Proposal for C2Y
 WG14 N3233

Title: Recommendation for printf rounding
Author, affiliation: C FP group
Date: 2024-03-17
Proposal category: Editorial
Reference: N3219

The recommended practice in 7.23.6.1 (fprintf) recommends correct rounding up to a threshold of M decimal digits for the result, with a looser specification for more than M digits. With this looser specification, increasing the number of output digits could produce a less accurate result: a conversion to S digits could be less accurate than the conversion of the same input to R digits where $M \leq R<S$. This issue was raised to CFP by Vincent Lefevre:
$>$ Let's take an example: $M=6, \sim=1.2345678$, and rounding to nearest.
$>$
> If the number of significant decimal digits is 6 , then the RP says
$>$ that the correctly rounded value 1.23457 should be output.
$>$
> If the number of significant decimal digits is 7, then one considers
$>\mathrm{L}=1.23456$ and $\mathrm{U}=1.23457$. According to the RP, 1.234560 is one of
$>$ the possible recommended outputs, since $1.23456 \leq 1.234560 \leq 1.23457$.
$>$
$>$ Conclusion: By increasing the number of output digits, one has
$>$ decreased the accuracy!
$>$
$>$ And this can be the case for any number of decimal digits greater
$>$ than M.
$>$ IMHO, for rounding to nearest on more than M digits, there should
$>$ be an additional requirement: the error should not be larger than
$>$ the one for M digits. With this rule, it is still possible to use
$>$ the correctly rounded value on M digits and pad with zeros.
$>$
$>$ Note that this is a recommendation: if the error is slightly larger
$>$ than recommended because the algorithm attempts to round correctly
$>$ for almost all cases, this is not an issue.

The same issue is in 7.31.2.1 (fwprintf).

The following suggested changes address this issue.

Suggested changes (to N3219):

In 7.23.6.1 \#13 and in 7.31.2.1 \#13, change
the value of the resultant decimal string D should satisfy $L \leq D \leq U$, with the extra stipulations that the error should have a correct sign for the current rounding direction and that increasing the number of decimal digits for the result should not decrease the accuracy of the result.

