower-level pointer type is only
used to track the location in the wide character string where the search terminated. Thus there is no
possibility of copying taking place between overlapping objects through the lower-level pointer.

In genera, arestri ct-qualified pointer provides useful information in the prototype of a library

90

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
routine if more than one parameter with pointer type can dias each other. Sometimes the diasing rules
prevent this from happening (for example, a pointer to an integer type cannot dias a pointer to a
floating-point type). When the diasing rules alow two pointers to point a overlapping objects, then
therestri ct keyword can be used to indicate that this function should not be caled with pointersto
overlapping objects. This guideline also applies outsde of the library if a parameter can dias a file-
scope pointer.

7.1.1 Definitions of terms

The decimal-point character is the single character used in the input or output of floating point
numbers, and may be changed by set | ocal e. This is a library congtruct; the decimal point in
numeric literalsin C source text is aways a period.

7.1.2 Standard headers

Wheress in pre-C89 practice only certain library functions were associated with header files, C89
mandated that all library functions be declared a header. Severa headers were therefore added, and
the contents of afew old ones were changed.

In many implementations the names of headers are the names of files in specia directories. This
implementation technique is not required, however: the Standard makes no assumptions about the

form that a file name may take on any syssem. Headers may thus have a specid satus if an
implementation so chooses. Standard headers may even be built into a trandator, provided that their
contents do not become “known” until after they are explicitly included. One purpose of permitting
these header “files” to be “built in” to the translator is to allow an implementation of the C language as
an interpreter in an free-standing environment where the only “file” support may be a network
interface.

The C89 Committee decided to make library headers “idempotent,” that is, they should be includable
any number of times, and includable in any order. This requirement, which reflects widespread existing
practice, may necessitate some protective wrappers within the headers to avoid, for instance,
redefinitions oft ypedef s. To ensure that such protective wrapping can be made to work, and to
ensure proper scoping oy pedef s, headers may only be included outside of any declaration.

A common way of providing this “protective wrapping” is

#i fndef _ ERRNO H
#define _ ERRNO H
/| body of <errno. h>
...
#endi f

where__ ERRNO His an otherwise unused macro name.

Implementors often desire to provide implementations of C in addition to that prescribed by the
Standard. For instance, an implementation may want to provide system-specific /0O facilties in
<stdi 0. h>. A technique that allows the same header to be used in both the conforming and
alternate implementations is to add the extra, non-Standard declarations to the header as in

91

10

15

20

25

30

35

WG14/N850 J11/98-049 C9I9X RATIONALE

#i fdef _ EXTENSI ONS_

typedef int file_no;

extern int read(file_no _N, void * _Buffer, int _Noytes);
...

#endi f

The header is usable in a dgrictly conforming program in the absence of a definition of
__EXTENSIONS_.

713 Reserved identifiers |

To give implementors maximum latitude in packing library functions into files, all externd identifiers
defined by the library are reserved in ahosted environment. This means, in effect, that no user-supplied
externa names may match library names, not even if the user function has the same specification.
Thus, for instance, st r t od may be defined in the same object module as pr i nt f , with no fear that
link-time conflictswill occur. Equally, st rt od may cal pri ntf,orprintf maycalstrtod, for
whatever reason, with no fear that the wrong function will be called.

Also reserved for the implementor are all externd identifiers beginning with an underscore, and al
other identifiers beginning with an underscore followed by a capital letter or an underscore. This gives
a name space for writing the numerous behind-the-scenes non-external macros and functions a library
needsto do itsjob properly.

With these exceptions, the Standard assures the programmer that all other identifiers are available, with

no fear of unexpected collisons when moving programs from one implementation to another®. Note,

in particular, that part of the name space of internal identifiers beginning with underscore is available to

the user: translator implementors have not been the only ones to find use for “hidden” names. C is
such a portable language in many respects that the issue of “name space pollution” has been and is one
of the principal barriers to writing completely portable code. Therefore the Standard assures that
macro and ypedef names are reserved only if the associated header is explicitly included.

7.1.4 Useof library functions

To make usage more uniform for both implementor and programmer, the Standard requires that every
library function, unless specifically noted otherwise, must be represented as an actual function, in case a
program wishes to pass its address as a parameter to another function. On the other hand, every library
function is now a candidate for redefinition in its associated header as a macro, provided that the macro
performs a “safe” evaluation of its arguments, that is, it evaluates each of the arguments exactly once
and parenthesizes them thoroughly; and provided that its top-level operator is such that the execution
of the macro is not interleaved with other expressions. Two exceptions are the gedaosnd

put ¢, which may evaluate their arguments in an unsafe manner (see 87.19.7.5 and §87.19.7.8).

See §6.1.2.1 for a discussion of some of the precautions an implementor should take to keep this promise. Note alspléracatation-
defined member names in structures definedtinme. h> and<I ocal e. h> must begin with an underscore, rather than following the pattern of
other names in those structures.

92

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
If a program requires that a library facility be implemented as an actua function, not as a macro, then
the macro name, if any, may be erased by using the #undef preprocessing directive (see 86.10.3.5).

All library prototypes are specified in terms of the “widened” types: an argument formerly declared as
char is now written as nt . This ensures that most library functions can be called with or without a
prototype in scope, thus maintaining backwards compatibility with pre-C89 code. Note, however, that
since functions liker i nt f andscanf use variable-length argument lists, they must be called in the
scope of a prototype.

The Standard contains an example showing how certain library functions may be “built in” in an
implementation that remains conforming.

Unlike in C89, some names are no longer unique in the first six characters. Such uniqueness is
unnecessary because C9X no longer allows that minimum trandiditon

7.2 Diagnostics<assert. h>

7.2.1 Program diagnostics
7.21.1 Theassert macro

Some pre-C89 implementations tolerated an arbitrary scalar expression as the argaseet tqQ

but the C89 Committee decided to require correct operation ompfoexpressions. For the sake of
implementors, no hard and fast format for the output of a failing assertion is required; but the Standard
mandates enough machinery to replicate the form shown in the footnote.

It can be difficult or impossible to maksser t a true function, so it is restricted to macro form only.

To minimize the number of different methods for program terminatissert is now defined in
terms of theabor t function.

Note that defining the macfdDEBUG to disable assertions may change the behavior of a program
with no failing assertion if any argument expression to assert has side effeatsebthe expression is
no longer evaluated.

It is possible to turn assertions off and on in different functions within a translation unit by defining or
undefining NDEBUG and including<assert. h> again. The implementation of this behavior in
<assert. h>is simple: undefine any previous definitioreafser t before providing the new one.
Thus the header might look like

#undef assert
#i f def NDEBUG
#define assert(ignore) ((void)O0)
#el se
extern void _ gripe(char *_Expr, char *_File,
int _Line, const char *_Func);
#defi ne assert(expr) \
((expr) ? (void)O :\
93

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

__gripe(#expr, __FILE , _LINE_, _ func_)))
#endi f

Note that assert must expand to avoi d expresson, so the more obviousi f statement does not
auffice as a definition of assert. Note adso the avoidance of names in a header that would conflict
with the user's name space.

7.3 Complex arithmetic <conpl ex. h> ‘

The choice ofl instead ofi for the imaginary unit concedes to the widespread use of the
identifier i for other purposes. The programmer can use a different identifief,, Say the
imaginary unit by following the inclusion &fconpl ex. h> with

#undef |
#define | _lmaginary_lI

An | suffix to designate imaginary constants is not required, as multiplicationdrgvides a
sufficiently convenient and more generally useful notation for imaginary terms.

The corresponding real type for the imaginary unitli®at so that use of for algorithmic or
notational convenience will not result in widening types.

On systems with imaginary types, the programmer has the ability to control whether use of the
macrol introduces an imaginary type, by redefiningo be_I| magi nary_1 or_Conpl ex_1I.
Disallowing imaginary types is useful for some programs intended to run on implementations
without support for such types.

The macro_| magi nary_| provides a test for whether imaginary types are supported (whether
or not the implementation fully supports Annex G).

The ci s function €os(x) + I*sin(x)) was considered but rejected because its
implementation is easy and straightforward, even though some implementations could compute
sine and cosine more efficiently in tandem.

|
7.3.9 Manipulation functions }
7.3.9.4 Thecproj function |

Two topologies are commonly used in complex mathematics: the complex plane with its
continuum of infinities, and the Riemann sphere with its single infinity. The complex plane is
better suited for transcendental functions, the Riemann sphere for algebraic functions. The
complex types with their multiplicity of infinities provide a useful (though imperfect) model for
the complex plane. Thepr o] function helps model the Riemann sphere by mapping all infinities

to one, and should be used just before any operation, especially comparisons, that might give
spurious results for any of the other infinities.

94

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
Note that a complex value with one infinite part and one NaN part is regarded as an infinity, not a
NaN, because if one part is infinite, the complex value is infinite independent of the value of the
other part. For the same reason, cabs returns an infinity if its argument has an infinite part and a
NaN part.

7.3.9.5 Thecreal function \

7.4 Character Handling <ct ype. h>

Pains were taken to eiminate any ASCIl dependencies from the definition of the character handling
functions. One notable result of this policy was the dimination of the function i sasci i, both
because of the name and because its function was hard to generdize. Nevertheless, the character
functions are often most clearly explained in concrete terms, so ASCII is used frequently to express
examples.

Since these functions are often used primarily as macros, their domain is restricted to the smdl positive
integers representable in an unsi gned char, plus the value of ECF. ECF is traditionally - 1, but
may be any negative integer, and hence distinguishable from any valid character code. These macros
may thus be efficiently implemented by using the argument as an index into a small array of attributes.

§7.26.2 warns that names beginning withandt o, when these are followed by lower-case Iettérs,
are subject to future use in adding itemsdoype. h>.

7.4.1 Character testing functions

The definitions ofrinting character andcontrol character have been generalized from ASCII.

Note that none of these functions returns a nonzero value (true) for the argumeE@value

7.4.1.2 Thei sal pha function

The Standard specifies that the set of letters, in the diefeallt, comprises the 26 upper-case and 26

lower-case letters of the Latin (English) alphabet. This set may vatpaealespecific fashion (that
IS, under control of theet | ocal e function, see §7.11.1.1) so long as

. I supper (c) impliesi sal pha(c)

. I sl ower (c) impliesi sal pha(c)

. I sspace(c), ispunct(c), iscntrl(c), and isdigit(c) al imply
l'i sal pha(c)

7419 Thei sspace function \

I sspace is widely used within the library as the working definition of white space.

95

10

15

20

25

30

35

WG14/N850 J11/98-049 CI9X RATIONALE
7.4.2 Character case mapping functions

Pre-C89 libraries had dmost equivalent macros, _t ol ower and _t oupper, for these functions.
The Standard now permits any library function to be additionaly implemented as a macro provided that
the underlying function must till be present. _t oupper and _t ol ower are thus unnecessary and
were dropped as part of the genera standardization of library macros.

75 Errors<errno. h>

<errno. h> is a header invented to encapsulate the error handling mechanism used by many of the
library routinesin<mat h. h>and <st dl i b. h>°

The error reporting machinery centered about the setting of err no is generdly regarded with
tolerance at best. It requires a “pathological coupling” between library functions and makes use of a
static writable memory cell, which interferes with the construction of shareable libraries. Nevertheless,
the C89 Committee preferred to standardize this existing, however deficient, machinery rather than
invent something more ambitious. In C®X,r no need no longer be set by math functions.

The definition ofer r no as an lvalue macro grants implementors the license to expand it to something
like * __errno_addr (), where the function returns a pointer to the current modifiable copy of
errno.

7.6 Floating-point environment <f env. h> ‘

|
A new feature of COX. |
The floating-point environment as defined here includes only execution-time modes, not the
myriad of possible translation-time options that can affect a program’s results. Each such
option’s deviation from this specification should be well documented.
Dynamic vs. static modes

Dynamic modes are potentially problematic because

1. the programmer may have to defend against undesirable mode settings, which imposes
intellectual as well as time and space overhead.

2. the translator may not know which mode settings will be in effect or which functions change
them at execution time, which inhibits optimization.

This proposal attempts to address these problems without changing the dynamic nature of the
modes.

> In early drafts of C89, er r no and related macros were defined in <st ddef . h>. When the C89 Committee decided that the other definitions
in this header were of such general utility that they should be required even in freestanding environments, it created <er r no. h>.

96

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049

An dternate approach would have been to present a model of static modes with explicit
utterances to the trandator about what mode settings would be in effect. This would have

avoided any uncertainty due to the globa nature of dynamic modes or the dependency on
unenforced conventions, however some essentially dynamic mechanism still would have been

needed in order to allow functions to inherit (honor) their caller's modes. The IEC 559 standard
requires dynamic rounding direction modes. For the many architectures that maintain these
modes in control registers, implementation of the static model would be more costly. Also,
standard C has no facility, other than pragmas,upparting static modes.

An implementation on an architecture that provides only static control of modes, for example
through opword encodings, still couldpport the dynamic model, by generating multiple code
streams with tests of a private global variable containing the mode setting. Only modules under
an enabling~ENV_ACCESS pragma would need such special treatment.

Trandation

An implementation is not required to provide a facility for altering the modes for translation-time
arithmetic, or for making exception flags from the translation available to the executing program.
The language and library provide facilities to cause floating-point operations to be done at
execution time when they can be subjected to varying dynamic modes and their exceptions
detected. The need does not seem sufficient to require similar facilities for translation.

fexcept _t

fexcept _t does not have to be an integer type. Its values must be obtained by a call to
f eget except f | ag, and cannot be created by logical operations from the exception macros.
An implementation might simply implemehexcept _t as an nt and use the representations
reflected by the exception macros, but isn’t required to: other representations might contain extra
information about the exceptiond.except _t might be ast ruct with a member for each
exception (that might hold the address of the first or last floating-point instruction that caused that
exception). C9X makes no claims about the internals dexicept _t, and so the user cannot
Inspect it.

Exception and rounding macros

Unsupported macros are not defined in order to assure that their use results in a translation error.
A program might explicitly define such macros to allow translation of code (perhaps never
executed) containing the macros. An unsupported exception macro should be defined to be 0, for
example

#i f ndef FE_| NEXACT
#define FE_I NEXACT O
#endi f
so that a bitwise OR of macros has a reasonable effect.

Exceptions

In previous drafts of this specification, several of the exception functions returnedtan
97

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

indicating whether the except s argument represented supported exceptions. This facility was
deemed unnecessary because except s & ~FE_ALL_EXCEPT can be used to test invalidity of
the except s argument.

Rounding precision

The IEC 559 floating-point standard prescribes rounding precison modes (in addition to the
rounding direction modes covered by the functions in this section) as a means for systems whose
results are aways double or extended to mimic systems that deliver results to narrower formats.
An implementation of C can meet thisgoal in any of the following ways:

1. By supporting the float minimum evaluation formet.

2. By providing pragmas or compile options to shorten results by rounding to IEC 559 single or
double precision.

3. By providing functions dynamically to set and get rounding precison modes which shorten
results by rounding to IEC 559 single or double precison. Recommended are functions
fesetprec and fegetprec and macros FE _FLTPREC, FE _DBLPREC, and
FE_LDBLPREC, analogous to the functions and macros for the rounding direction modes.

This specification does not include a portable interface for precision control because the IEC 559
floating-point standard is ambivalent on whether it intends for precision control to be dynamic
(like the rounding direction modes) or static. Indeed, some floating-point architectures provide
control modes suitable for a dynamic mechanism, and others rely on instructions to deliver single-
and double-format results suitable only for a static mechanism.

7.6.1 TheFENV_ACCESS pragma

A new feature of C9X. The performance of code under the effect of an enabling FENV_ACCESS
pragma may well be important; in fact an algorithm may access the floating-point environment
specifically for performance. The implementation should optimize as aggressively as the
FENV_ACCESS pragma alows. An implementation could also simply honor the floating-point
environment in all cases and ignore the pragma.

7.6.2 EXxceptions

7.6.2.3 Thef erai seexcept function

Raising overflow or underflow is allowed to aso raise inexact because on some architectures the
only practical way to raise an exception is to execute an instruction that has the exception as a

side effect. Any IEC 559 operation that raises either overflow or underflow raises inexact as well.

The function is not restricted to accept only valid coincident expressions for atomic operations, so
the function can be used to raise exceptions accrued over several operations.

98

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049
7.6.3 Rounding ‘

7.6.3.2 Thefeset round function |

In previous drafts the function returned nonzero to indicate success. This was changed for
consistency with other C functions that return a status indicator.

|
7.6.4 Environment ‘
|
7.6.4.2 Thefehol dexcept function |

In previous drafts the function returned nonzero to indicate success. This was changed for
consistency with other C functions that return a status indicator.

f ehol dexcept should be effective on typical IEC 559 implementations which have the default
non-stop mode and at least one other mode for trap handling or aborting. 1f the implementation
provides only the non-stop mode, then installing the non-stop mode istrivial.

A previous draft specified af epr ocent ry function, which was equivalent to

f eget env(envp);
f eset env(FE_DFL_ENV);

f ehol dexcept is more appropriate for the user model prescribed in §87.6.

7.7 Characteristics of floating types<f | oat . h> ‘

See §7.10.

7.8 Format conversion of integer types<i nttypes. h>

A new feature of COX. <i nttypes. h> was derived from the header of the same name founbl on
several existing 64-bit systems. The Committee debated other methods for specifying integer sizes and
other characteristics, but in the end decided to standardize existing practice rather than innovate in this
area. (See also 87.¥8tdint. h>))

C89 specifies that the language should support four signed and unsigned integer dathaypes,
short, int andl ong, but places very little requirement on their size other thani thiat and

short be at least 16 bits ahang be at least as long aat and not smaller than 32 bits. For 16-bit
systems, most implementations assign 8, 16, 16 and 32 hilsato, short, i nt, andl ong,
respectively. For 32-bit systems, the common practice is to assign 8, 16, 32 and 32 hits to these types.
This difference in nt size can create some problems for users who migrate from one system to
another which assigns different sizes to integral types, because Standard C’s integral promotion rule
can produce silent changes unexpectedly. The need for definedeaded integer type increased

with the introduction of 64-bit systems.

The purpose ofi ntt ypes. h> is to provide a set of integer types whose definitions are consistent
99

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

across machines and independent of operating systems and other implementation idiosyncrases. It
defines, viat ypedef , integer types of various Szes. Implementations are freeto t ypedef themas
Standard C integer types or extensons that they support. Consistant use of this header will greetly
increase the portability of auser’s program across platforms.

7.10 Sizesof integer types<lim ts. h>

Both <f | oat . h> and<l i m ts. h> are inventions of the C89 Committee. Included in these
headers are various parameters of the execution environment which are potentially useful at compile
time, and which are difficult or impossible to determine by other means.

The availability of this information in headers provides a portable way of tuning a program to different

environments. Requiring that preprocessing always yield the same results as run-time arithmetic,
however, would cause problems for portable compilers (themselves written in C) or for cross

compilers, which would then be required to implement the target machine’s arithmetic on the host
machine.

<f | oat . h> makes available to programmers a set of useful quantities for numerical analysis (see
8§5.2.4.2.2). This set of quantities has seen widespread use for such analysis, in C and in other
languages, and was recommended by the numerical analysts on the C89 Committee. The set was
chosen so as not to prejudice an implementation’s selection of floating-point representation.

Most of the limits in<f | oat . h> are specified to be general double expressions rather than restricted
constant expressions

. to allow use of values which cannot readily be constructed as manifest constants.

. to allow for run-time selection of floating-point properties, as is possible,
for instance, in IEC 559 implementations.

7.11 Localization <l ocal e. h>

C has become an international language. Users of the language outside the United States have been
forced to deal with the various Americanisms built into the standard library routines. Areas affected by
international considerations include:

Alphabet. The English language uses 26 letters derived from the Latin alphabet which suffice only for
English and Swabhili; other living languages use either the Latin alpplabetther characters,
or other non-Latin alphabets or syllabaries.

In English, each letter has an upper-case and lower-case form, but this is not generally the case.
The German “sharp S”, 3, for example, occurs only in lower case. European French usually
omits diacriticals on upper-case letters. Some languages do not have the concept of two cases.

Collation. In both EBCDIC and ASCII the code for “z” is greater than the code for “a”, and so on for
other letters in the alphabet, so a “machine sort” gives not unreasonable results for ordering
strings. In contrast, most European languages use a codeset resembling ASCII in which some

100

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
of the codes used in ASCII for punctuation characters are used for aphabetic characters (see
85.2.1). The ordering of these codes is not alphabetic. In some languages letters with
diacritics sort as separate letters; in others they should be collated just as the unmarked form.
In Spanish, “II” sorts as a single letter following “I"; in Germari, §8rts like “ss”.

Formatting of numbers and currency amounts. In the United States the period is invariably used

for the decimal point, and this usage was built into the definitions of such functjpnsratsf
andscanf. Prevalent practice in several major European countries is to use a comma; a
raised dot is employed in some locales. Similarly, in the United States a comma is used to
separate groups of three digits to the left of the decimal point; but a period is common in
Europe, and in some countries digits are not grouped by threes at all. In printing currency
amounts, the currency symbol (which may be more than one character) may precede, follow,
or be embedded in the digits. Note that the decimal point is a single character, not a multibyte
string.

Date and time. The standard functioasct i me returns a string which includes abbreviations for
month and weekday names, and returns the various elements in a format which might be
considered unusual even in its country of origin.

Various common date formats include

1998-07-03 ISO Format

4.7.98 customary central European and British usage

7/4/98 customary U.S. usage |
4.V11.98 Italian usage

98184 Julian date (YYDDD) |
03JUL98 airline usage

Friday, July 3, 1998 full U.S. format

Freitag, 3. Juli 1998 full German format

den 3 juli 1998 full Swedish format

Time formats are also quite diverse:

3:30 PM customary U.S. and British format
1530 U.Smilitary format

15h.30 Italian usage

15.30 German usage

15:30 common European usage

The C89 Committee introduced mechanisms into the C library to allow these and other issues to be
treated in the approprialecal e-specific manner.

The localization features of the Standard are based on these principles:

English for C source. The C language proper is based on English. Keywords are based on English
words. A program which uses “national characters” in identifiers was not strictly conforming
through C95, but C9X allows identifiers to be written using the “universal character names”
(UCNSs) of ISO 10646. (Use of national characters in comments has always been strictly

101

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

conforming, though what happens when such a program is printed in a different locae is
unspecified.) The decimd point must be a period in C source, and no thousands delimiter may
be used.

Runtime sdlectability. The locale must be sdlectable at runtime from an implementation-defined set
of possbilities. Trandation time selection does not offer sufficient flexibility. Software
vendors do not want to supply different object forms of their programs in different locales.
Users do not want to use different versons of a program just because they ded with severa
different locales.

Function interface. The locae is changed by calling a function, thus alowing the implementation to
recognize the change, rather than by, say, changing a memory location that contains the
decimal point character.

Immediate effect. When a new locale is selected, affected functions reflect the change immediately.
(Thisis not meant to imply that, if a Signal-handling function were to change the selected locale
and return to a library function, the return value from that library function must be completely
correct with respect to the new locae)

7.11.1 Localecontrol
7.11.1.1 Thesetl ocal e function

The set | ocal e function provides the mechanism for controlling locale-specific features of the \
library. The cat egory argument alows parts of the library to be locaized as necessary without
changing the entire locale-specific environment. Specifying the locale argument as a string gives an
implementation maximum flexibility in providing a set of locales. For instance, an implementation
could map the argument string into the name of a file containing appropriate locaization parameters,
and these files could then be added and modified without requiring any recompilation of a localizable
program.

7.11.2 Numeric for matting convention inquiry
7.11.2.1 Thel ocal econv function

Thel ocal econv function gives a programmer access to information about how to format monetary
and non-monetary numeric quantities. This sort of interface was congdered preferable to defining
converson functions directly: even with a specified locale, the set of distinct formats that can be
congtructed from these elementsislarge; and the ones desired are very application-dependent.

7.12 Mathematics <nmat h. h>

Through C95, the math library was defined only for the floating type doubl e. All the names formed
by appendingf or | to anamein <mat h. h> were reserved to alow for the definition of f | oat and
| ong doubl e libraries; and C9X providesfor dl three versions of math functions.

The functions ecvt , f cvt, and gcvt have been dropped since their capability is available through
102

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049
sprintf.

Before C89, HUGE_VAL was usudly defined as a manifest constant that approximates the largest
representable doubl e value. As an agpproximation to infinity it is problematic. As a function return
vaue indicating overflow, it can cause trouble if first assigned to a f | oat before testing, since a
f | oat may not necessarily hold al values representableinadoubl e.

After conddering several dternatives, the C89 Committee decided to generdize HUGE VAL to a
positive expression of type doubl e so that it could be expressed as an externd identifier naming a
location initidized precisaly with the proper bit pattern. It can even be a specid encoding for machine
infinity on implementations that support such codes. It need not be representable as a f | oat
however. COX adds HUGE_VALF and HUGE_VALL.

Similarly, domain errors before C89 were typically indicated by a zero return, which is not necessarily
distinguishable from a vaid result. The C89 Committee agreed to make the return value for domain
errors implementation-defined, so that special machine codes can be used to advantage. This makes
possible an implementation of the math library in accordance with the IEC 559 proposal on floating
point representation and arithmetic.

7.12.1 Treatment of error conditions ‘

Whether underflow should be consdered a range error and cause er r no to be set is pecified as
implementation-defined since detection of underflow is inefficient on some systems. In C9X, er r no
Isno longer required to be set to EDOMor ERANGE because that is an impediment to optimization.

The Standard has been crafted to nather require nor preclude any popular floating-point
implementation. This principle affects the definition of domain error: an implementation may define
extra domain errors to deal with floating-point arguments such as infinity or “not-a-number” (NaN).

The C89 Committee considered the adoption ofréteher r capability from UNIX System V. In

this feature of that system’s math library, any error such as overflow or underflow results in a call from
the library function to a user-defined exception handler namsgcherr. The C89 Committee
rejected this approach for several reasons:

. This style is incompatible with popular floating point implementations such as IEC 559,
with its special return codes, or that of VAX/VMS.

. It conflicts with the error-handling style of Fortran, thus making it more difficult to
translate useful bodies of mathematical code from that language to C.

. It requires the math library to be reentrant since math routines could be called from
mat her r , which may complicate some implementations.

. It introduces a new style of library interface: a user-defined library function with a

library-defined name. Note, by way of comparison, the signal and exit handling
mechanisms, which provide a way of “registering” user-defined functions.

103

10

15

20

25

30

35

45

WG14/N850 J11/98-049 CI9X RATIONALE
7.12.2 TheFP_CONTRACT pragma

A new feature of COX.

7.12.3 Classification macros
New features of C9X.

7.12.3.3 Thei si nf macro

Note that isinf(x) camnot smply be defined as !isfinite(x), because
L'isfinite(NAN) istrue.

7.12.4 Trigonometric functions

Implementation note: trigonometric argument reduction should be performed by a method that causes
no catastrophic discontinuities in the error of the computed result. In particular, methods based solely
on naive gpplication of a calculation like

X - (2*pi) * (int)(x/(2*pi))
areill-advised.
7.12.44 Theat an2 functions \

The at an2 function is modeled after Fortran's. It is described in terms of arctgix for simplicity. \

The C89 Committee did not wish to complicate the descriptions by specifying in detail how to
determine the appropriate quadrant, since that should be obvious from normal mathematical
convention. at an2(y, x) is well-defined and finite, even whenis 0; the one ambiguity occurs

when both arguments are 0, because at that point any value in the range of the function could logically
be selected. Since valid reasons can be advanced for all the different choices that have been made in
this situation by various implementations, the Standard preserves the implementor’s freedom to return
an arbitrary well-defined value such as 0, to report a domain error, or to return a NaN.

7.12.4.7 Thet an functions |

The tangent function has singularities at odd multiplagZyfapproaching ee from one side ands ‘

from the other. Implementations commonly perform argument reduction using the best machine
representation aft and for arguments tban sufficiently close to a singularity, such reduction may
yield a value on the wrong side of the singularity. In view of such problems, the C89 Committee
recognized that an is an exception to theange error rule (see 87.12.1) that an overflowing resplt
producesHUGE_VAL properly signed.

7.12.6 Exponential and logarithmic functions ‘

7.12.6.4 Thef r exp functions \
104

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049

The functions f r exp, | dexp, and nodf are primitives used by the remainder of the library. There \
was some sentiment for dropping them for the same reasons that ecvt, fcvt, and gcvt were
dropped, but their adherents rescued them for generd use. Their use is problematic: on non-binary
architectures, | dexp may lose precision and f r exp may beinefficient.

7.12.6.7 Thel og functions \

Whether | og(0. 0) isadomain error or arange error is arguable. The choice in the Standard, range

error, isfor compatibility with IEC 559. Some such implementations would represent the result as -oo,
in which case no error israised.

7.12.6.8 Thel 0g10 functions \

See §7.12.6.7. |
7.12.6.11 Thel ogb functions |

The treatment of subnormafollows the recommendation in IEEE 854, which differs from IEEE
754 on this point. Even 754 implementations should follow this definition rather than the one
recommended (not required) by 754.

7.12.6.13 Thescal bn and scal bl n functions |

In earlier versions of the specification, this function was calledl b. The name was changed
to avoid conflicting with the Single Unigcal b function whose second argumentdisubl e
instead ofi nt. Single Unix'sscal b was not included in C9X as its specification of certain
special cases is inconsistent with the C9X approach and becauseahbn andscal bl n
functions were considered sufficient for most applications.

scal bl n, whose second parameter has tiypag i nt is provided because the factor required

to scale from the smallest positive floating-point value to the largest finite one, on many
Implementations, is too large to represent in the minimum-widthformat.

7.12.7 Power and absolute value functions ‘
7.12.7.1 Thecbrt functions |

For some applications, a true cube root function, which returns negative results for negative
arguments, is more appropriate thpgow(x, 1. 0/ 3. 0) , which returns NaN fox less than O.

7.12.7.2 Thef abs functions

Adding an absolute value operator was rejected by the C89 Committee. An implementation can
provide a built-in function for efficiency.

7.12.75 Thesqrt functions
105

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

IEC 559, unlike the Standard, requires sqrt (-0.) to return a negatively sgned magnitude-zero
result. This is an issue on implementations that support a negative floating zero. The Standard
specifies that taking the square root of a negative number (in the mathematical sense of less than 0) isa
domain error which requires the function to return an implementation-defined value. This rule permits
implementations to support ether the IEC 559 or vendor-specific floating point representations.

7.12.8 Error and gamma functions ‘
7.12.83 Thelgamma functions |

Since the mathematical gamma function increases in value so quickly (it is around 10°® for an
argument of only 170), the logarithm of gamma extends the useful domain. Also, for computing
combinations and permutations, it is the quotient of the (potentidly large) gammeas that is needed;
taking differences of the| gammasinstead alows for calculations without overflow.

In Single Unix, acall to | gamma sets an externa variable, si gngam to the sign of gamma(x) ,
whichis-1ifx < 0 && remai nder(floor(x), 2) != 0.

Note that this specification does not remove the externa identifier si gngam from the user’s
name space. An implementation that suppbganma’s setting ofsi gngamas an extension
must still protect the external identifier gngamif defined by the user.

7.12.8.4 Thet ganmma functions \

In other standards (SVID, X/Open, Single Unix, OSF, and POSIX) the meanmpgnof has
changed over the years. Originally, it computed the logarithm of the absolute value of the
mathematical gamma function, with an externdl , si gngam being set to the sign of the result.

Thenganmma was replaced withgamma, andganmma was slated to be withdrawn. About that time,
NCEG changeganma to compute the mathematical gamma function, and that is what was adopted
into C9X CD1,; but it appears that the old meaningaima has not yet been withdrawn, so there
would have been a conflict between C9X and current industry practice. C9X therefore changed the
name in CD2 td ganma, meaning “true gamma,” to avoid this conflict. Note, however, that the
complex version of this function, which has been reservedasma, notct ganmma. |

7.12.9 Nearest integer functions ‘
7.12.9.1 Theceil functions \
Implementation note: theei | function returns the smallest integral value in double format not|less
thanx, even though that integer might not be representable in a C integratpk(x) equalsx

for all x sufficiently large in magnitude. An implementation that calcutz¢ed (x) as

(doubl e) (i nt)x

106

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049
isill-advised.

71295 Thelrint and! | ri nt functions

Previous drafts specified

long rinttol (I ong doubl e);
long long rinttoll (I ong double);
| ong roundtol (I ong doubl e);
| ong I ong roundtoll (I ong doubl e);

instead of

l ong I rint(double);

long long I'lrint(double);
| ong | round(doubl e);

| ong I ong Il round(double);

together withthef | oat and| ong doubl e versions.

There were two changes here. First, the parameter type changed to doubl e to match other
functions which, like these, return an integer-type result; this makes the interface style more
consistent. Second, the names changed to make way for f- and | -suffixed versions of the
functions, which become needed because of the first change (otherwise ri nttol | could be
either the doubl e version of the | ong | ong function or the | ong doubl e version of the
| ong function).

For functions with a floating argument and an integer return type, the previous specification took
the approach of declaring the parameter to be | ong doubl e. The rationale was to avoid
unnecessary multiple versions of the function in the interface. The implementation need not
actually promote af | oat or doubl e argument to | ong doubl e, so any potential inefficiency
could be avoided.

With the previous interface, however, a programmer would be left to worry about the risk of
incurring a costly promotion to | ong doubl e. Also, the current specification seems more
consistent with the rest of the interface where all the other functions come in three sizes. (A
programmer might initially be surprised not to find f | oat and doubl e versions.)

7.12.10 Remainder functions
7.12.10.1 Thef nod functions

The f nod function is defined even if the quotient x/y is not representable. This function is properly
implemented by scaled subtraction rather than by divison. The Standard defines the result in terms of
the formula x-n*y, where nis someinteger. Thisinteger need not be representable, and need not even
be explicitly computed. Thus implementations are advised not to compute the result using code like

x -y * (int)(x/y)
107

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

Instead, the result can be computed in principle by subtracting | dexp(y, n) from x, for appropriately
chosen decreasing n, until the remainder is between 0 and x, dthough efficiency considerations may
dictate a different actual implementation.

Theresult of f rod(y, 0. 0) isether adomain error or 0; the result aways lies between 0 and y, 0
specifying the non-erroneous result as 0 smply recognizes the limit case.

The C89 Committee consdered a proposal to use the remainder operator %for this function; but it was
rejected because the operators in general correspond to hardware facilities, and f nod is not supported
in hardware on most machines.

7.12.10.3 Ther enguo functions

The r enquo functions are intended for implementing argument reductions which can exploit a
few low-order bits of the quotient. Note that x may be so large in magnitude relative to y that an
exact representation of the quotient is not practical.

7.12.11.3 Thenext aft er functions

It is sometimes desirable to find the next representation after a value in the direction of a
previously computed value, maybe smaller, maybe larger. The next af t er functions have a
second floating argument so that the program will not have to include floating-point tests for
determining the direction in such situations. (On some machines, these tests may fail due to
overflow, underflow or roundoff.)

For the case x = y, IEC 559 recommends that x be returned. This specification differs so that
nextafter(-0.0, +0. 0) returns+0.0 and next aft er (+0. 0, - 0. 0) returns-0.0.

The next af t er functions can be employed to obtain next values in a particular format. For
example, next af t er f (x, y) will return the next float value after (f | oat) x in the direction
of (f1 oat)y regardless of the evaluation method.

An alternate proposal was to rename the doubl e version of next af t er to next afterd,
retaining next af t erf and next af t er | (these three did not have a generic macro), and using
the name next af t er for what is here named next af t er x. The current specification has a
number of advantages:

1. nextafter and nextafterx conform to the usual rules for suffixes and type-generic
macros. Before, next af t er d and next af t er were exceptional on both counts.

2. Without the change, next afterf is not the f| oat verson of nextafter, which is
potentially surprising.

3. It better matches prior art, which typically has a next af t er function with two doubl e
parameters.

108

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049
7.12.11.4 Thenext af t er x functions

The second parameter of the next af t er x function has type | ong doubl e so that the
uncoerced value of the second argument can be used to determine the direction.

7.12.12 Maximum, minimum, and positive difference functions

The names for f max, f m n and f di mhave f prefixes to allow for extension integer versions
following the example of f abs and abs.

7.12.13 Floating multiply-add
7.12.13.1 Thef ma functions

In many cases, clever use of floating (fused) multiply-add leads to much improved code; but its
unexpected use by the compiler can undermine carefully written code. The FP_CONTRACT
macro can be used to disallow use of floating multiply-add; and the f ma function guarantees its
use where desired. Many current machines provide hardware floating multiply-add instructions;
software implementation can be used for others.

7.13 Nonlocal jumps<setj np. h>

J mp_buf must be an array type for compatibility with existing practice: programs typically omit the
address operator beforeaj np_buf argument, even though a pointer to the argument is desired, not
the value of the argument itself. Thus, ascaar or structure type is unsuitable. Note that a one-element
array of the appropriate type is a valid definition.

7.13.1 Save calling environment
7.13.1.1 Thesetj np macro

set j np is condtrained to be a macro only: in some implementations the information necessary to
restore context is only available while executing the function making the call to set j np.

One proposed requirement on set j np is that it be usable like any other function, that is, thet it be
calable in any expression context, and that the expression evauate correctly whether the return from
setj np isdirect or viaacdl to | ongj np. Unfortunately, any implementation of setj np as a
conventiona called function cannot know enough about the calling environment to save any temporary
registers or dynamic stack locations used part way through an expresson evauation. (A setj np
macro seems to help only if it expands to inline assembly code or a cal to a specid built-in function.)

The temporaries may be correct on the initial call to set j np, but are not likely to be on any return
initiated by a corresponding cdl to | ongj np. These congderations dictated the congraint that
setj np be cdled only from within fairly smple expressions, ones not likely to need temporary
storage.

An dternative proposal consdered by the C89 Committee was to require that implementations

109

WG14/N850 J11/98-049 C9I9X RATIONALE

recognize that calling set j np is a specid case®, and hence that they take whatever precautions are
necessary to restore the set j np environment properly upon al ongj np cal. This proposa was
rgjected on grounds of consstency: implementations are currently allowed to implement library
functions specidly, but no other Stuations require specia treatment.

7.13.2 Restore calling environment
7.13.2.1 Thel ongj np function

The C89 Committee also considered requiring that acal to | ongj np restore the calling environment \
fully, that is, that upon execution of | ongj np, al loca variables in the environment of set j np have
the values they did at the time of thel ongj np cal. Register variables create problems with this idea
Unfortunately, the best that many implementations attempt with register variables is to save them in
j mp_buf at thetime of theinitid set j np call, then restore them to that state on each return initiated
by al ongj np cal. Since compilersare certainly at liberty to change register variables to autometic, it
Is not obvious that aregister declaration will indeed be rolled back. And since compilers are at liberty
to change automatic variables to register if their addresses are never taken, it is not obvious that an
automatic declaration will not be rolled back, hence the vague wording. In fact, the only reliable way
to ensure that alocdl variable retain the value it had at the time of the call tol ongj np is to define it
withthevol at i | e attribute.

Some implementations leave a process in a specia state while a sgnal is being handled. Explicit
reassurance must be given to the environment when the signal handler returns. To keep this job
manageable, the C89 Committee agreed to restrict | ongj np to only one level of sgnal handling.

The | ongj np function should not be called in an exit handler, that is, a function registered with the
at exi t function (see §7.20.4.2), since it might jump to code that is no longer in scope.

7.14 Signal Handling <si gnal . h>

This facility was retained from /usr/group since the C89 Committee felt it important to provide some
standard mechanism for dealing with exceptional program conditions. Thus a subset of the signals
defined in UNIX were retained in the Standard, along with the basic mechanisms of declaring signal
handlers and, with adaptations, raising signals (see 87.14.2.1). For a discussion of the problems
created by including signals, see §5.2.3.

The signal machinery contains many misnom&isG-PE, SI G LL, andSlI GSEGV have their roots

in PDP-11 hardware terminology, but the names are too entrenched to change. The occurrence of
S| GFPE, for instance, does not necessarily indicate a floating-point error. A conforming
implementation is not required to fieddy hardware interrupts.

The C89 Committee has reserved the space of names beginniy @it permit implementations to
add local names tesi gnal . h>. This implies that such names should not be otherwise used in a C

6,
This proposal was considered prior to the adoption of the stricture that set j mp be a macro. It can be considered as equivalent to proposing that
theset j mp macro expand to a call to a special built-in compiler function.

110

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
sourcefilewhichincludes<si gnal . h>.

7.14.1 Specify signal handling
7.141.1 Thesi gnal function

When asigna occurs, the norma flow of control of a program isinterrupted. If asignd occursthat is

being trapped by a sgnd handler, that handler isinvoked. When it is finished, execution continues at

the point at which the signa occurred. This arrangement could cause problems if the signal handler

invokes a library function that was being executed at the time of the signal. Since library functions are

not guaranteed to be reentrant, they should not be called from a signal handler that returns (see 85.2.3).
A specific exception to this rule was granted for callsitgnal from within the signal handler;
otherwise, the handler could not reliably reset the signal.

The specification that some signals may be effectively s&l & | GN instead ofSI G DFL at
program startup allows programs under UNIX systems to inherit this effective setting from parent
processes.

For performance reasons, UNIX does not rés@ LL to default handling when the handler is called
(usually to emulate missing instructions). This treatment is sanctioned by specifying that whether reset
occurs forSI A LL is implementation-defined.

7.14.2 Send signal
7.14.2.1 Ther ai se function

Ther ai se function replaces /usr/groupks | | function. The latter has an extra argument which
refers to the “process ID” affected by the signal. Since the execution model of the Standard does not
deal with multi-processing, the C89 Committee deemed it preferable to introduce a function which
requires no process argument. Kné | function has been standardized in the POSIX specification.

7.15 Variablearguments<st darg. h>
For a discussion of argument passing issues, see 86.9.1.

These macros, modeled, after the UN#Xar ar gs. h> macros, have been added to enable the
portable implementation in C of library functions suctpasnt f andscanf (see §7.19.6). Such
implementation could otherwise be difficult, considering newer machines that may pass arguments in
machine registers rather than using the more traditional stack-oriented methods.

The definitions of these macros in the Standard differ from their forebears: they have been extended to
support argument lists that have a fixed set of arguments preceding the variable list.

va_start andva_ar g must exist as macros, sinca_st art uses an argument that is passed by

name andra_ar g uses an argument which is the name of a data type. #smgef on these
names leads tondefined behavior.

111

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

Theva_l i st typeisnot necessarily assignable, however afunction can pass a pointer to itsinitialized
argument list object as noted below. The wording has been changed in C9X to state clearly that |
va_l i st isanobject type. |

7.15.1 Variable argument list access macros
7.15.1.1 Theva_ar g macro |

Changing an arbitrary type name into a type name which is a pointer to that type could require
sophisticated rewriting. To alow the implementation of va_ar g as a macro, va_ar g need only
correctly handle those type names that can be transformed into the appropriate pointer type by
appending a* , which handles most smple cases. Typedefs can be defined to reduce more complicated
types to atractable form. When using these macros, it is important to remember that the type of an
argument in a variable argument list will never be an integer type smdler thani nt , nor will it ever be
fl oat (see §6.7.5.3). |

va_ar g can only be used to access the value of an argument, not to obtain its address.
7.15.1.2 Theva_copy macro \

A new feature of COX. When processing variable argument lists in a function, it is occasionally useful

to backtrack and examine one or more arguments a second time. In C89, the only way to do this was
to start again and exactly recreate the sequence of calls ¥@ tla g macro leading up to that
argument; but when these calls are controlled in a complicated manner (speh as f format) this

can be difficult.

A much simpler approach is to copy the_| i st object used to represent processing of the
arguments. However, there is no safe way to do this in C89 because the object may include pointers to
memory allocated by thga_start macro and destroyed by thve_end macro. The new
va_copy macro provides this safe mechanism.

Calling theva_copy macro exactly duplicates the state ofaa | i st object; therefore an identical

call to theva_ar g macro on the two objects will produce the same results, and both objects must be
cleaned up with separate calls tolae end macro.

7.15.1.3 Theva_end macro \
va_end must also be called from within the body of the function having the variable argument I.st. In
many implementations, this is a do-nothing operation; but those implementations that need it probably
need it badly.

7.15.1.4 Theva_start macro

va_start must be called within the body of the function whose argument list is to be traversed.
That function can then pass a pointer tovies | i st object to other functions to do the actual

traversal, or it can traverse the list itself.

112

10

15

20

25

30

35

CI9X RATIONALE WG14/N850 J11/98-049

The par mN argument to va_start was intended to be an ad to impelementors writing the

definition of a conforming va_st art macro entirely in C, even using pre-C89 compilers (for

example, by taking the address of the parameter). The restrictions on the declaration of the par miN

parameter follow from the intent to allow this kind of implementation, as applying the & operator to a
parameter name might not produce the intended result if the parameter’s declaration did not meet these
restrictions.

In practice, many current implementations have “hidden machinery” that is usedvay giear t

macro to diagnose incorrect usage (for example, to verifjptratN actually is the name of the last

fixed parameter) or to handle more complex argument passing mechanisms. Such machinery would be
capable of handling any kind of parameter without restriction, but the C89 Committee saw no
compelling reason to lit these restrictions, as that would require all implementations to have such
machinery.

Multiple va_| i st variables can be in use simultaneously in the same function; each requires its own
callstova_start andva_end.

7.16 Boolean type and values <st dbool . h>

A new feature of COX.

7.17 Common definitions<st ddef . h>

<st ddef . h> is a header invented to provide definitions of several types and macros used widely in
conjunction with the library:pt rdi ff _t, si ze_t, wchar _t, andNULL. Including any header

that references one of these macros will also define it, an exception to the usual library ealehthat
macro or function belongs to exactly one header.

NULL can be defined as anyll pointer constant. Thus existing code can retain definitiond\NoE L

as0 or OL, but an implementation may also choose to define (itvas d*) 0. This latter form of
definition is convenient on architectures wherezeof (voi d*) does not equal the size of any
integer type. It has never been wise to NSkL in place of an arbitrary pointer as a function
argument, however, since pointers to different types need not be the same size. The library avoids this
problem by providing special macros for the argumengs gnal , the one library function that might

see a null function pointer.

Theof f set of macro was added to provide a portable means of determining the offset, in bytes, of a
member within its structure. This capability is useful in programs, such as are typical in database
implementations, which declare a large number of different data structures: it is desirable to provide
“generic” routines that work from descriptions of the structures, rather than from the structure
declarations themselvés.

7Consi der, for instance, a set of nodes (structures) which are to be dynamically allocated and garbage-collected, and which can contain pointers to
other such nodes. A possible implementation isto have thefirst field in each node point to a descriptor for that node. The descriptor includes a table of
the offsets of fields which are pointers to other nodes. A garbage-collector "mark" routine needs no further information about the content of the node
(excent, of course, where to put the mark). New node types can be added to the program without requiring the mark routine to be rewritten or even
recomplied.

113

10

15

20

25

30

35

45

WG14/N850 J11/98-049 CI9X RATIONALE
In many implementations, of f set of could be defined as one of

(size_t)& ((s_nane*)0)->m namne)

or
(size_t)(char*) & ((s_nane*)0)->m nane)

or, where X is some predeclared address (or 0) and A(Z) isdefined as((char *) &) ,
(size_t)(A((s_nanme*)X->mnane) - A(X))

It was not feasible, however, to mandate any single one of these forms as a construct guaranteed to be

portable. Some implementations may choose to expand this macro as a call to a built-in function that
interrogates the trandator’'s symbol table.

7.18 Integer types<stdi nt. h> ‘

A new feature of COX. <st di nt. h> is a subset ofi ntt ypes. h> (see §7.8) more suitable fdr

use in standalone environments, which might not support the formatted 1/0O functions. In hosted
environments, if the formatted conversion support is not wanted, using this header instead of
<i ntt ypes. h> avoids defining such a large number of macros.

It was observed that macros for minimum and maximum limits for other intggeedef s in
standard headers would be similarly useful, so these were added.

7181 Integer types |
7.18.1.5 Greatest-width integer types |

Note that these can be implementation-defined types that are longeottgahong.

7.19 Input/Output <st di 0. h>

Many implementations of the C runtime environment, most notably the UNIX operating system,
provide, aside from the standard I/O librafytspen, f cl ose, fread, f wi t e, andf seek, a set

of unbuffered I/O servicegipen, cl ose, read, wite, andl seek. The C89 Committee has
decided not to standardize the latter set of functions.

Additional semantics for these functions may be found in the POSIX standard. The standard 1/O
library functions use &le pointer for referring to the desired I/O stream. The unbuffered I/O services
use dile descriptor (a small integer) to refer to the desired I/O stream.

Due to weak implementations of the standard 1/O library, many implementors have assumed that the
standard I/O library was used for small records and that the unbuffered 1/O library was used for large
records. However, a good implementation of the standard I/O library can match the performance of
the unbuffered services on large records. The user also has the capability of tuning the performance of

114

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
the standard I/0O library (with set vbuf) to suit the application.

Some subtle differences between the two sets of services can make the implementation of the
unbuffered 1/0 services difficult:

. The model of a file used in the unbuffered 1/O services is an array of characters. Many
C environments do not support this file model.

. Difficulties arise when handling the newline character. Many hosts use conventions
other than an in-stream newline character to mark the end of a line. The unbuffered
I/O services assume that no translation occurs between the program’s data and the file
data when performing I/O, so either the newline character translation would be lost
(which breaks programs) or the implementor must be aware of the newline translation
(which results in non-portable programs).

. On UNIX systems, file descriptors 0, 1, and 2 correspond to the standard input,
output, and error streams. This convention may be problematic for other systems in
that file descriptors 0, 1, and 2 may not be available or may be reserved for another
purpose; and the operating system may use a different set of services for terminal and
file 1/O.

In summary, the C89 Committee chose not to standardize the unbuffered 1/O services because
. They duplicate the facilities provided by the standard I/O services.

. The performance of the standard I/O services can be the same or better than the
unbuffered I/O services.

. The unbuffered 1/0 fle model may not be appropriate for many C language
environments.

7.19.1 Introduction

The macros | OFBF, _| OLBF, and_| ONBF are enumerations of the third argumerns éd vbuf , a
function adopted from UNIX System V.

SEEK CUR, SEEK END, andSEEK_SET have been moved tcst di 0. h> from a header specified
in /usr/group and not retained in the Standard.

FOPEN_MAX and TMP_NMAX were added as environmental limits of some interest to program$ that
manipulate multiple temporary files.

FI LENAVE_MAX is provided so that buffers to hold fle names can be conveniently declared. If the
target system supports arbitrarily long filenames, the implementor should provide some reasonable
value (80, 255, 509, etc.) rather than something unusablgSHHIET _MAX.

Thef pos_t wording has been changed in C9X to exclude array type objedtp.odf t were an \
array, then a function would not be able to hahgles t parameters in the same manner as other

115

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE
f pos_t variables.

7.19.2 Streams

C inherited its notion of text streams from the UNIX environment in which it was born. Having each

line delimited by a single newine character, regardless of the characteristics of the actua termind,
supported a simple model of text as a sort of arbitrary length scroll or “galley.” Having a channel that
Is “transparent” (no file structure or reserved data encodings) eliminated the need for a distinction
between text and binary streams.

Many other environments have different properties, however. If a program written in C is to produce a
text fle digestible by other programs, by text editors in particular, it must conform to the text
formatting conventions of that environment.

The 1/O facilties defined by the Standard are both more complex and more restrictive than the
ancestral I/O facilities of UNIX. This is justified on pragmatic grounds: most of the differences,
restrictions and omissions exist to permit C 1/O implementations in environments which differ from the
UNIX 1/0O model.

Troublesome aspects of the stream concept include:

The definition of lines. In the UNIX model, division of a file into lines is effected by newline
characters. Different techniques are used by other systems: lines may be separated by CR-LF
(carriage return, line feed) or by unrecorded areas on the recording medium; or each line may
be prefixed by its length. The Standard addresses this diversity by specifying that newline be
used as a line separator at the program level, but then permitting an implementation to
transform the data read or written to conform to the conventions of the environment.

Some environments represent text lines as blank-filled fixed-length records. Thus the Standard
specifies that it ismplementation-defined whether trailing blanks are removed from a line on
input. (This specification also addresses the problems of environments which represent text as
variable-length records, but do not allow a record length of 0: an empty line may be written as
a one-character record containing a blank, and the blank is stripped on input.)

Transparency. Some programs require access to external data without modification. For instance,
transformation of CR-LF to a newline character is usually not desirable when object code is
processed. The Standard defines two stream tigegndbinary, to allow a program to
define, when a file is opened, whether the preservation of its exact contents or of its line
structure is more important in an environment which cannot accurately reflect both.

Random access. The UNIX I/0O model features random access to data in a file, indexed by character
number. On systems where a newline character processed by the program represents an
unknown number of physically recorded characters, this simple mechanism cannot be
consistently supported for text streams. The Standard abstracts the significant properties of
random access for text streams: thityato determine the current file position and then later
reposition the file to the same locatioint el | returns dile postion indicator, which has no
necessary interpretation except that apek operation with that indicator value will position
the file to the same place. Thus an implementation may encode whatever file positioning

116

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
information is most appropriate for atext file, subject only to the congraint that the encoding
be representable asal ong. Useof f get pos and f set pos removes even this congtraint.

Buffering. UNIX allows the program to control the extent and type of buffering for various purposes.
For example, a program can provide its own large 1/0O buffer to improve efficiency, or can
request unbuffered terminal 1/0 to process each input character asit is entered. Other systems
do not necessarily support this generdity. Some systems provide only line-at-a-time access to
termina input; some systems support program-allocated buffers only by copying data to and
from sysem-allocated buffers for processng. Buffering is addressed in the Standard by
gpecifying UNIX-like set buf and set vbuf functions, but permitting greet latitude in their
implementation. A conforming library need neither attempt the impossible nor respond to a
program attempt to improve efficiency by introducing additional overhead.

Thus, the Standard imposes a clear distinction between text streams, which must be mapped to suit
local custom, and binary streams, for which no mapping takes place. Local custom on UNIX and
related systems is of course to treat the two sorts of streams identically, and nothing in the Standard
requires any change to this practice.

Even the specification of binary streams requires some changes to accommodate a wide range of
systems. Because many systems do not keep track of the length of a file to the nearest byte, an
arbitrary number of characters may appear on the end of a binary stream directed to a file. The
Standard cannot forbid this implementation, but does require that this padding consst only of null
characters. The alternative would be to restrict C to producing binary files digestible only by other C
programs, this alternative runs counter to the spirit of C.

The set of characters required to be preserved in text stream 1/O are those needed for writing C
programs, the intent is that the Standard should permit a C trandator to be written in a maximally
portable fashion. Control characters such as backspace are not required for this purpose, so ther
handling in text streams is not mandated.

It was agreed that some minimum maximum line length must be mandated, and 254 was chosen for
C89. CIX increasesthislimit to 4095.

7.19.3 Files

The asif principle is once again invoked to define the nature of input and output in terms of just two
functions, f get ¢ and f put c. Theactua primitivesin a given syssem may be quite different.

The digtinction between buffered and unbuffered streams suggests the desired interactive behavior; but
an implementation may gtill be conforming even if delays in a network or terminal controller prevent
output from appearing intime. It istheintent that matters here.

No congraints are imposed upon file names except that they must be representable as strings with no
embedded null characters.

7.19.4 Operationson files

7.19.4.1 Ther enove function
117

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

/usr/group provides the unl i nk system cdl to remove files. The UNIX-gpecific definition of this
function prompted the C89 Committee to replace it with a portable function.

7.19.4.2 Ther ename function

This function was added to provide a system-independent atomic operation to change the name of an
exigting file; /usr/group only provided the link system call, which gives the file a new name without
removing the old one, and which is extremely system-dependent.

The C89 Committee consdered a proposd that r enane should quietly copy afile if smple renaming
couldn't be performed in some context, but rejected this as potentially too expensive at execution time.

rename is meant to give access to an underlyingitfaof the execution environment’s operating
system. When the new name is the name of an existing file, some systems allow the renaming and

delete the old file or make it inaccessible by that name, while others prohibit the operation. The effect
of r enane is thusimplementation-defined.

7.19.43 Thet npfil e function

Thet npf i | e function is intended to allow users to create binary “scratch” files. a3 tieprinciple
implies that the information in such a file need never actually be stored on a file-structured device.

The temporary file is created in binary update mode becauskpitesumably be first written and then
read as transparently as possible. Trailing null-character padding may cause problems for some existing
programs.

7.19.4.4 Thet npnamfunction

This function allows for more control thampfi | e: a file can be opened in binary mode or text
mode, and files are not erased at completion.

There is always some time between the cdlitpnamand the use ihopen of the returned name.
Hence it is conceivable that in some implementations the name, which named no file at the call to

t npnam has been used as a filename by the time of the chbpen. Implementations should
devise name generation strategies which minimize this possibility, but users should allow for it.

7.19.5 Fileaccessfunctions

71951 Thef cl ose function

On some operating systems, it is difficult or impossible to create a file unless something is written to the
fle. A maximally portable program which relies on a file being created must write something to the

associated stream before closing it.

7.195.2 Theffl ush function

118

10

15

CI9X RATIONALE WG14/N850 J11/98-049
The f f | ush function ensures that output has been forced out of interna 1/0 buffers for a specified
sream. Occasondly, however, it is necessary to ensure that all output is forced out, and the
programmer may not conveniently be able to specify al the currently open streams, perhaps because
some streams are manipulated within library packages® To provide an implementation-independent
method of flushing al output buffers, the Standard specifies that this is the result of calling ff | ush
withaNULL argument.

7.19.5.3 Thef open function

The b type modifier was added to deal with the text/binary dichotomy (see §7.19.2). Because of the
limited ability to seek within text files (see §7.19.9.1), an implementation is at liberty to treat the old
update+ modes as ib were also specified.

Table 7.1 tabulates the capabilities and actions associated with the various specified mode string
arguments td open.

8For instance, on a system (such as UNIX) which supports process forks, it is usually necessary to flush all output buffersjust prior to the fork.

119

10

15

20

25

30

35

WG14/N850 J11/98-049 C9I9X RATIONALE

Table 7.1: File and stream properties of f open modes

r w a r«< | w | a+

file must exist before open O O

old file contents discarded on open O O ‘
stream can be read O

stream can be written O o |d | o0 ‘

stream can be written only at end

Other specifications for files, such as record length and block size, are not specified in the Standard due

to their widely varying characterigtics in different operating environments. Changes to file access

modes and buffer sizes may be specified using the set vbuf function (see 87.19.5.6). An
implementation may choose to allow additional file specifications as part of the mode string argument.
For instance,

filel = fopen(filelname, "wb,reclen=80");

might be a reasonable way, on a system which provides record-oriented binary files, for an
implementation to allow a programmer to specify record length.

A change of input/output direction on an update file is only allowed followinged pos, f seek,
rew nd, or ffl ush operation, since these are precisely the functions which assure that the 1/0
buffer has been flushed.

87.19.2 imposes the requirement that binary files not be truncated when they are updated. This rule
does not preclude an implementation from supporting additional file types that do truncate when
written to, even when they are opened with the same sbdpeEn call. Magnetic tape files are an
example of a file type that must be handled this way. (On most tape hardware it is impossible to write
to a tape without destroying immediately following data.) Hence tape files are not “binary files” within
the meaning of the Standard. A conforming hosted implementation must provide and document at
least one file type (on disk, most likely) that behaves exactly as specified in the Standard.

7.19.55 Theset buf function
set buf is subsumed byet vbuf ; but it has been retained for compatibility with old code.
7.19.5.6 Theset vbuf function

set vbuf was adopted from UNIX System V, both to control the nature of stream buffering and to
specify the size of 1/0 buffers. An implementation is not required to make actual use of a buffer
provided for a stream, so a program must never expect the buffer's contents to reflect I/O operations.
Furthermore, the Standard does not require that the requested buffering be implemented; it merely

120

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
mandates a standard mechanism for requesting whatever buffering services might be provided.

Although three types of buffering are defined, an implementation may choose to make one or more of
them equivalent. For example, a library may choose to implement line buffering for binary files as
equivaent to unbuffered I/O, or it may choose to aways implement full buffering as equivaent to line
buffering.

The generd principle is to provide portable code with a means of regquesting the most appropriate
popular buffering style, but not to require an implementation to support these styles.

A new feature of COX. C90 was not clear about what, if anything, the si ze argument means when
buf isanull pointer. Exigting practice is mixed: some implementations ignore it completely, other
implementations use it as guidance for determining the size of the buffer adlocated by set vbuf . C9X
gives warning that si ze might not be ignored in this case, so portable programs must be sure to
supply areasonable value.

7.19.6 Formatted input/output functions
7.19.6.1 Thef printf function
The%h and % | format specifiers were added in C9X (see 8§87.19.6.2).

Use of thd. modifier with floating conversions was added in C9X to deal with formatted output of the
| ong doubl e type.

Note that thee< and% formats expect a correspondingt argument, an& X and% x must be
supplied with & ong argument.

The% conversion specifier was added in C89 for programmer convenience to provide symmetry with

f scanf’s % conversion specifier, even though it has exactly the same meaning/éscthaversion

specifier when used withpr i nt f .

The%p conversion specifier was added to C89 for pointer conversion since the size of a pointer is not
necessarily the same as the size of any integer type. Because an implementation may support more
than one size of pointer, the corresponding argument is expected to be a puioiet.to

The% format was added to C89 to permit ascertaining the number of characters converted up to that
point in the current invocation of the formatter.

Some pre-C89 implementations switch format®Mpiat an exponent of —3 instead of the Standard”s —
4: existing code which requires that the format switch at —3 will have to be changed.

Some existing implementations provide and%0 as synonyms or replacements %rd and% o.
The C89 Committee considered the latter notation preferable.

The C89 Committee reserved lower case conversion specifiers for future standardization.

121

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

The use of leading zero in field widths to specify zero padding is superseded by a precison field. The
older mechanism was retained.

Some implementations have provided the % format as a means of indirectly passing a variable-length
argument list. The functions vf pri nt f, etc., are consdered to be a more controlled method of
effecting thisindirection, so % was not adopted in the Standard (see §7.19.6.8). \

The printing formats for numbers is not entirely specified. The requirements of the Standard are loose
enough to allow implementations to handle such cases as signed zero, NaN, and infinity in an
appropriate fashion. These are specified in COX.

Binary implementations can choose the hexadecimal digit to the left of the decimal-point character
so that subsequent digits align to nibble boundaries. For example, the next value greater than one
in the common IEC 559 80-bit extended format could be

0x8. 000000000000001p- 3

The next value less than one in IEC 559 double could be

Ox1.fffffffffffffp-1

Note that if the precision is missing, trailing zeros may be omitted. For example, the value
positive zero might be

0x0. p+0

The more suggestive conversion specifiers for hexadecimal formatting, nanaelgth, were
unavailable; and sinck was takenH was ruled out in favor of a lower/upper case option.
Possibilities other thama included: b j k mgr t v wy z. The optionalh to indicate
hexadecimal floating, as e, was deemed a less natural fit with the established scheme for
specifiers and options.

Use of theA andF format specifiers constitutes a minor extension to C89 which does not reserve
them.

For binary-to-decimal conversion, the infinitely precise result is just the source value, and the
destination format’s values are the numbers representable with the given format specifier. The
number of significant digits is determined by the format specifier, and in the case of fixed-point

conversion by the source value as well.

7.19.6.2 Thef scanf function

The specification df scanf is based in part on these principles:

. As soon as one specified conversion fails, the whole function invocation fails.

. One-character pushback is sufficient for the implementatidrsofinf . Given the
invalid field" - . X", the characters- . " are not pushed back.

122

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
. If a “flawed field” is detected, no value is stored for the corresponding argument.

. The conversions performed lfyscanf are compatible with those performed by
strtodandstrtol .

Input pointer conversion withgp was added to C89, although it is obviously risky, for symmetry with
fprintf. The% format was added to permit the scanner to determine the radix of the number in
the input stream; tHign format was added to make available the number of characters scanned thus far
in the current invocation of the scanner. C9X &dsnd%A.

White space is defined by thespace function (see §7.4.1.9). \

An implementation must not use thmget ¢ function to perform the necessary one-character
pushback. In particular, since the unmatched text is left “unread,” the file position indicator as reported
by thef t el | function must be the position of the character remaining to be read. Furthermore, if the
unread characters were themselves pushed baakngiat c, the pushback ifiscanf could not

affect the pushback stackumget c. A scanf call that matches N characters from a stream must
leave the stream in the same state as if N consegetive calls had been made.

A new feature of COX. Thehh andl | type modifiers were added in C9X.l supports the ner
| ong |l ongi nt type. hh adds the ability to treat tyjmhar the same as all other integer types; this
can be useful in implementing macros sucB@sd8 in <i nt t ypes. h> (see 7.18).

7.19.6.3 Theprintf function
See comments in §7.19.6.1 above.
7.19.6.4 Thescanf function
See comments in §7.19.6.2 above.
7.19.6.5 Thesnprintf function
A new feature of COX. Thespri ntf function is very useful, but can overrun the output buffer;
and that has been exploited in attacks on computer and network security. C9X addresses this

problem by adding thenpri nt f function, modeled after the 4.4BSD version, which performs
bounds checking on the output array.

7.19.6.6 Thesprintf function
See §7.19.6.1 for comments on output formatting.

In the interests of minimizing redundangpri ntf has subsumed the older, rather uncommon,
ecvt,fcvt, andgcvt .

7.19.6.7 Thesscanf function

123

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

The behavior of sscanf on encountering end of string has been clarified. See adso comments in \
§7.19.6.2 above.

7.19.6.8 Thevfprintf function \

The functionsvf printf, vprintf, andvsprintf were adopted from UNIX System V to
facilitate writing special purpose formatted output functions.

7.19.6.10 Thevprintf function \
See §7.19.6.8. |
7.19.6.12 Thevsnpri ntf function

See §7.19.6.5.

7.19.6.13 Thevspri ntf function

See §7.19.6.8.

7.19.7 Character input/output functions
7.19.7.1 Thef get c function

Because much existing code assumesftgat ¢ andf put ¢ are the actual functions equivalent to
the macroglet ¢ andput c, the Standard requires that they not be implemented as macros.

7.19.7.2 Thef get s function

This function subsumeget s which has no limit to prevent storage overwrite on arbitrary input (see

§7.19.7.7).
7.19.7.3 Thef put c function
See §7.19.7.1.

7.19.75 Theget c function

get ¢ andput ¢ have often been implemented as unsafe macros, since it is difficult in such a macro to
touch the stream argument only once. Since this danger is common in prior art, these two functions

are explicitly permitted to evaluas¢ r eammore than once.

7.19.7.7 Theget s function

Becauseget s does not check for buffer overrun, it is generally unsafe to use when its input is not
under the programmer’s control. This has caused some to question whether it should appear in the

124

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
Standard at al. The Committee decided that get s was useful and convenient in those specia
circumstances when the programmer does have adequate control over the input, and as longstanding
existing practice, it needed a standard specification. In generd, however, the preferred function is
f get's (see §7.19.7.2).

7.19.7.8 Theput c function
See §7.19.7.5.
7.19.7.10 Theput s function

put s(s) is not exactly equivalent toput s(st dout, s); andput s also writes a newline after
the argument string. This incompatibility reflects existing practice.

7.19.7.11 Theunget c function

/usr/group requires that at least one character be read hefget c is caled in certain
implementation-specific cases. The C89 Committee removed this requirement, thus oblidiriey a
structure to have room to store one character of pushback regardless of the state of the buffer. It felt
that this degree of generality makes clearer the ways in which the function may be used. The C9X
Committee decided to deprecate the usenglet ¢ on a binary file at the beginning of the file because

of the impossibility of distinguishing betweenceassful and error returns from theel | function,

both of which would be 1.

It is permissible to push back a different character than that which was read, which accords with
common existing practice. The last-in, first-out natunengfet ¢ has been clarified.

unget c is typically used to handle algorithms such as tokenization which involve one-character
lookahead in text flesf seek andft el | are used for random access, typically in binary fles. So
that these disparate file-handling disciplines are not unnecessarily linked, the value of a text file’s file
position indicator immediately aftenget ¢ has been specified as indeterminate.

Existing practice relies on two different models of the effecummfet c. One model can be
characterized as writing the pushed-back character “on top of’ the previous character. This model
implies an implementation in which the pushed-back characters are stored within the file buffer and
bookkeeping is performed by setting the file position indicator to the previous character position.
(Care must be taken in this model to recover the overwritten character values when the pushed-back
characters are discarded as a result of other operations on the stream.) The other model can be
characterized as pushing the character “between” the current character and the previous character.
This implies an implementation in which the pushed-back characters are specially buffered (within the
FI LE structure, say) and accounted for by a flag or count. In this model it is matuaimove the

fle position indicator. The indeterminacy of the file position indicator while pushed-back characters
exist accommodates both models.

Mandating either model by specifying the effectuoiget ¢ on a text file’s file position indicator

creates problems with implementations that have assumed the other model. Requiring the file position

indicator not to change aftanget ¢ would necessitate changes in programs which combine random

access and tokenization on text files, and rely on the file position indicator marking the end of a token
125

10

15

20

25

30

35

WG14/N850 J11/98-049 C9I9X RATIONALE

even after pushback. Requiring the file postion indicator to back up would creste severe
implementation problems in certain environments, since in some file organizations it can be impossible
to find the previous input character position without having read the file sequentially to the point in
question.’

7.19.8 Direct input/output functions
7.19.8.1 Thefread function

si ze_t is the appropriate type both for an object size and for an array bound (see 86.5.3.4), so this is
the type of botlsi ze andnel em

7.19.8.2 Thefw it e function

See §7.19.8.1.

7.19.9 Filepositioning functions
7.19.9.1 Thef get pos function

f get pos andf set pos were added to C89 to allow random access operations on files that are too
large to handle withseek andft el | .

7.19.9.2 Thef seek function

Whereas a binary file can be treated as an ordered sequence of bytes counting from zero, a text file
need not map one-to-one to its internal representation (see 87.19.2). Thus, only seeks to an earlier
reported position are permitted for text fles. The need to encode both record position and position
within a record in & ong value may constrain the size of text files upon whiskek andft el |

can be used to be considerably smaller than the size of binary files.

Given these restrictions, the C89 Committee still felt that this function has enough utility, and is used in
sufficient existing code, to warrant its retention in the Standagét pos andf set pos were added
to deal with files that are too large to handle Witeek andf t el | .

Thef seek function will reset the end-of-file flag for the stream; the error flag is not changed unless
an error occurs, in which case it will be set.

7.1994 Theftell function

ftell can fail for at least two reasons:

9Consi der, for instance, a sequential file of variable-length records in which a line is represented as a count field followed by the charactersin the
line. Thefile position indicator must encode a character position as the position of the count field plus an offset into the line; from the position of the
count field and the length of the line, the next count field can be found. Insufficient information is available for finding the previous count field, so
backing up from the first character of aline necessitates, in the general case, a sequential read from the start of thefile.

126

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
. the stream is associated with a terminal or some other file type for fibipbsition
indicator is meaningless.
. the file may be positioned at a location not representableamg.
Thus a method fdrt el | to report failure was specified (see also §7.19.9.1).

7.19.95 Ther ew nd function

Resetting the end-of-file and error indicators was added to the specificatiemiafid to make the
specification more logically consistent.

7.19.10 Error-handling functions
7.19.10.4 Theperror function
At various times, the C89 Committee considered providing a forpepnf or that delivers up an

error string version oér r no without performing any output. It ultimately decided to provide this
capability in a separate functiest,r er r or (see 87.21.6.2).

7.20 General Utilities<stdl i b. h>

The headekst dl i b. h> was invented by the C89 Committee to hold an assortment of functions
that were otherwise homeless.

7.20.1 String conversion functions

7.20.1.1 Theat of function

at of , at oi , andat ol are subsumed st rt od andst rt ol , but were retained because they are
used extensively in existing code. They are less reliable, but may be faster if the argument is known to

be in a valid range.

This specification does not requifé oat andl ong doubl e versions ofat of , but instead
encourages the usesifr t of andst rt ol d which have a more generally useful interface.

7.20.1.2 Theatoi,atol,andatol | functions

See §7.20.1.1.

7.20.1.3 Thestrtod,strtof,andstrtol dfunctions \
strtod was adopted for C89 from UNIX System V because it offers more control over the
conversion process, and because it is required not to produce unexpected results on overflow during

conversion. strtol (87.20.1.4) was adopted for the same reason. C9X siddsof and
strtol d.

127

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

So much regarding NaN significands is unspecified because so little is portable. Attaching
meaning to NaN significands is problematic, even for one implementation, even an |EC 559 one.
For example, the IEC 559 floating-point standard does not specify the effect of format
conversions on NaN significands. Conversions, perhaps generated by the compiler, may alter
NaN significands in obscure ways.

Requiring a sign for NaN or infinity input was considered as a way of minimizing the chance of
mistakenly accepting nonnumeric input. The need for this was deemed insufficient, partly on the
basis of prior art.

For simplicity, the infinity and NaN representations are provided through straightforward
enhancements to C89 rather than through a new locale. Note aso that standard C locale
categories do not affect the representations of infinities and NaNs.

A previous specification that st r t od return a NaN for invalid numeric input as recommended by
|EEE 854 was withdrawn because of the incompatibility with C89, which demands that st r t od
return zero for invalid numeric input.

72014 Thestrtol,strtoll,strtoul ,andstrtoul | functions |

strt ol wasadopted for C89 aswasstrt od (87.20.1.3). CO9X addst rt ol | .

|
strtoul was introduced by the C89 Committee to provide a facilitysliket ol for unsi gned \
| ong values. Simply usingt r t ol in such cases could result in overflow upon conversion.

7.20.2 Pseudo-random sequence gener ation functions
7.20.21 Ther and function

The C89 Committee decided that an implementation should be allowed to proagel dunction

which generates the best random sequence possible in that implementation, and therefore mandated no
standard algorithm. It recognized the value, however, of being able to generate the same pseudo-

random sequence in different implementations, and so it published as an example in the Standard an

algorithm that generates the same pseudo-random sequence in any conforming implementation, given

the same seed.

Ther and andsr and functions were based on existing practice; indeed the example implementation
was actually used in some versions of UNIX. Pseudo-random numbers have many uses; and it should
be noted that the example generator, while adequate for casual purposes, is insufficiently random for
demanding applications such as Monte-Carlo sampling and cryptography. Also, only 32,768 distinct
values are returned, which may be insufficiently fine resolution for some purposes. Implementations
may substitute improved algorithms and wider ranges of values; it is incumbent on the programmer to
ensure that the particular generator has appropriate statistical properties for the intended application.

7.20.2.2 Thesr and function

See §7.20.2.1.

128

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049

7.20.3 Memory management functions

The treatment of null pointers and zero-length dlocation requests in the definition of these functions
was in part guided by a desre to support this paradigm:

OBJ * p; [// pointer toavariablelist of OBJs

/'] initial allocation
p = (0BJ *) calloc(0, sizeof(CBJ));
Il

/| reallocations until Sze settles

whi |l e(/* listchangesszetoc */) {
p =(0BJ *) realloc((void *)p, ¢ * sizeof (0BJ));
...

}

This coding style, not necessarily endorsed by the C89 Committee, is reported to be in widespread use.

Some implementations have returned non-null values for alocation requests of zero bytes. Although

this strategy has the theoretical advantage of distinguishing between “nothing” and “zero” (an
unallocated pointer vs. a pointer to zero-length space), it has the morellingnipeoretical
disadvantage of requiring the concept of a zero-length object. Since such objects cannot be declared,
the only way they could come into existence would be through such allocation requests. |

The C89 Committee has decided not to accept the idea of zero-length objects. The allocation
functions may therefore return a null pointer for an allocation request of zero bytes. Note that this
treatment does not preclude the paradigm outlined above.

QUIET CHANGE IN C89

A program which relies on size-zero allocation requests returning a non-null pointer
will behave differently.

Some implementations provide a function, often calledoca, which allocates the requested object
from automatic storage; and the object is automatically freed when the calling function exits. Such a
function is not efficiently implementable in a variety of environments, so it was not adopted in the
Standard.

7.20.3.1 Thecal | oc function

Both nel emandel si ze must be of typesi ze_t for reasons similar to those for ead (see
§7.19.8.1).

If a scalar with all bits zero is not interpreted as a zero value by an implementatiaglthex may
have astonishing results in existing programs transported there.

129

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE
7.20.3.2 Thefree function

The Standard makes clear that a program may only free that which has been dlocated, that an
alocation may only be freed once, and that a region may not be accessed once it is freed. Some
implementations alow more dangerous license. The null pointer is pecified as a valid argument to this
function to reduce the need for special-case coding.

7.20.3.4 Ther eal | oc function

A null first argument is permissible. If the first argument is not null, and the second argument is O, then
the call frees the memory pointed to by the first argument, and a null argument may be returned; this
specification is consistent with the policy of not alowing zero-sized objects.

7.20.4 Communication with the environment
7.20.4.1 Theabort function

The C89 Committee vecillated over whether a cal to abor t should return if the SI GABRT signdl is
caught or ignored. To minimize astonishment, the find decison wasthat abor t never returns.

7.20.4.2 Theat exit function

at exi t provides aprogram with a convenient way to clean up the environment before it exits. 1t was
adapted from the Whitesmiths C run-time library function onexi t .

A suggested dternative was to use the SI GTERMfacility of the si gnal /r ai se machinery, but that
would not give the last-in first-out stacking of multiple functions so useful with at exi t .

It is the responsibility of the library to maintain the chain of registered functions so that they are
invoked in the correct sequence upon program exit.

7.20.4.3 Theexit function

The argument to exi t is a status indication returned to the invoking environment. In the UNIX
operating system, avaue of 0 is the successful return code from a program. As usage of C has spread
beyond UNIX, exi t (0) has often been retained as an idiom indicating successful termination, even
on operating systems with different systems of return codes. This usage is thus recognized as standard.
There has never been a portable way of indicating a non-successful termination, since the argumentsto
exit are implementation-defined. The EXI T_FAI LURE macro was added to C89 to provide such a
capability. EXI T_SUCCESS was added as well.

Asde from cals explicitly coded by a programmer, exi t isinvoked on return frommai n. Thusin at
least this case, the body of exi t cannot assume the existence of any objects with automeatic storage
duration except those declared inexi t .

The Committee consdered the addtion of _exi t, but reected it based on concerns of incompatible
with the POSIX specification upon which it is based. For example, one concern expressed is that

130

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
_exi t was specified as away to get out of asigna handler without triggering another signd, but that
isnot actudly theway _exi t behavesin POSIX environments. The Committee did not wish to give
programmers thiskind of false hope.

7.20.4.4 Theget env function

The definition of get env is designed to accommodate both implementations that have al in-memory
read-only environment strings and those that may have to read an environment string into a static
buffer. Hence the pointer returned by the get env function points to a string not modifiable by the
cdler. If an attempt is made to change this string, the behavior of future calls to get env are
undefined.

A corresponding put env function was omitted from the Standard, since its utility outsde a muilti-
process environment is questionable, and since its definition is properly the domain of an operating
system standard.

7.20.45 The syst emfunction

The syst emfunction allows a program to suspend its execution temporarily in order to run another
program to completion.

Information may be passed to the caled program in three ways. through command-line argument
srings, through the environment, and (most portably) through data files. Before cdling the syst em
function, the calling program should close al such datafiles.

Information may be returned from the called program in two ways through the implementation-
defined return value (In many implementations, the termination status code which is the argument to
theexi t functionisreturned by the implementation to the caller asthe value returned by the syst em
function.), and (most portably) through datafiles.

If the environment is interactive, information may also be exchanged with users of interactive devices.

Some implementations offer built-in programs called “commands” (for example, “date”) which may
provide useful information to an application program viasypet emfunction. The Standard does

not attempt to characterize such commands, and their use is not portable.

On the other hand, the use of thest emfunctionis portable, provided the implementation supports

the capability. The Standard permits the application to ascertain this by callggsthem function

with a null pointer argument. Whether more levels of nesting are supported can also be ascertained this

way; but assuming more than one such level is obviously dangerous.

7.20.5 Searching and sorting utilities

COX clarifies requirements and usage of the comparison functions.

7.20.6 Integer arithmetic functions

7.20.6.1 Theabs, | abs, and | | abs functions
131

WG14/N850 J11/98-049 C9I9X RATIONALE

abs was moved from <mat h. h> as it was the only function in that library which did not involve
doubl e arithmetic. Some programs have included <mat h. h> solely to gain access to abs, but in
some implementations this results in unused floating-point run-time routines becoming part of the
trandated program.

The C89 Committee rejected proposals to add an absolute value operator to the language. An
implementation can provide a built-in function for efficiency.

7.20.6.2 Thedi v,ldiv,and! | di v functions

Because C89 had implementation-defined semantics for divison of signed integers when negative
operands were involved, di v and | di v were invented to provide well-specified semantics for signed
integral divison and remainder operations. The semantics were adopted to be the same as in Fortran.
Since these functions return both the quotient and the remainder, they also serve as a convenient way
of efficiently modelling underlying hardware that computes both results as part of the same operation.
Table 7.2 summarizes the semantics of these functions. |

Table7.2: Resultsof di v and| di v
number denom quot rem
7 3 2 1
-7 3 -2 -1
7 -3 -2 1
-7 -3 2 -1

Divison by zero is described as undefined behavior rather than as setting errno to EDOM The
program can just as easlly check for a zero divisor before a divison as for an error code afterwards,
and the adopted scheme reduces the burden on the function.

Now that COX requires Smilar semantics for the divison operator, the main reason for new programs
tousedi v orl di v isto Smultaneoudy obtain quotient and remainder.

7.20.7 Multibyte character functions

See 85.2.1.2 and SMSE.8 for an overall discussion of multibyte character representations and wide
characters.

7.20.8 Multibyte string functions

See 85.2.1.2 and SMSE.8 for an overall discussion of multibyte character representations and wide
characters.

132

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
7.21 StringHandling <stri ng. h>

The C89 Committee felt that the functions in this subclause were al excelent candidates for
replacement by high-performance built-in operations. Hence many smple functions have been
retained, and severd added, just to leave the door open for better implementations of these common
operations.

The Standard reserves function names beginning with st r or memfor possible future use.

7.21.1 String function conventions

nmencpy, nenset, nencnp, and nenchr were adopted in C89 from several existing
implementations. The genera goal was to provide equivalent capabilities for three types of byte
sequences.

. null-terminated stringss¢ r -).
. null-terminated strings with a maximum lengsh ¢ n-).
. transparent data of specified lengtiei().

7.21.2 Copying functions

A block copy routine should be “right”: it should work correctly even if the blocks being copied
overlap. Otherwise it is more difficult to correctly code such overlapping copy operations, and
portability suffers bcause the optimal C-coded algorithm on one machine may be horribly slow on
another.

A block copy routine should be “fast™ it should be implementable as a few inline instructions which
take maximum advantage of any block copy provisions of the hardware. Checking for overlapping
copies produces too much code for convenient inlining in many implementations. The programmer
knows in a great many cases that the two blocks cannot possibly overlap, so the space and time
overhead are for naught.

These arguments are contradictory but each is diimgpe Therefore the Standard mandates two
block copy functions: menmove is required to work correctly even if the source and destination
overlap, whilementpy can assume non-overlapping operands and be optimized accordingly.

7.21.24 Thestrncpy function

st r ncpy was initially introduced into the C library to deal with fixed-length name fields in structures
such as directory entries. Such fields are not used in the same way as strings: the trailing null is
unnecessary for a maximum-length field, and setting trailing bytes for shorter names to null assures
efficient field-wise comparisons.strncpy is not by origin a “bounded strcpy,” and the C89
Committee has preferred to recognize existing practice rather than alter the function to better suit it to
such use.

133

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9X RATIONALE
7.21.3 Concatenation functions

7.21.3.2 Thestrncat function

Note that this function may add n+1 charactersto the string.

7.21.4 Comparison functions

7.21.4.1 Thementnp function

See §7.21.1.

7.21.43 Thestrcol |l function

strcol |l andstrxfrm provide forlocale-specific string sorting. strcol | is intended for
applications in which the number of comparisons is sstallxf r mis more appropriate when items
are to be compared a number of times and the cost of transformation is paid only once.
7.21.45 Thestrxfrmfunction

See §7.21.4.3.

7.21.51 Thenmenthr function

See §7.21.1.

7.21.5.7 Thestrstr function

Thestrstr function is an invention of the C89 Committee. It is included as a hook for efficient
substring algorithms, or for built-in substring instructions.

7.21.5.8 Thestrt ok function

This function was included in C89 to provide a convenient solution to many simple problems of lexical
analysis, such as scanning command line arguments.

7.21.6 Miscellaneous functions
7.21.6.1 Thenenset function

See 8§87.21.1 and §7.20.3.1.

7.21.6.2 Thestrerror function

This function is a descendant @ér r or (see 87.19.10.4). It is defined such that it can return a
pointer to an in-memory read-only string, or can copy a string into a static buffer on each call.

134

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049
7.21.6.3 Thestrl en function

This function is now specified as returning avalue of typesi ze_t (see 86.5.3.4).

7.22 Type-generic math <t gmat h. h> ‘
|

7.22.1 Type-generic macros ‘

A new feature of C9X. Type-generic macros allow calling a function whose type is determined by
the argument type, as is the case for C operators suehaad*. For example, with a type-
genericcos macro, the expressionos((fl oat)x) wil have typefl oat. This feature
enables writing more portably efficient code and alleviates need for awkward casting and suffixing
in the process of porting or adjusting precision. Generic math functions are a widely appreciated
feature of Fortran.

The only arguments that affect the type resolution are the arguments corresponding to the
parameters that have typg@ubl e in the synopsis. Hence the type of a type-generic call to
next af t er x, whose second parametel isng doubl e in the synopsis, is determined solely

by the type of the first argument.

The term type-generic was chosen over the proposed alternatives of intrinsic and overloading.
The term is more specific than intrinsic, which already is widely used with a more general
meaning, and reflects a closer match to Fortran’s generic functions than to C++ overloading.

The macros are placed in their own header in order not to silently break old programs that include
<mat h. h>, for example wittpri nt f (" %", sin(x)).

nodf (doubl e, doubl e*) is excluded because no way was seen to make it safe without
complicating the type resolution.

This specification differs from an earlier proposal in that the type is determined solely by the
argument, and may be narrower than the type for expression evaluation. This change was made
because the performance costs for computing functions with narrow arguments to wide range and
precision might be too high, even if the implementation efficiently evaluates basic operations to
wider format.

Also, this differs from earlier proposals in that integral-type arguments are convededlbe

instead off | oat . Although converting td | oat would have been more consistent with the
usual arithmetic conversions, convertingdimubl e has the advantages of preserving the value
more often on many systems, and of being more compatible with C89 where unsuffixed calls to
math functions with integer arguments were calddaabl e functions.

Having ag suffix for the generic macros was considered but thought unnecessary.

The implementation might, as an extension, endow appropriate ones of the macros that this
standard specifies only for real arguments with the ability to invoke the complex functions.

135

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

This specification does not prescribe any particular implementation mechanism for generic
macros. It could be implemented simply with built-in macros. The generic macro for sqrt , for
example, could be implemented with

#undef sqrt
#define sqrt(x) __ BU LTI N _GENERI C sqrt(x)

Generic macros are designed for a useful level of consistency with C++ overloaded math
functions.

The great mgority of existing C programs are expected to run correctly straightaway when
<t gmat h. h> isincluded instead of <mat h. h> or <conpl ex. h>. Generic macros are similar
to the C89 library masking macros, though the semantic types of return values differ.

The ability to overload on integer as well as floating types would have been useful for some
functions, for example copysi gn. Overloading with different numbers of arguments would
have alowed reusing names, for example r emai nder for r enquo. However, these facilities
would have complicated the specification; and their natural consistent use, such as for a floating
abs or a two-argument at an, would have introduced further inconsistencies with C89 for
insufficient benefit.

This specification in no way limits the implementation’s options for efficiency, including inlining
library functions.

7.23 Dateandtime<ti ne. h>

7.23.1 Components of time

The typescl ock_t andti me_t are arithmetic because values of these types must, in accordance
with existing practice, on occasion be compared with —1 (a “don’t-know” indication), suitably cast. No
arithmetic properties of these types are defined by the Standard, however, in order to allow
implementations the maximum flexibility in choosing ranges, precisions, and representations most
appropriate to their intended application. The representation need not be a count of some basic unit; an
implementation might conceivably represent different components of a temporal value as subfields of
an integral type.

Many C environments do not support /usr/group library concepts of daylight saving time or time zones.
Both notions are defined geographically and politically, and thus may require more knowledge about
the real world than an implementation can support. Hence the Standard specifies the date and time

functions such that information about DST and time zones is not required. /usr/grospts
function, which would require dealing with time zones, was excluded altogether. An implementation
reports that information about DST is not available by setting tihé sdst field in a broken-down

time to a negative value. An implementation may return a null pointer from a caf iore if
information about the displacement between Coordinated Universal Time §g&@GMT) and local

timeis not available.

136

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
7.23.2 Time manipulation functions

7.23.2.1 The cl ock function

Thisfunction isintended for measuring intervals of execution time in whatever units an implementation
desres. The conflicting goals of high resolution, long interval capacity, and low timer overhead must
be balanced carefully in the light of thisintended use.

7.23.2.2 Thedi ffti me function

di ffti me isaninvention of the C89 Committee. It is provided so that an implementation can store
an indication of the date/time vaue in the most efficient format possible and till provide a method of
caculating the difference between two times.

7.23.2.3 Thenkti ne function

nkt i me wasinvented by the C89 Committee to complete the set of time functions. With this function
it becomes possible to perform portable calculations involving clock times and broken-down times.

The rules on the ranges of the fields within the *ti meptr record are crafted to permit useful
arithmetic to be done. For instance, here is a paradigm for continuing some loop for an hour:

#1 ncl ude <tine. h>
struct tm when;

tinme t now,
tinme t deadl i ne;
/1

now = tinme(0);

when = *| ocal ti ne(&ow);

when. t m hour += 1; /'l resultisintherange[1,24]
deadl i ne = nkti me(&when);

printf("Loop will finish: %\n", asctinme(&when));
while (difftime(deadline, tine(0)) > 0) whatever();

The specification of nkt i me guarantees that the addition to thet m_hour field produces the correct
result even when the new value of t m_hour is 24, that is, a vaue outside the range ever returned by a
library functioninast r uct t mobject.

One of the reasons for adding this function is to replace the capability to do such arithmetic which is
lost when a programmer cannot depend on'ti ne_t being an integra multiple of some known time
unit.

Severd readers of earlier versons of this Rationale have pointed out apparent problemsin this example
if now is just before a trangtion into or out of daylight saving time. However, when. t m i sdst
indicates what sort of time was the basis of the calculation. Implementors, take heed. If thisfield is set

to —1 on input, one truly ambiguous case involves the transition out of daylight saving time. As DST is

currently legislated in the United States, the hour from 0100 to 0159 occurs twice, first as DST and
137

10

15

20

25

30

35

WG14/N850 J11/98-049 C9I9X RATIONALE

then as standard time. Hence an unlabeled 0130 on this date is problematic. An implementation may
choose to take thisas DST or standard time, marking its decisoninthet m i sdst fied. It may also
legitimately take thisasinvaid input and return (time_t) (-1).

|

7.23.25 Theti e function \

Since no measure is given for how precise an implementation's best approximation to the current time
must be, an implementation could always return the same date instead of a more honest —1. This is, of
course, not the intent. |

7.23.3 Time conversion functions
7.23.3.1 Theascti nme function

Although the name of this function suggests a confiict with the principle of removing ASCII
dependencies from the Standard, the name was retained due to prior art. For the same reason of
existing practice, a proposal to remove the newline character from the string format was not adopted.
Proposals to allow for the use of languages other than English in naming weekdays and months met
with objections on grounds of prior art, and on grounds that a truly international version of this
function was difficult to specify: three-letter abbreviation of weekday and month names is not
universally conventional, for instance. Téter f ti e function (see 87.23.3.5) provides appropriéte
facilities for locale-specific date and time strings.

7.23.3.3 Thegnti nme function

Despite objections that GMT, that is, Coordinated Universal Time (UTC), is not available in some
implementations, this function was retained because UTC is a useful and widespread standard
representation of time. If UTC is not available, a null pointer may be returned.

7.2335 Thestrftime function |

strftime provides a way of formatting the date and time in the appropriate locale-specific fashion
using the%e, %, and %X format specifiers. More generally, it allows the programmer to tailor
whatever date and time format is appropriate for a given application. The facility is based on the UNIX
system date command. See §7.5 for further discussion of locale specification. For the field controlled
by %, an implementation may wish to provide special symbols to mark noon and midnight. \

138

10

15

20

25

30

35

C9I9X RATIONALE WG14/N850 J11/98-049

8. Annexes

Most of the material in the appendices is not new. It is Smply a summary of information in the
Standard, collated for the convenience of users of the Standard.

New (advisory) information is found in Annex J (Common warnings) and in Annex K.5 (Common
extensons). The subclause on common extensions is provided in part to give programmers even
further information which may be useful in avoiding features of local dialects of C.

Annex D Formal model of sequence points (infor mative)

A new feature of COX.

Annex F 1EC 60559 floating-point arithmetic (nor mative)

A new feature of COX.

Vagaries of floating-point arithmetic have plagued programmers and users since its inception; and
they till do, even though hardware floating-point is now largely standardized. When |EEE binary
floating-point standard 754 became an officia standard in July 1985, 26 months before the radix-
independent standard 854, severa |EEE implementations were aready shipping. In 1993, 754
was published as international standard IEC 559. Now virtualy all new floating-point
implementations conform to |EC 559, at least in format if not to the last detail. Although these
standards have been enormously successful in influencing hardware implementation, many of their
features, including predictability, remain impractical or unavailable for use by programmers. 1EC
559 does not include language bindings, a cost of delivering the basic standard in a timely fashion.
The C89 Committee attempted to remove conflicts with IEEE arithmetic, but did not specify
|EEE support. Expediencies of programming language implementation and optimization can deny
the features offered by modern hardware. In the meantime, particular companies have defined
their own IEEE language extensions and libraries; and not surprisingly, lack of portability has
impeded programming for these interfaces.

The Numerical C Extensions Group, NCEG, at its initial meeting in May 1989, identified support
for |EEE floating-point arithmetic as one of its focus areas and organized a subgroup to produce
atechnical report. The subgroup benefited from the considerable C language and |1EEE floating-
point expertise associated with NCEG. It included individuals with substantial experience with
language extensions (albeit proprietary) for IEEE floating-point. And, following after the
standardization of C, it had a stable, well defined base for its extensons. Thus NCEG had a

unique opportunity to solve this problem. The floating-point part of NCEG’s technical report

published in 1995 was the basis for the C9X floating-point specification.

F.2 Types

139

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

Minimal conformance to the IEC 559 floating-point standards does not require a format wider

than single. The narrowest C doubl e type alowed by standard C is wider than IEC 559 single,

and wider than the minimum IEC 559 single-extended format. (IEC 559 single-extended is an
optional format intended only for those implementations that don’t support double; it has at least
32 bits of precision.) Both standard C and the IEC 559 standards would be satidfiedtif

were |[EC 559 single andoubl e were an IEC 559 single-extended format with at least 35 bits
of precision. However, this specification goes slightly further by requadowgpbl e to be IEC

559 double rather than just a wide IEC 559 single-extended.

The primary objective of the IEC 559 part of this specification is tilitdhe writing portable

code that exploits the floating-point standard, including its standardized single and double data
formats. Bringing the C data types and the IEC 559 standard formats into line advances this
objective.

This specification accommodates what are expected to be the most important IEC 559 floating-
point architectures for general C implementations.

Because of standard C’s bias towda@ubl e, extended-based architectures might appear to be
better served by associating thedGubl e type with IEC 559 extended. However, such an
approach would not allow standard C types for both IEC 559 double and single and would go
against current industry naming, in addition to undermining this specification’s portability goal.
Other features in the Standard, for example the type definifibmsat t and doubl e_t
(defined in<mat h. h>), are intended to allow effective use of architectures with more efficient,
wider formats.

Thel ong doubl e type is not required to be IEC 559 extended because

1. some of the major IEC 559 floating-point architectures for C implementations do not support
extended.

2. double precision is adequate for a broad assortment of numerical applications.

3. extended is less standard than single or double in that only bounds for its range and precision
are specified in IEC 559.

For implementations without extended in hardware, non-IEC 559 extended arithmetic written in
software, exploiting double in hardware, provides some of the advantages of IEC 559 extended
but with significantly better performance than true IEC 559 extended in software.

Specification for a variable-length extended type, one whose width could be changed by the user,
was deemed premature. However, not unduly encumbering experimentation and future
extensions, for example for variable length extended, is a goal of this specification.

Narrow-format implementations

Some C implementations, namely ones for digital signal processing, provide only the IEC 559
single format, possibly augmented by single-extended, which may be narrower than IEC 559
double or standard @oubl e, and possibly further augmented by double in software. These

140

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
non-conforming implementations might generally adopt this specification, though not matching its
requirements for types.

One approach would be to match standard C f | oat with single, match standard C doubl e with
single-extended or single; and match standard C | ong doubl e with double, single-extended, or
single. Then most of this specification could be applied straightforwardly. Users should be
clearly warned that the types may not meet expectations.

Another approach would be to refer to a single-extended format as | ong f | oat and then not
recognize any C types not truly supported. This would provide ample warning for programs
requiring double. The trandation part of porting programs could be accomplished easily with the
help of type definitions. In the absence of a double type, most of this specification for double
could be adopted for the | ong fl oat type. Having distinct types for | ong fl oat and
doubl e, previoudly synonyms, requires more imagination.

F.5 Binary-decimal conversion

The IEC 559 floating-point standard requires perfect rounding for a large though incomplete
subset of decimal conversions. This specification goes beyond the IEC 559 floating-point
standard by requiring perfect rounding for all decimal conversions involving DEClI MAL_DI G or
fewer decima digits and a supported IEC 559 format, because practical methods are now
available. Although not requiring correct rounding for arbitrarily wide decimal numbers, this
specification is sufficient in the sense that it ensures that every internal numeric value in an IEC
559 format can be determined as a decimal constant.

F.7 Environment

F.7.4 Constant expressions

An early version of this specification allowed trandation-time constant arithmetic, but empowered
the unary + operator, when applied to an operand, to inhibit trandation-time evauation of
constant expressions. Introducing specia semantics for the unary + operator did not seem
necessary, as trandation-time evaluation can be achieved by using static declarations.

F.7.5 Initialization

C89 did not specify when aggregate and union initiaization is done. Otherwise, this section is
merely a clarification. Note that, under the effect of an enabling FENV_ACCESS pragma, any
exception resulting from execution-time initialization must be raised at execution time.

The specification for constant expressions and initialization does not suit C++, whose static and
aggregate initializers need not be constant. Specifying al floating-point constant arithmetic and
initialization to be as if at execution time would be suitable for C++, and given the
FENV_ACCESS mechanism, still would alow the bulk of constant arithmetic to be done, in
actuality, at trandlation time.

141

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE
F.9 <nmath. h>

HUGE_VAL cannot be implemented as
#define HUGE_VAL (1.0/0.0)

whose use may raise the divide-by-zero exception. Similarly, | NFI NI TY and NAN cannot be
implemented as((fl oat) (1.0/0.0)) and((fl oat) (0.0/0.0).

Special cases
The goals of the specification for special cases are to
1. define special-case results so that programs will run correctly for the widest range of inputs.

2. assure predictable special-case behavior the programmer can exploit for simpler, more efficient
code.

3. alow implementations enough flexibility to provide needed performance.

Compatibility with IEC 559 is a foremost strategy. The C9X annexes adopt the IEC 559
specification for the functions covered by that standard, suchassqrt andri nt, and follows the
spirit of IEC 559 for other functions. This means the special values (infinities, NaNs, and signed
zeros) and the floating-point exceptions have a consistent meaning throughout the basic arithmetic
and the libraries. At a higher level, C9X shares the IEC 559 goal to enhance robustness through
predictable behavior. For special cases, this behavior is chosen to be useful for most applications
wherever possible, recognizing that it is in the nature of exceptional cases that one behavior is not
best in all Situations.

Typically, the tradeoff is between a numeric result that is useful in only some applications and a

more pessimistic NaN result. Asin IEC 559, choosing utility over conservatism exacts a cost in
specification complexity. For example, regarding NaNs only as error indicators and rules like

“NaN in, NaN out” are simple but not always most useful. A NaN argument is often better
interpreted as an indeterminate value. This supports the pmogng practice of initializing with

NaNs those variables whose true values are yet to be determined, and permits returning the
obvious numeric value for functions that are independent of one of their arguments. Thus
hypot (1, NAN) isl, as this would be the result regardless of the numeric value of the second
argument. The C9X max andf m n functions return the maximum or minimum of their
numerical arguments, henderax(NAN, 1.2) is 1.2, which is the desired behavior for
determining the maximum value in a set of partially initialized data.

Although a definition off max implying a NaN result fof max(NAN, 1. 2) might be equally

useful, choosing one of the viable specifications instead of leaving the choice to the
implementation has the inherent value of suiting some portable code instead of none. In other
special cases, however, choices are left to the implementation because of existing practice (for
example, the return value of og) or performance issues (for example, whether certain rounding
functions raise the inexact exception).

142

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
Generdly, C9X eschews a NaN result where a numerical value is useful. IEC 559 follows the
same approach, as in defining overflow results to be infinite (given default rounding), which is
neither mathematically correct nor useful in all cases. The results of pow(1, 0) and pow(O, 0)
are both 1, because there are applications that can exploit this definition. For example, if x(p) and
y(p) are any analytic functions that become zero at p = a, then pow(x, y) =exp(y*! og(x))
approaches 1 as p approaches a. The result of pow(—2, o) is +co, because all large positive
floating-point values are even integers. The resulitain2(+0, +0) , which is equivalent to
car g(+0+i0) , is defined to be +0. A significant benefit is supportirgd ag that is equivalent
to | og on the nonnegative real axis.

The choice for special-case behavior, which typically is arbitrary to some degree, was made in
favor of preserving identities (involving numeric, not NaN, values), specification consistency
among functions, and efficiency in implementation. The functitrypot (%, y) and

cabs(xtyi) are equivalent, as aeg¢ an2(y, X) andcar g(x+yi) , and these behave so as to be
useful building blocks for other complex functions.

In certain respects, C9X is less demanding than might be expected, in order to give some
flexibility in implementation, especially where the loss of utility is believed to be negligible or the
cost is not justifiable. For example, C9X leaves to the implementation to decide whether
functions (likesi n) that are essentially always inexact raise the inexact flag, as there doesn't
seem to be significant utility in testing an expression involving such a function for exactness.
Functions in<mat h. h> are allowed to raise undeserved inexact and underflow exceptions,
because determination may be difficult. C9X allows complex multiply and divide to raise spurious
exceptions because of the performance cost of avoiding them.

The cost for exception behavior is intended to be modest enough for most purposes. And, as the
exceptions are accessible only in code under the effect of an erfdBlivg ACCESS pragma, an
implementation could invoke, perhaps even by default, routines that didn't have the specified
exception behavior. (The pragma does not exempt the implementation from having to return
specified result values.)

Underflow

The IEC 559 floating-point standard offers the implementation multiple definitions of underflow.

All resulting in the same values, the options differ only in that the thresholds when the exception is
raised may differ by a rounding error. It is not intended that library functions necessarily use the
same definition of underflow as the arithmetic, because the difference so rarely matters.

Exactness

For some functiongyow for example, determining exactness in all cases may be too costly.
Functions have certain restrictions against raising spurious exceptions detectable by the user. For

example, the implementation must hide an underflow generated by an intermediate computation of
a non-tiny result.

F.9.1 Trigonometric functions

143

10

15

20

25

30

35

WG14/N850 J11/98-049 CI9X RATIONALE

F.9.1.4 Theatan2 functions

The more contentious cases are y and x both infinite or both zero. These deliver numeric results
instead of NaNs in order to preserve more identities and for better utility. The specification of

at an2(0, 0) to be O facilitates the definition of car g(x+yi) asat an2(x, y) and cl og(2
asl og(|x) +1*carg(2 sothat cl og(2 agreeswithl og(x) onthered axis.

The specification of at an2(«, o) as 14 indicates the reasonable quadrant, preserving some
information in preference to none.

F.9.4 Power and absolute value functions
F.9.4.3 Thehypot functions

Note that hypot (I NFI NI TY, NAN) returns +I NFI NI TY, under the justification that
hypot (1 NFI NI TY, y) is+eo for any numeric valuey.

F.9.4.4 Thepow functions

pow X, 0) is specified to return 1 for any x, because there are significant applications where 1 is
more useful than NaN. pow(f(t), g(t)) approaches 1 in all cases where f and g are analytic
functions and g(t) approaches zero. The result 1 better supports applications where the second
argument is integral. pow(NAN, 0) returns NaN on the genera principle that if a result is

independent of the numerical value of an argument, then that result is appropriate if that argument
isaNaN.

F.9.9 Maximum, minimum, and positive difference functions
F.9.9.2 Thefmax functions

Some applications may be better served by a max function that would return a NaN if one of its
arguments were a NaN:

{ return (isgreaterequal (x, y) || isnan(x)) ? x : vy; }

Note that two branches still are required for symmetry in NaN cases.

Annex G |EC 60559-compatible complex arithmetic (infor mative)

A new feature of COX.

Although the specification in Annex G is fundamental for IEC 559 style complex arithmetic, the
annex is designated informative because of insufficient prior art for normative status.

144

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049
G.2 Types

Although not present in older complex arithmetic facilities such as Fortran’s, the imaginary types
naturally model the imaginary axis of complex analysis, promote computational and storage
efficiency, and capture the completeness and consistency of IEC 559 arithmetic for the complex
domain. See also rationale for 8G.5.

Because of their representation and alignment requirements, imaginary arguments can be used like
real arguments farpri nt f andf scanf.

G.4 Binary operators

G.4.1 Multiplicative operators

Text book formulas for complex arithmetic tend to turn infinite inputs into NaNs, often losing
useful information unnecessarily. For example,

(1+i0)(co+ioo) => (1*co - 0*c0) + i(O*co+1*c0) => NaN-+iNaN
and
cexpeo+iNaN) => expfo)*(cis(NaN)) => NaN+iNaN

but for applications modeling the Riemann sphere, result values of infinite magnitude would be
more useful (even though their phase angles may be meaningless). In order to support the one-
infinity model, C9X regards any complex value with at least one infinite part as a complex infinity
(even if the other part is a NaN), and guarantees that operations and functions honor basic
properties of infinities, and provides tber oj function to map all infinities to a canonical one.

For example, a finite non-zero value times an infinity must be an infinity, hence (2eH@YY
must be an infinity. In the same spirit, cexp(NaN) is an infinity and cexp¢+iNaN) is a
complex zero, which preserve cabs(cexp()) = exp).

COX treats multiple infinities so as to preserve directional information where possible, despite the
inherent limitations of the ordered-pair (Cartesian) representation. The product of the imaginary
unit and a real infinity is a correctly signed imaginary infinity,c¢ = oi. And

i*(oo-ooi):oo+ooi

which at least indicates the reasonable quadrant.

C9X allows complex multiply and divide to raise spurious exceptions because of the performance
cost of avoiding them.

G.5 <conpl ex. h>

See also rationale for 8F.9 and §G.4.1.

145

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

Positing the imaginary unit constant is a natural analog to the mathematical notion of augmenting
the reals with the imaginary unit. It allows writing imaginary and complex expressions in common
mathematical style, for example x + y*1. Note that the multiplication here affects trandated
code, but does not necessitate an actual floating-point multiply, nor does the addition necessitate a
floating-point add.

|EC 559 compatibility is a primary rationale for the imaginary types. Without them the traditional
complex arithmetic programming facilities prove fundamentally incompatible with IEC 559 in the
treatment of special values, with them compatibility comes surprisingly naturally. Very little
Special-case specification is required for imaginary types.

The imaginary types, together with the usual arithmetic conversion rules and operator
specifications (see 8G.4), allow substantially more efficient code. For example, multiplication of
an imaginary by a complex can be implemented straightforwardly with two multiplications, instead
of four multiplications and two additions.

In the absence of imaginary types, macros would be required in order to create certain special
values. For example, 6+ could be created b@VPLX(0. O, I NFI NI TY) . With the imaginary

types, imaginary infinity is simply the value oNFI NI TY*I. (If imaginary types are not
supported andl is_Conpl ex_1I, thenl NFI NI TY*| would result in a real part of NaN and an
invalid exception.) With imaginary types, valuesydfi andx + y*I, wherex andy are real

floating values, cover all values of the imaginary and complex types, hence eliminating this need
for the complex macros.

Some programs are expected to use the imaginary types implicitly in constructions with the
imaginary unitl , such ax + y*I, and not explicitly in declarations. This suggests making the
imaginary types private to the implementation and not available for explicit program declarations.
However, such an approach was rejected as being less in the open spirit of C, and not much
simpler. For the same reasons, the approach of treating imaginariness as an attribute of certain
complex expressions, rather than as additional types, was rejected.

Another proposal was to regard the special values (infinities, NaNs, and signed zeros) as outside
the model. This would allow any behavior when special values occur, including much that is
prescribed by this specification. However, this approach would not serve the growing majority of
implementations, including all IEC 559 ones, that support the special values. These
implementations would require additional specification in order to provide a consistent extension
of their treatment of special cases in the real domain. On the other hand, implementations not
supporting special values should have little additional trouble implementing imaginary types as
proposed here.

The efficiency benefits of the imaginary types goes beyond what the implementation provides. In
many cases programmers have foregone a programming language’s complex arithmetic facilities,
which, lacking an imaginary type, required contiguous storage of both real and imaginary parts;
programmers could store and manipulate complex values more efficiently using real arithmetic
directly. The imaginary types enable programmers to exploit the efficiency of the real formats

without having to give up support for complex arithmetic semantics.

146

CI9X RATIONALE WG14/N850 J11/98-049
Care is taken throughout so that the sign of zero is available for distinguishing the sides of a
branch cut along the axes, even at infinities. Therefore csqrt (-c0+0i) = O+ooi, and by
conjugation, csqrt (-c0-0i) = 0-coi.

G.6 <tgmath. h>

Exploiting the fact that some functions map the imaginary axis onto the real or imaginary axis
gains more efficient calculation involving imaginaries, and better meets user expectations in some
cases. However, dropping out of the complex domain may lead to surprises as subsequent
operations may be done with real functions, which generally are more restrictive than their
complex counterparts. For example, sqrt (- cos(1)) invokesthe rea sqrt function, which
isinvalid for the negative real value- cos(|) , whereas the complex sqr t isvalid everywhere.

Annex H Languageindependent arighmetic (infor mative)

A new feature of COX.

LIA-1 was not made a normative part of C9X for three reasons. implementation vendors saw no need
to add LIA-1 support because customers are not asking for it, LIA-1 may change now that work on
LIA-2 is finishing and work on LI1A-3 is sarting, and the Committee did not wish to rush a possibly
incomplete specification into COX at the last moment. A proposed binding between C and LIA-1 was
produced a few months before COX was frozen. That binding was a compromise between those who
believe L1A-1 should be forgotten and those who wanted full LIA-1 and more (for example, C signal
handlers that could patch up exceptions on the fly and restart the exceptiona floating-point
ingtruction). It took several years for the FPCE specification to settle down, so it was assumed thet it
would take a smilar timeframe to get the LIA-1 binding stable. The Committee did not wish to delay
COX for this one item. An informative LIA-1 annex was added, however, because al programming
languages covered by ISO/IEC JTC1 SC22 standards are expected to review LIA-1 and incorporate
and further define the binding between LIA-1 and each programming language.

C9X’s binding between C and LIA-1 differs from LIA-1's C binding in three cases in which the
Committee believes that LIA-1 is incorrect. First, LIA-2 and LIA-1 have different behaviors for
mathematical pole exceptions (similar to finite non-zero divided by zero and log(0)). The Committee
believes that LIA-2 is better and that LIA-1 will be changed to match LIA-2. Second, the existing
hardware that many computers use for conversion from floating-point type to integer type raises the
undefined exception, instead of the required integer overflow, for values that are out of bounds. Third,
requiring support for signaling NaNs on IEC 559 implementations should be optional because existing
hardware support for signaling NaNs is inconsistent.

Annex | Universal character namesfor identifiers (nor mative)

A new feature of COX.

147

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

MSE. Multibyte Support Extensions Rationale

This text was taken from the rationde furnished with the amendment, 1SO 9899:1990/DAM 1, cdled
smply AM1inthisAnnex. Thereferencesto AM1 are correct for 1SO 9899:1990/DAM 1 but are not
correct for the COX draft.

MSE.1 M SE Background

Mogt traditional computer systems and computer languages, including traditiond C, have an
assumption, sometimes undocumented, that a “character” can be handled as an atomic quantity
associated with a single memory storage unit — a “byte” or something similar. This is not true in
general. For example, a Japanese, Chinese or Korean character usually requires a representation of
two or three bytes; this israultibyte character as defined by 83.14 and 85.2.1.2. Even in the Latin
world, a multibyte coded character set may appear in the near future. This conflict is lnademhe

character problem.

A related concern in this area is how to address having at least two different meanings for string length:
number of bytes and number of characters.

To cope with these problems, many technical experts, particularly in Japan, have developed their own
sets of additional multibyte character functions, sometimes independently and sometimes cooperatively.
Fortunately, the developed extensions are actually quite similar. It can be said that in the process they
have found common features for multibyte character support. Moreover, the industry currently has
many good implementations of such support.

The above in no way denigrates the important groundwork in multibyte- and wide-character
programming provided by C90:

» Both the source and execution character sets can contain multibyte characters with possibly
different encodings, even in the “C” locale.

* Multibyte characters are permitted in comments, string literals, character constants, and header
names.

* The language supports wide-character constants and strings.

» The library has five basic functions that convert between multibyte and wide characters.
However, the five functions are often too restrictive and too primitive to develop portable international
programs that manage characters. Consider a simple program that wants to count the number of
characters, not bytes, in its input.

The prototypical program,
#i ncl ude <stdi o. h>

int main(void) {
148

C9I9X RATIONALE WG14/N850 J11/98-049
int ¢, n=0;
while ((c = getchar()) != ECF)
n++;
printf("Count = %l\n", n);
return O;

}

does not work as expected if the input contains multibyte characters; it dways counts the number of
bytes. It is certainly possble to rewrite this program using just some of the five basic conversion
functions, but the smplicity and elegance of the above are lost.

C90 deliberately chose not to invent a more complete multibyte- and wide-character library, choosing
instead to await their natural development as the C community acquired more experience with wide
characters. The task of the Committee was to study the various existing implementations and, with
care, develop this first amendment to C90. The set of developed library functions is commonly called
the MSE (Multibyte Support Extension).

Similarly, C90 ddliberately chose not to address in detail the problem of writing C source code with
character sets such as the nationa variants of 1SO 646. These variants often redefine several of the
punctuation characters used to write a number of C tokens. The partial solution adopted was to add
trigraphs to the language. Thus, for example, ??< can appear anywhere in a C program that { can
appear, even within a character constant or astring literal.

AM1 responds to an international sentiment that more readable aternatives should also be provided
wherever possible. Thus, it adds to the language dternate spellings of severd tokens. It also adds a
library header, <is0646.h>, that defines a number of macros that expand to sill other tokens which are
less readable when spelled with trigraphs. Note, however, that trigraphs are ill the only alternative to
writing certain characters within a character constant or a string literal.

An important goal of any amendment to an international standard is to minimize quiet changes —
changes in the definition of a programming language that transform a previously valid program into
another valid program, or into an invalid program that need not generate a diagnostic message, with
different behavior. (By contrast, changes that invalidate a previously valid program are generally
considered palatable if they generate an obligatory diagnostic message at translation time.)
Nevertheless, AM1 knowingly introduces two classes of quiet changes:

* new tokens — The tokelis and% % are just sequences of preprocessing tokens in C90
but become single preprocessing tokens with specific meanings in AM1. An existing program
that uses either of these tokens in a macro argument can behave differently as a result of AML1.

* new function names — Several names with external linkage, suatoag, not reserved to
the implementation in C90, are now so reservedyiftranslation unit in the program includes
either of the headerswct ype. h> or <wchar . h>, even though none of the translation
units using the name include the new header. An existing program that uses any of these
names can behave differently as a result of AM1.

MSE.2 Programming model based on wide characters

149

10

15

20

25

30

35

WG14/N850 J11/98-049 C9I9X RATIONALE

Using the MSE functions, a multibyte-character handling program can be written as easlly and in the
same style as a traditiona single-byte based program. A programming mode based on MSE function
is as follows. Firg, a multibyte character or a multibyte string is read from an externd file into a
wchar _t object or awchar _t array object by thef get we function, or other input functions based
on the f get we function such as get wchar, get we, or f get ws. During this read operation, a
code converson occurs. the input function converts the multibyte character to the corresponding wide
character asif by acdl to thenbt owc function.

After al necessary multibyte characters are read and converted, thewchar _t objects are processed in
memory by the MSE functions such asi swxx, west od, wescpy, wrentnp, and so on. Findly,
the resulting wchar _t objects are written to an externa file as a sequence of multibyte characters by
the f put we function or other output functions based on the f put we function such as put wehar
put we, or f put ws. During this write operation, a code converson occurs. the output function
converts the wide character to the corresponding multibyte character as if by a call to thewct onb
function.

In the case of the formatted input/output functions, a Smilar programming style can be applied, except
that the character code converson may aso be done through extended conversion specifiers such as
%s and % c. For example, the wide-character based program corresponding to that shown in
8MSE.1 can be written as follows:

#1 ncl ude <stdi o. h>
#i ncl ude <wchar . h>

int main(void) ({
W nt t wc;
int n = 0;

while ((w = getwchar()) != WEOF)
n++;

wprintf(L"Count = %\n", n);

return O;

}

MSE.3 Parallelism versusimprovement

When defining the MSE library functions, the Committee could have chosen a design policy based
either orparalldism or onimprovement. “Parallelism” means that a function interface defined in AM1

Is similar to the corresponding single-byte function in C90. The number of parameters in
corresponding functions are exactly same, and the types of parameters and the types of return values
have a simple correspondence:

char <==> wchar _t int <==>wnt_t
An approach using this policy would have been relatively easy.

On other hand, “‘improvement” means that a function interface in AM1 is changed from the
corresponding single-byte functions in C90 in order to resolve problems potentially contained in the

150

10

15

20

25

30

35

45

50

CI9X RATIONALE WG14/N850 J11/98-049
exiging functions. Or, a corresponding function is not introduced in AM1 when the functionality can
be better attained through other functions.

In an attempt to achieve improvement, there were numerous collisons of viewpoints on how to get the
most appropriate interface. Moreover, much careful consderation and discusson among various
experts in this area was necessary to decide which policy should be taken for each function. AM1 is
the result of this process.

Thefollowing isalist of the functions that manipulate charactersin parald:

C90 AM1
I sal num I swal num
I sal pha I swal pha
I scntrl I swentrl
I sdigit I swdi gi t
I sgraph I swgr aph
I sl ower I swl ower
I sprint I swpri nt
I spunct I swpunct
| sspace | swspace
| supper I swupper
I sxdigit I swxdi gi t
t ol ower t owl ower
t oupper t owupper
fprintf fwprintf
f scanf f wscanf
printf wpri nt f
scanf wscanf
sprintf swprintf
sscanf swscanf
viprintf vw print f
vprintf vwpr i nt f
vsprintf vswpri nt f
fgetc f getwc
fgets fgetws
fputc f put we
fputs f put ws
getc getwe
get char get wchar
put c put we
put char put wechar
unget c unget we
strtod wcst od
strtol west ol
strtoul wcst oul
mencpy wnentpy
menmove wnenmove
strcpy wcscpy
st rncpy wcsnecpy
strcat wcscat

151

10

15

20

25

30

35

45

50

WG14/N850 J11/98-049

CO9X RATIONALE

st rncat wesncat
mencnp wnentnp
strcnp wescnp
strcol | wescol |
strncnp wesnenp
strxfrm wesxfrm
menchr whencthr
strchr weschr
strcspn wcscspn
strpbrk wespbr k
strrchr wesr chr
strspn wcsspn
strstr wcsstr
menset wnenset
strlen wesl en
strftine wesftinme

Note that there may still be subtle differences (see for example SMSE.6.2).
The following functions have different interfaces between single-byte and wide-character versions:

- Members of thesprintf family based on wide characters all have an extirae_t
parameter in order to avoid overflowing the buffer. Compare:

int sprintf(char *s, const char *format, ...);
int sworintf(whar_t *s, size t n,
const wchar t *format, ...); |
int vsprintf(char *s, const char *format, va_ list arg);
Int vswprintf(wchar_t *s, size_t n, const wchar_t *fornmat, |
va_list arg); |

- west ok, the wide-character version st rt ok, has an extrachar _t ** parameter in
order to eliminate the internal memory thatshe t ok function has to maintain. Compare:

char *strtok(char *sl1, const char *s2);
wchar _t *westok(wchar _t *sl1, const wchar _t *s2,
wchar _t **ptr);

The following is a list of the functions in C90 that do not have corresponding partners in AM1 for any
of several reasons such as redundancy, dangerous behavior, or a lack of need in a wide-character based
program. Most of these can be rather directly replaced by other functions:

gets

at of
put s
at oi
perror
at ol
strerror

152

CI9X RATIONALE WG14/N850 J11/98-049
Findly, the following isaligt of the functionsin AM1 that do not have corresponding partnersin C90.

They were introduced ether to achieve better control over the converson between multibyte
characters and wide characters, or to give character handling programs greater flexibility and smplicity:

wct ype

I swct ype
wct rans
towctrans
fw de

bt owc

wct ob
nbsini t
nbr | en
nbrt owc
wecrt onb
nbsrt owcs
wcsrt onbs

MSE.4 Support for invariant | SO 646

With its rich set of operators and punctuators, the C language makes heavy demands on the ASCII
character set. Even before the language was standardized, it presented problems to those who would
move C to EBCDIC machines. More than one vendor provided aternate spellings for some of the
tokens that used characters with no EBCDIC equivalent. With the spread of C throughout the world,
such representation problems have only grown worse.

SO 646, the international standard corresponding to ASCII, permits nationa variants of a number of
the charactersused by C. Strictly speaking, thisis not a problem in representing C programs, since the
necessary characters exist in al such variants: they just print oddly. Displaying C programs for human
edification suffers, however, since the operators and punctuators can be hard to recognize in ther
various dtered forms.

C90 addresses the problem in a different way. It provides replacements at the level of individua
characters using three-character sequences called trigraphs (see 85.2.1.1). For example?< is
entirely equivalent t¢ , even within a character constant or string literal. While this approach provides
a solution for the known limitations of EBCDIC (except for the exclamation mark) an646QGhe

result is arguably not highly readable.

Thus, AM1 provides a set of more readaligraphs (see 86.4.6). These are two-character alternate
spellings for several of the operators and punctuators that can be hard to read \6#6 IZ@onal
variants. Trigraphs are still required within character constants and string literals, but at least the more
common operators and punctuators can have more suggediingsspsing digraphs.

The added digraphs were intentionally kept to a minimum. Wherever possible, the Committee instead

provided alternate spellings for operators in the form of macros defined in the new header

<i s0646. h>. Alternate spellings are provided for the preprocessing operatamnsgl## because

they cannot be replaced by macro names. Digraphs are also provided for the puipctpafqrand

} because macro names proved to be a less readable alternative. mihiggeorecognizes that the

solution offered in this header is incomplete and involves a mixture of approaches, but nevertheless
153

10

15

20

25

30

35

45

WG14/N850 J11/98-049 CI9X RATIONALE
believes that it can help make Standard C programs more readable.

MSE.5 Headers

MSE.5.1 <wchar. h>
MSE.5.1.1 Prototypesin <wchar . h>

Function prototypes for the MSE library functions had to be included in some header. The Committee
consdered following ideas.

1. Introduce new headers such as <wctype. h>, <wstdi 0. h> and <wstring. h>,
corresponding to the existing headers specified in C90 such as <ct ype. h>, <st di 0. h>, and
<string. h>.

2. Declaredl the MSE function prototypesin<st dl i b. h>wherewchar _t isaready defined.
3. Introduce anew header and declare al the M SE function prototypesin the new header.

4. Declare the MSE function prototypes in the existing headers specified in C90 which are most
closdly related to these functions.

The drawback to idea 1 is that the relationship between new headers and existing ones becomes
complicated. For example, there may be dependencies between the old and the new headers, so one or
more headers may have to be included prior to including <wst di 0. h>, asin:

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <wstdi o. h>

The drawback to idea 2 is that the program has to include many prototype declarations even if the
program does not need declarations in <st dl i b. h> other than existing ones. Also, the
Committee strongly opposed adding any identifiers to existing headers.

The drawback to idea 3 is that it introduces an asymmetry between existing headers and the new
headers.

The drawback to idea 4, as with idea 2, is that the Committee strongly opposed adding identifiers to
existing headers.

So the Committee decided to introduce a new header, <wchar . h>, as the least objectionable way to
declare all M SE function prototypes. Later, the Committee split off the functions analogous to those in
<ct ype. h> and placed their declarationsin the header, <wct ype. h>, as described in SMSE.5.2.

MSE.5.1.2 Typesand macrosin <wchar . h>

The Committee was concerned that the definitions of types and maemnsshar . h> be specified
154

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049
efficiently. One goal was to require that only the header <wchar . h> need be included to use the
MSE library functions; but there were strong objections to declaring existing types such as FI LE in the
new heeder.

The definitionsin <wc har . h> are thus limited to those types and macros that are largely independent
of the exigting library. The existing header <stdi 0. h> must aso be included dong with
<wchar . h> when the program needs explicit definitions of either of thetypesFI LE and f pos_t .

MSE.5.2 <wctype. h>

The Committee origindly intended to place al MSE functiondlity in a single header, <wchar . h>, as
explained in SMSE.5.1.1. It found, however, that this header was excessively large, even compared to
the existing large headersst di 0. h> and<stdl i b. h>. The Committee also observed that the
wide-character classification and mapping functions, typically have names of the gesxx or

t owxxx, seemed to form a separate group. A translation unit could well make use of most of the
functionality of the MSE without using this separate group. Equally, a translation unit might need the
wide-character classification and mapping functions without needing the other MSE functions.

The Committee therefore decided to form a separate headadrype. h>, closely analogous to the
existing <ct ype. h>. That division also reduced the size<wfchar. h> to more manageable
proportions.

MSE.6 Wide-character classification functions
Eleveni swxxx functions have been introduced to correspond to the character-testing functions defined

in C90. Each wide-character testing function is specified in parallel with the matching single-byte
character handling function, however the following changes were also introduced.

MSE.6.1 Localedependency of i swxxx functions
The behavior of character-testing functions in C90 is affected by the current locale, and some of the
functions have implementation-defined aspects only when not in the “C” locale. For example, in the
“C” locale,i sl ower returns true (nonzero) only for lower-case letters as defined in 85.2.1.
This existing “C” locale restriction for character testing functions in C90 has been replaced with a
superseeding constraint for wide-character testing functions. There is no special description of “C”
locale behavior for theswxxx functions. Instead, the following rule is applied to any locale: when a
characterc causes sxxx(c) to return true, the corresponding wide charaatershall cause the
corresponding swxxx(we) to return true.

i sxxx(c) !'= 0 ==> iswxxx(wc) !'=0

wherec ==wct ob(wc) . Note that the converse relationship does not necessarily hold.
MSE.6.2 Changed space character handling

155

10

15

20

25

30

35

45

WG14/N850 J11/98-049 C9I9X RATIONALE

The space character, © ', is treated specidly in i sprint, i sgraph, and i spunct. Space
character handling in the corresponding wide-character functions differs from that specified in C90.
The corresponding wide-character functions return true for al wide characters for which i swspace
returns true, instead of just the single space character; therefore the behaviors of the i swgr aph and
I swpunct functions may differ from their matching functions in C90 in this regard (see the footnote
concerningi swgr aph in AM1).

MSE.7 Extensible classification and mapping functions

There are eleven standard character-testing functions defined in C90. As the number of supported
locales increases, the requirements for additional character classifications grows, and varies from locale
to locde. To satidfy this requirement, many existing implementations, especidly for non-English
gpeaking countries, have been defining new i sxxx functions, such asi skanj i, i shanji, and o
forth.

This approach, however, adds to the globa namespace clutter (although the names have been reserved)
and is not flexible at dl in supporting additional classfication requirements. Therefore, in AM1, a pair
of extensble wide-character classfication functions, wet ype and i swet ype, are introduced to
satisfy the open-ended requirements for character classfication. Since the name of a character
classfication is passed as an argument to thewct ype function, it does not add to problem of global
namespace pollution; and these generic interfaces dlow a program to test if the classfication is
available in the current locale, and to test for locale-specific character classifications, such as kanji or

hiraganain Japanese.

In the same way, a pair of wide-character mapping functions, wct r ans and t owct r ans, ae
introduced to support locae-specific character mappings. One of the example of applying this
functiondity is the mappings between hiragana and katakana in a Japanese character set.

MSE.8 Generalized multibyte characters

C90 intentionally restricted the class of acceptable encodings for multibyte characters. One goa wasto
ensure that, a least in the initid shift state, the characters in the basic C character set have multibyte
representations that are single characters with the same code as the single-byte representation. The
other was to ensure that the null byte should aways be available as an end-of-string indicator. Hence,
it should never appear as the second or subsequent byte of any multibyte code. For example, the
one-byte sequence ' a’ should aways represent L’ a’ , at least initialy, and ' \ 0’ should aways
represent L'\ 0’ .

While these may be reasonable restrictions within a C program, they hamper the ability of the MSE
functions to read arbitrary wide-oriented files. For example, a system may wish to represent files as
sequences of 1SO 10646 characters. Reading or writing such afile as awide-oriented stream should be
an easy matter. At most, the library may have to map between native and some canonical byte order in
thefile. Infact, it is easy to think of an SO 10646 file as being some form of multibyte file except that
it violates both restrictions described above: the code for * a’ can look like the four-byte sequence
\ O\ O\ Oa for example.)

Thus, the MSE introduces the notion of a generalized multibyte encoding. It subsumes al the ways
156

10

15

20

25

30

35

45

CI9X RATIONALE WG14/N850 J11/98-049

the Committee can currently imagine that operating systems will represent files containing characters

from a large character set. (Such encodings are valid only in fles—they are still not permitted as
internal multibyte encodings.)

MSE.9 Streamsand files

MSE.9.1 Conversion state

It is necessary to convert between multibyte characters and wide characters within wide-character
input/output functions. The conversion state introduced in 87.24.6 is used to help perform this
conversion. Every wide-character input/output function makes use of, and updates, the conversion
state held in th&l LE object controlling the wide-oriented stream.

The conversion state in thé LE object augments the file position within the corresponding multibyte
character stream with the parse state for the next multibyte character to be obtained from that stream.
For state-dependent encodings, the remembered shift state is a part of this parse state, and therefore a
part of the conversion state. (Note that a multibyte encoding thabyakaracters requiring two or

more bytes needs a nontrivial conversion state even if it is not a state-dependent encoding.)

The wide-character input/output functions behave as ff:
» aFl LE object includes a hidderbst at e_t object.

» the wide-character input/output functions use this hidden object as the state argument to the
nbr t owc orwcr t onb functions that perform the conversion between multibyte characters in
the file and wide characters inside the program.

MSE.9.2 Implementation

The Committee assumed that only wide-character input/output functions can maintain consistency
between the conversion state information and the stream. The byte input/output functions do nothing
with the conversion state information in tReLE object. The wide-character input/output functions

are designed on the premise that they always begin executing with the stream positioned at the
boundary between two multibyte characters.

The Committee felt that it would be intolerable to require implementors to implement these functions
without such a guarantee. Since executing a byte input/output function on a wide-oriented stream may
well leave the file position indicator at other than the boundary between two multibyte characters, the
Committee decided to prohibit such use of the byte input/output functions.

MSE.9.2.1 Seek operations

An f pos_t object for a stream in a state-dependent encoding includes the shift state information for
the corresponding stream. In order to ensure the behavior of subsequent wide-character input/output
functions in a state-dependent encoding environment, a seek operation should reset the conversion
state corresponding to the file position as well as restoring the file position.

157

10

15

20

25

30

35

WG14/N850 J11/98-049 C9I9X RATIONALE

The traditional seek functions, f seek and ftel | , may not be adequate in such an environment
because even an object of type | ong i nt may be too smdl to hold both the converson gate
information and the file position indicator. Thus, the newer f set pos and f get pos are preferred,
since they can store as much information as necessary inanf pos_t object.

MSE.9.2.2 State-dependent encodings

With state-dependent encodings, a Fl LE object must include the conversion state for the stream. The
Committee felt strongly that programmers should not have to handle the tedious details of keeping
track of converson states for wide-character input/output. There is no means, however, for
programmers to access the internd shift state or converson statein aFl LE object.

M SE.9.2.3 Multiple encoding environments

A multiple encoding environment has two or more different encoding schemes for files. In such an
environment, some programmers will want to handle two or more multibyte character encodings on a
sngle platform, possibly within a single program. There is, for example, an environment in Japan that
has two or more encoding rules for a single character set. Most implementations for Japanese
environments should provide for such multiple encodings.

During program execution, the wide-character input/output functions get information about the current
encodings from the LC_CTYPE category of the current locale when the converson state is bound, as
described immediately below. When writing a program for a multiple encoding environment, the
programmer should be aware of the proper LC_CTYPE category when opening a file and establishing
its orientation. During subsequent accesses to the file, the LC_CTYPE category need not be restored
by the program.

The encoding-rule information is effectively a part of the converson state. Thus, the information
about the encoding rule should be stored with the hidden nbst at e_t object within the FI LE object.
Some implementations may even choose to store the encoding rule as part of the vaue of anf pos_t

object.

The converson state just created when afile is opened is said to have unbound state because it has no
relations to any of the encoding rules. Just after the first wide-character input/output operation, the
conversion state is bound to the encoding rule which corresponds to the LC_CTYPE category of the
current locale. Thefollowing isasummary of the relations between various objects, the shift state, and
the encoding rules:

f pos_t FI LE
shift sate included included
encoding rule maybe included
changing LC_CTYPE (unbound) no effect affected
changing LC_CTYPE (bound) no effect no effect

158

10

15

C9I9X RATIONALE WG14/N850 J11/98-049

MSE.9.3 Byte versuswide-character input/output

Both the wide-character input/output functions and the byte input/output functions refer the same type

of object, aFl LE object. As described in SMSE.9.2, however, there is a constraint on mixed usage of
the two types of input/output functions. That is, if a wide-character input/output function is executed
for aFl LE object, its stream becomes wide-oriented and no byte input/output function may be applied
later, and conversely.

The reason for this constraint is to ensure consistency between the current file position and the current
conversion state in th€l LE object. Executing one of the byte input/output functions for a
wide-oriented stream breaks this consistency because the byte input/output functions may, and should,
ignore the conversion state information infehé.E object.

The diagram Al shows the state transitions of a stream in response to various input/output functions.

159

WG14/N850 J11/98-049 C9X RATIONALE

Diagram Al

fopen

fuide(a, 0 or
positioning

‘ function
furde(s, -1

ot hyte
function

INBOUND

fulde(s, 1) or
wde-character
function

freopen

other
function

WIDE
ORIENTED

ORIENTED

felose

160

10

15

20

25

30

35

CI9X RATIONALE WG14/N850 J11/98-049
MSE.9.4 Text versusbinary input/output

In some implementations such as UNIX, there are streams which look the same whether read or
written as text or binary. For example, arbitrary file postioning operations are supported even in text
mode. In such an implementation, the Committee specified a file opened as a binary stream should
obey the usage condraints placed upon text streams when accessed as a wide-oriented stream (for
example, the restrictions on file-positioning operations should be obeyed).

So an implementation of the wide-character input/output functions can rely on the premise that
programmers use the wide-character input/output functions with a binary stream under the same
congraints as for a text stream. An implementation may aso provide wide-character input/output
functions that behave correctly on an unconstrained binary stream, however the behavior of the
wide-character input/output functions on such an unconstrained binary stream cannot be ensured by all
implementations.

MSE.10 Formatted input/output functions

MSE.10.1 Enhancing existing for matted input/output functions

The smplest extenson for wide-character input/output is to use existing formatted input/output
functions with existing byte-oriented streams. In this case, data such as strings that consst of
characters only are treated as sequences of wide characters, and other data such as numerical values are
treated as sequences of single-byte characters. Though thisis not a complete model for wide-character
processing, it is a common extenson among some existing implementations in Japan, and so the
Committee decided to include asmilar extension.

The origina intent was to add the new conversion specifiers % and % to the existing formatted input
and output functions to handle a wide-character string and a wide character respectively. After long
discussons about the actual implementation and future library directions, these specifiers were
withdrawvn. They were replaced with the qudified converson specifiers, % s and % c, with the
addition of % [...] in the formatted input functions. Note that even though the new qudifier is
introduced as an extension for wide-character processng, the field width and the precision till specify
the number of bytesin the multibyte representation in the stream.

To implement these new conversion specifiers efficiently, a new set of functions is required to parse or

generate multibyte sequences ‘“restartably.” Thus, the functions described in 87.24.6.4 were

introduced.

Because these new conversions are pure extensions to C90, they have several essential restrictions on
them, and so it is expected that they wil be most useful in implementations that are not
state-dependent. The restrictions are:

» fscanf function — In a state-dependent encoding, one or more shift sequences may be
included in the format to be matched as part of an ordinary multibyte character literal text
directive. Shift sequences may also be included in an input string. Becausec trd
function treats these shift sequences in exactly the same way as for single-byte characters, an
unexpected match may occur or an expected match might not occur (see 84.6.2.3.2 of AM1

161

10

15

20

25

30

35

45

WG14/N850 J11/98-049 CI9X RATIONALE
for some examples).

« fprintf function — In a state-dependent encoding, redundant shift sequences may be
written.

MSE.10.2 Formatted wide-character input/output functions

In the early MSE, formatted wide-character input/output functions were not introduced because an
extension to existing formatted input/output functions seemed to be sufficient. After considering the
complete model for wide-character handling, the need for formatted wide-character input/output
functions was recognized.

Formatted wide-character input/output functions have much the same conversion specifiers and
gualifiers as existing formatted input/output functions, even including the qualified conversion
specifiers2b c, % s, and% [..] , but because the format string consists of wide characters and the
field width and precision specify the number of wide characters, some of the restrictions on existing
functions are removed in the new functions. This means that wide characters are read and written
under tighter control of the format string.

MSE.11 Addingthefw de function

While the Committee believes that the MSE provides reasonably complete functionality for
manipulating wide-oriented files, it noticed that no reliable mechanism existed for testing or setting the
orientation of a stream. The program can try certain operations to see if they fail, but that is risky and
still not a complete strategy. The Committee therefore introducddirh#e function as a means of

forcing a newly opened stream into the desired orientation without attempting any input/output on the
stream. The function also serves as a passive means of testing the orientation of a stream, either before
or after the orientation has been fixed; and it serves as a way to bind an encoding rule to a
wide-oriented stream under more controlled circumstances (see SMSE.9.2.3).

MSE.12 Single-byte wide-character conversion functions

Two single-byte wide-character conversion functitmsywc andwct ob, were introduced in AM1.
These functions simplify mappings between a single-byte character and its corresponding wide
character, if any.

C90 specifies the rule that x’ ==’ x’ for any membex of the basic character set. The Committee
discussed whether to relax or tighten this rule. In AM1, this rule is preserved without any changes.
Applying the rule to all single-byte characters, however, imposes an unnecessary constraint on
implementations with regard to wide-character encodings. It prohibits an implementation from having
a common wide-character encoding for multiple multibyte encodings.

On the other hand, relaxing or removing the rule was considered to be inappropriate in terms of
practical implementations. The newt ob function can be used to test safely and quickly whether a

wide character corresponds to some single-byte character. For example, when the format string passed
to scanf is parsed and searched for a white space charactetctlmd function can be used in
conjunction with the sspace function.

162

10

15

20

25

30

35

45

C9I9X RATIONALE WG14/N850 J11/98-049

Similarly, there are frequent occasions in wide-character processing code, especidly in the
wide-character handling library functions, where it is necessary to test quickly and efficiently whether a
single-byte character isthe first and only character of a vaid multibyte character. Thisis the reason for
introducing the bt owc function. Note that, for some encodings, bt owc can be reduced to a smple
in-line expression.

MSE.13 Extended conversion utilities

Although C90 allows multibyte characters to have state-dependent encoding (85.2.1.2), the original
functions are not always sufficient to efficiently support such encodings due to the folinitaigpns
of the multibyte character conversion functions (87.20.7):

1. Since the functions maintain shift state information internally, they cannot handle multiple strings at
the same time.

2. The formatted output functions may write redundant shift sequences, and the formatted input
functions cannot reliably parse input with arbitrary or redundant shift sequences. The
multibyte-string conversion functions (87.20.8) have an inconvenient shortcoming regardless of
state dependency of the encoding: when an encoding error occurs, these functions return
si ze_t - 1 without any information on the location where the conversion stopped.

For all these reasons, the Committee felt it necessary to augment the set of conversion functions in
AM1.

MSE.13.1 Conversion state

To handle multiple strings with a state-dependent encoding, the Committee introduced the concept of
conversion state. The conversion state determines the behavior of a conversion between multibyte and
wide-character encodings. For conversion from multibyte characters to wide characters, the
conversion state stores information such as the position within the current multibyte character (as a
sequence of characters or a wide-character accumulator). For conversions in either direction, the
conversion state stores the current shift state, if any, and possibly the encoding rule.

The non-array object typebst at e_t is defined to encode the conversion state. A zero-valued
nbst at e_t object is assumed to describe the initial conversion state. (This is not necessarily the
only way to encode the initial conversion state, however.) Before any operations are performed on i,
such a zero-valuexibst at e_t object isunbound. Once a multibyte or wide-character conversion
function executes with thebst at e _t object as an argument, however, the object becbouesl

and holds the above information.

The conversion functions maintain the conversion state mbahat e _t object according to the
encoding specified in theC_CTYPE category of the current locale. Once the conversion starts, the
functions will work as if the encoding scheme were not changed provided all three of the following
conditions obtain:

163

10

15

20

25

30

35

45

WG14/N850 J11/98-049 CI9X RATIONALE
» the function is applied to the same string as whentbls¢ at e _t object was first bound.

» theLC_CTYPE category setting is the same as whemty®t at e_t object was first bound.

» the conversion direction (multibyte to wide character, or wide character to multibyte) is the
same as when timbst at e_t object was first bound.

MSE.13.2 Conversion utilities

Once thenbst at e_t object was introduced, the Committee discussed the need for additional
functions to manipulate such objects.

MSE.13.2.1 Initializing conversion states

Though a method to initialize the object is needed, the Committee decided that it would be better not
to define too many functions in AM1. Thus the Committee decided to specify only one way to make
annbst at e_t object represent the initial conversion state, by initializing it with zero. No initializing
function is supplied.

MSE.13.2.2 Comparing conversion states

The Committee reached the conclusion that it may be impossible to define the equality between two
conversion states. If twabst at e_t objects have the same values for all attributes, they might be

the same. However, they might also have different values and still represent the same conversion state.
No comparison function is supplied.

MSE.13.2.3 Testing for initial shift state

The nbsi nit function was added to test whether rdpst at e_t object describes the initial
conversion state or not, because this state does not always correspond to a certain set of component
values (and the components cannot be portably compared anyway). The function is necessary because
many functions in AM1 treat the initial shift state as a special condition.

MSE.13.2.4 Restartable multibyte functions

Regarding problems 2 and 3 described at the beginning of SMSE.13, the Committee introduced a
method to distinguish between an invalid sequence of bytes and a valid prefix to a still incomplete
multibyte character. When encountering such an incomplete multibyte sequendey ltleen and

nbr t owc functions returrsi ze t - 2 instead oki ze_t - 1, and the character accumulator in the
nbst at e_t object stores the partial character information. Thus, the user can resume the pending
conversion later, and can even convert a sequence one byte at a time.

The new multibyte/wide-string conversion utilities are thus nmasiartable by using the character
accumulator and shift-state information stored imast at e_t object. As part of this enhancement,

the functions also have a parameter that is a pointer to a pointer to the source of the position where the
conversion stopped.

164

10

15

20

25

30

C9I9X RATIONALE WG14/N850 J11/98-049
MSE.14 Column width

The number of characters to be read or written can be specified in existing formatted input/output
functions. On a traditional display device that displays characters with fixed pitch, the number of
characters is directly proportiona to the width occupied by these characters; so the display format can
be specified through the field width and/or the precision.

In formatted wide-character input/output functions, the field width and the precison specify the
number of wide characters to be read or written. The number of wide characters is not always directly
proportiona to the width of their display. For example, with Japanese traditiona display devices, a
sngle-byte character such as an ASCII character has half the width of a Kanji character, even though
each of them istreated as one wide character. To control the display format for wide characters, a set
of formatted wide-character input/output functions were proposed whose metric was the column width
instead of the character count.

This proposa was supported only by Japan. Ciritics observed that the proposa was based on such
traditional display devices with fixed-width characters, while many modern display devices support a
broad assortment of proportiona pitch type faces. Hence, it was questioned whether the extra
input/output functions in this proposal were really needed or were sufficiently general. Also consdered
was another set of functions that return the column width for any kind of display device for a given
wide character or wide-character string; but these seemed to be beyond the scope of C. Thus al
proposals regarding column width were withdrawn.

If an implementor needs this kind of functiondlity, there are a few ways to extend wide-character
output functions and till remain conforming to AM1. For example, the a new conversion specifier can
be used to specify the column width as shown below:

%N — set the counting mode to “printing positions” and rese¥heounter.

%N — set the counting mode back to “wide characters” and res#h tbeunter.

165

| ndex

#elsedirective, 80
#endif directive, 80
#error directive, 87

#if directive, 9, 56, 80
#indudedirective, 80
#pragmadirective, 87
#undef directive, 94, 113
/I comments, 43
ust/group, 90

?7? escape diagraph, 15
__DATE__, 88
__FILE_, 87,88
_func__, 36
__LINE_, 87,88
__STDC__, 88
__STDC_IEC 559, 88

__STDC |EC 559 COMPLEX, 88

__STDC_VERSION, 88
_TIME__, 88

_Booal, 35

_Complex, 35
_Imaginary, 35
<complex.h>, 35, 95
<ctypeh>, 96
<errno.h>, 97

<fenv.h>, 97

<float.h>, 101
<inttypes.h>, 100
<isob46.h>, 152, 157
<locdeh>, 101
<math.h>, 104, 134
<satjmp.h>, 110
<signa.h>, 112
<stdarg.h>, 113
<stdbool .h>, 35
<stddef.h>, 50, 52, 114
<ddio.h>, 116, 117
<gdlib.h>, 129
<dtring.h>, 135
<tgmeth.h>, 137
<timeh>, 138
<varargs.h>, 113
<wchar.h>, 152, 158
<wctype.h>, 152, 158
1984 /ust/group Standard, 90
abort, 94, 132

abs, 134

adbstract machine, 11, 12
Ada, 13

agreement point, 11, 43
aliasing, 44

aignment, 6

aloca, 131

ambiguous expression, 54
Annex K, 7

ANSI X3.64, 39

ANS X3L2, 17

arge, 11

argument promotion, 47
argv, 11

asif, 9, 78, 143

ASCI, 13, 14, 15, 16, 96, 102, 140, 156

asctime, 140

asm, 35

assart, 94
assodiativity, 43
AT&T Bell Laboratories, 75
aan2, 105

atexit, 11, 112, 132
atof, 129

aoi, 129

aad, 129

Backus-Naur Form, 22
benign redefinition, 82

binary numeration systems, 28, 49

binary streams, 118

hit, 6

bit fields, 60

bit-fields, 60

break, 77

brtowc, 167

btowc, 165

byte, 6, 50

C++, 68, 70

Cox, 1

cdloc, 131

caseranges, 75

cell, 108

dock, 139

dock_t, 138

codeset, 15, 102
collating sequence, 15
comments, 42

common extensions, 24, 35, 40
common storage, 24
compatible types, 30, 69
complex, 29, 35
composite types, 30, 68
compound literal, 36
Compound literds, 49
concatenation, 40
conformance, 7
conforming freestanding, 7
conforming hosted, 7
conforming program, 2
oond, 35

constant expressions, 55
constraint error, 48
continue, 77

control character, 96
conversions, 30

cross compiler, 36

I ndex

I ndex

cross-compilation, 8, 56, 101 getenv, 133

curses, 90 GMT, 140

data abstraction, 49 gmtime, 139, 140

DEC PDP-11, 2 goto, 75

decma-point character, 92 Gray code, 28

dedarations, 56 grouping, 43

defined, 56 header names, 42
Designated initidizers, 74 Hiragana, 159

diagnostic message, 10 hosted environment, 11
diagnostics, 2, 10, 31, 83, 87 HUGE_VAL, 104

diagraph, 15 IEC 559, 32, 101, 104, 105, 107
difftime, 139 IEC 559 floating point standard, 19
digraph, 14 |EEE 754, 19

digraphs, 156 Imeginary, 35

div, 134 implementati on-defined behavior, 6, 39, 60, 104, 107, 112,
domain error, 104 118, 119

DRAM, 58 implicit int, 60

EBCDIC, 17, 39, 102, 156 infinity, 124

entry, 35 inling, 35, 67

enum, 35, 57 int_max_t, 9

enumerations, 29, 38, 56 int64_t, 59

EOF, 96 integral constant expression, 56
errno, 97, 104 integral promations, 30
erroneous program, 10 integral widening conversions, 70
executable program, 9 interactive device, 12

exit, 11, 132, 133 interleaving, 43
EXIT_FAILURE, 132 internationdization, 140
EXIT_SUCCESS, 132 invalid pointers, 34
expressions, 43 isasdii, 96

extended character, 6 I1SO, 15

Extended integer, 101 1SO 10646, 103

externa linkage, 9 I1SO 646, 15, 152, 156
fdose, 116 1SO 9899:1990/DAM 1, 151
fflush, 120, 122 isgpace, 97, 125

frexp, 106 iswctype, 159

foetc, 119, 126 jmp_buf, 110

fgetpos, 128 Kanji, 159

foets, 126 Katakana, 159

FILE, 127 Ken Thompson, 75

file pointer, 116 kill, 113

file position indicator, 118, 129 labels, 75
FILENAME_MAX, 117 Idexp, 106

float.h, 19 Idiv, 134

fmod, 51, 109 lexica eements, 35

fopen, 116, 120 library, 9

fopen modes, 122 limits.h, 18

FOPEN_MAX, 117 linkage, 22, 23

Fortran, 19, 24, 35, 68, 72, 134 locale, 96

Fortran-to-C trandation, 19, 44, 105 |ocaleconv, 104

fpos t, 117 locale-specific, 136

fputc, 119 log function, 106

fread, 116, 128 long double, 28, 37, 57, 123
free, 132 long float, 29, 57

fscanf, 124 long long, 57, 125

fseek, 116, 118, 122, 128 longjmp, 17, 111

feetpos, 122 Ivalue, 6, 33, 48, 55

ftell, 118 Ivalues, 44, 49

full expression, 11 machine generation of C, 10, 56, 68, 74, 75
function definition, 78 main, 11

function prototypes, 70 manifest constant, 104
future directions, 88 mantissa, 19

fwide, 165 metherr, 105

fwrite, 116 mbrlen, 167

getc, 94, 126 mbrtomb, 160

mbrtowc, 160

mbstate t, 161, 166
memchr, 135

memcmp, 135

memcpy, 135

memmove, 135

memsst, 135, 136

mixed code and declarations, 77
mktime, 139

modf, 106

modifiable lvalue, 33

MSE, 152

multibyte character, 6
multibyte characters, 16, 134
Multibyte Support Extension, 152
Multiple encoding environment, 161
multi-processing, 113
name space, 22

NaN, 21, 106, 124
new-line, 17

NULL, 54, 115

null pointer constant, 115
object, 6

obsolescent, 89

offsetof, 69, 115

old-style declaration, 72
ones-complement, 18
onexit, 132

optimization, 57

order of evaluation, 43
overlapping objects, 90
Pascdl, 29, 76

perror, 129, 137

phases of trandation, 9, 10
pointer subtraction, 52
POSIX, 113, 116

pragma operator, 88
precedence, 43
preprocessing, 9, 10, 35, 40, 42, 43, 94
primary expression, 46
printf, 28, 94

printing character, 96
program startup, 10, 11, 56
prototype, 78

prototypes, 89

ptrdiff_t, 52, 114

pure function, 54

putc, 94, 126

putenv, 133

puts, 127

quality of implementation, 10
Quiet Change, 3, 35

rand, 130

range error, 106

register, 57

remove, 119

rename, 119

repertoire, 15

restrict, 64, 90

rewind, 122, 129

Ritchie, DennisM., 24

safe evaluation, 94
sametype, 30

scanf, 94

scope, 22

sequence points, 11, 43
sequenced expression, 54
sequencing, 11

setbuf, 118, 122
setjmp, 111

setlocale, 96, 103
setvbuf, 116, 117, 118, 122
side effect, 27, 54, 70
sig aomic t, 17
SIGABRT, 132
SIGILL, 112

sgnd, 12, 17, 27, 111, 112, 115, 132
signa.h, 17

signed, 35, 57
significand, 19
sgn-magnitude, 18
SIGTERM, 132

sze t, 50, 114, 128, 131, 137
sizeof, 6, 50, 52, 56
sizeof operator, 49
snprintf, 125
sourcefile, 9

spirit of C, 53

sprintf, 104

srand, 130

sscanf, 126
standardized pragmas, 88
Satements, 75
gaticinitiaizers, 56
storage duration, 22
streall, 136

sreams, 117

srerror, 137

grftime, 140

strictly conforming program, 2, 7, 11
stringizing, 85

grlen, 137

drnecat, 136

strncpy, 135

drstr, 136

strtod, 129

strtok, 136

srtol, 129, 130

grtoul, 130

structure constant, 36
structures, 60

strxfrm, 136

system, 133

tags, 56

text sreams, 118

time, 140

time t, 138

tm_isdst, 139
TMP_MAX, 117
tmpfile, 120

tmpnam, 120

token pasting, 86
trigraph, 156

trigraph sequences, 14
Trigraphs, 152
twaos-complement, 28

I ndex

Index

type modifier, 68

type quaifiers, 62

typedef, 68, 73, 78

UCN, 36, 103

uint_max_t, 9

undefined behavior, 6, 10, 12, 22, 28, 39, 48, 51, 113, 133,
134

ungetc, 127

universal character, 6

Universal Character Name, 36, 103

UNIX, 2, 31, 81, 90, 105, 112, 113, 116, 117, 119, 126

unlink, 119

unsequenced expression, 54

unsigned preserving, 30

unspecified behavior, 6, 87

va arg, 113

va_end, 114

va list, 113, 114

va dart, 113, 114

value preserving, 30

variable length array, 25, 30, 50, 52, 56, 69, 71, 77

variably modified type, 69

VAX/VMS, 105

vprintf, 124, 126

vaid, 35, 57

void *, 34

void*, 28, 51, 54, 123

volatile, 35

vprintf, 126

vanprintf, 126

vsprintf, 126

wchar_t, 114

wctob, 165

wctype, 159

WG14, 1

white space, 35

wide character, 6, 39

wide string, 41

widened types, 94

