
A type qualifier to indicate pointer nullability

_Optional

Christopher Bazley
24th January 2024

Source of quotes

C has been at peace with itself for a long time

In our experience, C has proven to be a
pleasant, expressive, and versatile language
for a wide variety of programs. It is easy to
learn, and it wears well as one’s experience

with it grows.

Since C is relatively small, it can be described in a
small space, and learned quickly. A programmer
can reasonably expect to know and understand
and indeed regularly use the entire language.

What do C programmers waste time on?
• Repetitive, longwinded, and unverifiable parameter descriptions:

* @param[in] wmp The active WOMUMP context.

* @param[out] export_list Non-NULL pointer to a non-NULL pointer to a valid export list.

*/

void womump_context_get_deferred_exports(womump_context *wmp,

 uint64_t **export_list);

• Assertions to check pointer parameters:
void womump_sync_to_cpu(womump_context *wmp,

 const womump_mapping *mapping,

 void *address,

 const size_t size)

{

 assert(wmp);

 assert(mapping);

 assert(mapping->hunk);

 assert(address);

• Negative tests to verify such assertions:
test_framework_expect_abort();

 womump_sync_to_cpu(wmp, mapping, NULL, 10);

Isn’t this a solved problem?

void *my_memcpy(char dest[static 1], const char src[static 1], size_t len);

void test(void)

{

 char *dest = NULL, *src = NULL;

 my_memcpy(NULL, NULL, 10); // warning: argument 1 to 'char[static 1]' is null where

non-null expected

 my_memcpy(dest, src, 10); // no compiler warning from Clang

}

C99 allows static within [], which requires a passed array to be at least a given size:

• GCC generates a warning based on path-sensitive analysis (with -fanalyzer).
• Clang only generates a warning if a null pointer constant is specified directly.
• Not usable for functions like memcpy because arrays of void are illegal.
• Not usable for local variables or return values.
• (Arguably) not pleasant or expressive.

Isn’t this a solved problem? (2)

void *my_memcpy(void *dest, const void *src, size_t len)

__attribute__((nonnull (1, 2)));

void test(void)

{

 char *dest = NULL, *src = NULL;

 my_memcpy(NULL, NULL, 10); // warning: argument 1 null where non-null expected

 my_memcpy(dest, src, 10); // warning: use of NULL 'dest' where non-null expected

}

A GCC extension allows parameters to be marked as non-null:

• Generates a warning based on path-sensitive analysis (with -fanalyzer).
• Easy to accidentally specify wrong parameter indices.
• Not usable for local variables or return values.
• Not standard C, although also supported by Clang.
• (Arguably) not pleasant or expressive.

Isn’t this a solved problem? (3)

void *my_memcpy(void *_Nonnull dest, const void *_Nonnull src, size_t len);

void test(void)

{

 char *dest = NULL, *src = NULL;

 my_memcpy(NULL, NULL, 10); // warning: null passed to a callee that requires a non-

null argument

 my_memcpy(dest, src, 10); // no warning

}

A Clang extension allows _Nullable, _Nonnull and _Null_unspecified:

• Generates warnings based on path-sensitive analysis (with ––analyze or clang-
tidy).

• Less verbose and error-prone than the __attribute__ syntax.
• Usable for local variables and return values.
• Neither standard C, nor supported by GCC.

The elephant in the room

C++ references

• A reference cannot refer to a different object after being initialized.

• A reference cannot refer to a dereferenced null pointer.

• A reference has the same syntax as an object in expressions.

Stroustrup thought this desirable to support operator overloading.

int *const x = &y; // x can only point to yLike this pointer:

• A reference is created implicitly without the address-of operator &.

Call-by-reference is indistinguishable from call-by-value.

Like this parameter: void foo(int x[static 1]); // x can’t be null

C and C++ syntax are irreconcilable

The C trick of having the declaration of a
name mimic its use leads to declarations

that are hard to read and write, and
maximises the opportunity for humans and

programs to confuse declarations and
expressions.

int *ip is intended as a mnemonic; it says
that the expression *ip is an int. The

syntax of the declaration for a variable mimics
the syntax of expressions in which the

variable might appear.

C and C++ syntax are irreconcilable (2)

int a, // 'a' has type 'int'

 *b, // dereferencing pointer 'b' yields 'int'

 c[3], // elements of array 'c' have type 'int'

 d(float), // value returned by function 'd' has type 'int'

 *e(float); // dereferencing return value of 'e' yields 'int'

Consider the following C declaration:

int &f = a, // address of 'f' has type 'int’ ?!?

 *&g = b; // 'g' has type 'int’ ?!?

Now consider the C++ syntax for references:

Bjarne Stroustrup kind of hates C
Non-C programmers

usually underestimate
the value that C

programmers attribute
to the C syntax.

Any new syntax would
add complexity to a

known mess.

The agony to me and other
implementers, documenters,
and tool builders caused by
the perversities of syntax

has been significant.

Dealing with stubborn old-time C
users, would-be C experts, and

genuine C/C++ compatibility issues
has been one of the most difficult

and frustrating aspects of
developing C++.

A thought experiment

What would references look like if designed by someone who
likes C?

(The answer isn’t int ip[static const 1])

Inspiration from Python
C is Guido’s favourite language (after Python).

Python is dynamically typed with annotations.

Mypy is a static type checker for Python.

It makes a strong distinction between values that
can be None and values that cannot.
from typing import Optional

def foo(n: int) -> int:

 return n

def bar(n: Optional[int]) -> int:

 return 0 if n is None else n

foo(None) # error: Argument 1 to "foo" has incompatible type "None"; expected "int" [arg-type]

bar(None)

_Optional int *ip;

A new type qualifier for the purpose of adding pointer nullability information to C programs.

oming soon* to

programming C

* Subject to approval of paper N3089 by the IST/5/-/24 committee for the C programming language

• Familiar and ergonomic syntax and semantics.

• Uses existing type-compatibility rules.

• Also useful for path-sensitive analysis.

• Makes code self-documenting.

• Reduces need for assertions.

• Reduces need for negative testing.

Proposed C language extension

• _Optional indicates that a pointer to a so-qualified type may
be null.

• _Optional is treated like const and volatile for lvalue
conversion and when determining type compatibility.

• If an operand is a pointer to _Optional and its value cannot
be proven to be non-null, implementations may generate a
warning as if it were null.

• Unary & is modified to remove any _Optional qualifier from
its operand.

• Only a pointed-to object or incomplete type may be
_Optional-qualified in a declaration.

Example usage
void foo(int *);

void bar(_Optional int *i)

{

 *i = 10; // path-sensitive warning of unguarded dereference

 if (i) {

 *i = 5; // okay

 }

 int *j = i; // warning: initializing discard qualifiers

 j = i; // warning: assignment discards qualifiers

 foo(i); // warning: passing parameter discards qualifiers

 foo(&*i); // path-sensitive warning of unguarded dereference

 foo(&i[10]); // path-sensitive warning of unguarded dereference

 if (i) {

 foo(&*i); // okay

 foo(&i[10]); // okay

 }

}

Comparison to Clang’s syntax
int barley;

// ^ds ^decl^

 int *_Nullable food[2] = {NULL, &barley};

// ^^pointer^ ^ddecl^

// ^ds ^^^^declarator^^^

 int *_Nullable (*giraffe[3])[2] = {&food, &food, &food};

// ^^pointer^ ^^^direct-decl^^

// ^ds ^^^^^^^^declarator^^^^^^^^^

 int *_Nullable (*_Nullable monkey[3])[2] = {&food, NULL, NULL};

// ^^pointer^ ^^ddecl^^

// ^^^^^^declarator^^^^

// ^^^direct-declarator^^

// ^^pointer^ ^^^^^direct-declarator^^^

// ^ds ^^^^^^^^^^^^^declarator^^^^^^^^^^^^^

Comparison to Clang’s syntax (2)
int barley;

// ^ds ^decl^

 _Optional int *food[2] = {NULL, &barley};

// ^ddecl^

// ^^decl-spec^^ ^^decl^^

 _Optional int *(*giraffe[3])[2] = {&food, &food, &food};

// ^^^direct-decl^^

// ^^decl-spec^^ ^^^^declarator^^^

 _Optional int *_Optional (*monkey[3])[2] = {&food, NULL, NULL};

// ^declarat^

// ^^dir-decl^^

// ^^pointer^ ^^^^dir-decl^^^

// ^^decl-spec^^ ^^^^^^^^declarator^^^^^^^^

Why qualify the pointed-to object?

int *const x = getptr();

int *s = x; // no warning

int *volatile y = getptr();

int *t = y; // no warning

int *restrict z = getptr();

int *r = z; // no warning

int *_Nullable v = getptr();

int *u = v; // no warning

Wait, what?!

• _Nullable isn’t really a type qualifier.
• Clang’s static analyser tracks whether a pointer may be null regardless of its type.
• Impossible to tell what constraints apply to a pointer by referring to its declaration.

Qualifiers on a pointer target must be compatible on assignment, whereas
qualifiers on a pointer value are discarded.

Why qualify the pointed-to object? (2)

void myfunc(const char *const s);

// ^^^^^^^^^^ ^^^^^

// Normative Not normative

// vvvvvvvvvv vvvvvvvv

void myfunc(const char *restrict s)

{

}

• Clang ignores differences between rival declarations, except contradictory
qualifiers (e.g. _Nullable vs _Nonnull).

• Impossible to tell what constraints apply to a function simply by referring to its
declaration.

• Qualifiers on a pointer target must be compatible in function declarations,
whereas qualifiers on a pointer value are ignored.

• Callers don’t care what a callee does with its copy of parameter values.

Why qualify the pointed-to object? (3)

• Properties conferred by const, volatile, restrict and
_Atomic relate to how objects are stored or how that storage
is accessed.

• No precedent for restricting the representable values.
• Read-only (const) objects may be stored in a separate address

range so that illegal writes generate SIGSEGV.
• Null pointer values also encode a reserved address, typically

neither readable nor writable.

const int *i; // *i is an int that may be stored in read-only memory

volatile int *j; // *j is an int that may be stored in shared memory

_Optional int *k; // *k is an int for which no storage may be allocated

Why qualify the pointed-to object? (4)

Unintuitive but follows 6.7.5.3 in the C language standard:

A declaration of a parameter as ‘‘array of type’’ shall be adjusted
to ‘‘qualified pointer to type’’, where the type qualifiers (if any) are
those specified within the [and] of the array type derivation.

void myfunc(_Optional const char s[]); // s may be a null pointer

Declaration can be written more naturally with _Optional :

(only case where it’s useful to declare a non-pointed-to object as _Optional)

void myfunc(const char s[_Nullable]); // s may be a null pointer

Clang allows nullability qualifiers to appear between [] brackets:

Function pointers
C does not permit type qualifiers in function declarations:

<source>:4:6: error: expected ')' [clang-diagnostic-error]

int (const *f)(int); // pointer to const-qualified function

 ^

A workaround is to use an intermediate typedef name:

typedef int func_t(int);

const func_t *f; // pointer to const-qualified function

Clang still complains (unlike GCC):

<source>:5:1: warning: 'const' qualifier on function type 'func_t' (aka

'int (int)') has unspecified behavior [clang-diagnostic-warning]

const func_t *f; // pointer to const-qualified function

^~~~~~

Why _Optional rather than _Mandatory?

bool coord_stack_init(coord_stack *stack, size_t limit);

void coord_stack_term(coord_stack *stack);

bool coord_stack_push(coord_stack *stack, coord item);

coord coord_stack_pop(coord_stack *stack);

bool coord_stack_is_empty(coord_stack *stack);

Typical interface in a C program:

bool coord_stack_init(coord_stack stack[static 1], size_t limit);

void coord_stack_term(coord_stack stack[static 1]);

bool coord_stack_push(coord_stack stack[static 1], coord item);

coord coord_stack_pop(coord_stack stack[static 1]);

bool coord_stack_is_empty(coord_stack stack[static 1]);

Should we change it to this?
bool coord_stack_init(coord_stack *_Nonnull stack, size_t limit);

void coord_stack_term(coord_stack *_Nonnull stack);

bool coord_stack_push(coord_stack *_Nonnull stack, coord item);

coord coord_stack_pop(coord_stack *_Nonnull stack);

bool coord_stack_is_empty(coord_stack *_Nonnull stack);

Or this?
bool coord_stack_init(coord_stack *stack, size_t limit) __attribute__((nonnull (1, 1)));

void coord_stack_term(coord_stack *stack) __attribute__((nonnull (1, 1)));

bool coord_stack_push(coord_stack *stack, coord item) __attribute__((nonnull (1, 1)));

coord coord_stack_pop(coord_stack *stack) __attribute__((nonnull (1, 1)));

bool coord_stack_is_empty(coord_stack *stack) __attribute__((nonnull (1, 1)));

Or this? What happened to
our pleasant and

expressive language?
bool coord_stack_init(_Mandatory coord_stack *stack, size_t limit);

void coord_stack_term(_Mandatory coord_stack *stack);

bool coord_stack_push(_Mandatory coord_stack *stack, coord item);

coord coord_stack_pop(_Mandatory coord_stack *stack);

bool coord_stack_is_empty(_Mandatory coord_stack *stack);

Or this?

Why _Optional rather than _Mandatory? (2)
• _Mandatory is not a restriction on usage of a so-qualified pointer, therefore it

should not be contagious.
• Assignment semantics for _Mandatory would need to be opposite (warn on

acquire) to those for const and volatile (warn on discard).

const int *x = &y;

int *z = x; // warning: initialization discards 'const' qualifier from pointer target type

const int *q = z; // no warning

volatile int *x = &y;

int *z = x; // warning: initialization discards 'volatile' qualifier from pointer target type

volatile int *q = z; // no warning

_Mandatory int *x = &y;

int *z = x; // no warning

_Mandatory int *q = z; // warning : initialization adds '_Mandatory' qualifier to pointer

target type

Conversions from maybe-null to not-null
int safe_strcmp(_Optional const char *s1, _Optional const char *s2)

{

 if (!s1) s1 = "";

 if (!s2) s2 = "";

 return strcmp(s1, s2); // warning: passing parameter discards qualifiers

}

int safe_strcmp(_Optional const char *s1, _Optional const char *s2)

{

 if (!s1) s1 = "";

 if (!s2) s2 = "";

 return strcmp((const char *)s1, (const char *)s2);

}

Casting is detrimental to readability and type safety:
int safe_strcmp(_Optional const char *s1, _Optional const char *s2)

{

 if (!s1) s1 = "";

 if (!s2) s2 = "";

 return strcmp(&*s1, &*s2);

}

Safer to use an idiom to remove the qualifier:

Conversions from maybe-null to not-null (2)

• Don’t want to rely on #include to import a conversion
function or macro.

• C allows implicit conversions (e.g. from void *) where
pragmatic.

• &*s1 is searchable, easy to type, and not too ugly.
• Path-sensitive analysis can check &* like a real dereference.
• optional_cast<char*>(s1) or equivalent would be

safer than a regular cast, but still clutter.
• Reserve casts as a fallback to suppress warnings.

Conversions from maybe-null to not-null (3)

There are many ways to dereference a pointer, but only one way to get
the address of an object:

• &*s

• &s[0]

• &0[s] (by definition, E1[E2] is equivalent to (*((E1)+(E2))))
• &(*s).member

• &s->member

• Using & to remove _Optional from its operand avoids modifying the unary *,
subscript [] and member-access -> operators.

• It is also mnemonic: no object has null as its address.
• Operand of & is already special, being exempt from lvalue conversion and decay of a

function or array into a pointer.

Migration

• _Optional can be pre-defined as an empty
macro (like const).

• Programmers are free to eschew the new
qualifier (like const).

• Functions which consume pointers can be
changed to accept pointer-to-_Optional…

• …but not if used as a callback.
• Functions which return pointers can be

wrapped or have their result assigned to a
pointer to _Optional.

A successful thought experiment?

So, what do references look like if
designed by someone who likes C?

int *ip;

Can you guess?

int *ip is intended as a
mnemonic; it says that the
expression *ip is an int.

Online reaction

“I hope you get N3089 through. You
might like to try the C++ route first.”

“Great idea and I hope it gets itself in to a
future standard, but I couldn't wait for
something like that to arrive in C, which is
why I preferred C++, or at least a sensible
subset thereof.”

Score of 64
on Reddit.

46 claps from
seven people.

• Brian Kernighan (cropped) by Ben Lowe. Licence: CC BY 2.0 DEED.

• Elephant in the Room by mphillips007. Standard licence from iStock.

• Bjarne Stroustrup (cropped) by Julia Kryuchkova. Licence: CC BY-SA 2.5.

• Guido van Rossum (cropped) by Michael Cavotta. Licence: CC BY-NC-ND 4.0.

• Portrait of sorrowful man by Photographee.eu. Standard licence from Adobe Stock.

• Jurassic Park is © Universal City Studios LLC and Amblin Entertainment, Inc.
The “Your Scientists” meme is believed to be “fair use” in editorial content.

• Flamingos in Ngorongoro Crater, Tanzania by Sburel. Royalty-free licence from
Dreamstime.com.

• Reddit and Medium logos are © their respective owners.
Their inclusion is believed to be “fair use” in editorial content.

Attributions

https://creativecommons.org/licenses/by/2.0/deed.en
https://www.istockphoto.com/legal/license-agreement
https://creativecommons.org/licenses/by-sa/2.5
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://stock.adobe.com/bg/license-terms
https://www.dreamstime.com/terms#using

	Slide 1
	Slide 2: Source of quotes
	Slide 3: C has been at peace with itself for a long time
	Slide 4: What do C programmers waste time on?
	Slide 5: Isn’t this a solved problem?
	Slide 6: Isn’t this a solved problem? (2)
	Slide 7: Isn’t this a solved problem? (3)
	Slide 8: The elephant in the room
	Slide 9: C++ references
	Slide 10: C and C++ syntax are irreconcilable
	Slide 11: C and C++ syntax are irreconcilable (2)
	Slide 12: Bjarne Stroustrup kind of hates C
	Slide 13: A thought experiment
	Slide 14: Inspiration from Python
	Slide 15
	Slide 16: Proposed C language extension
	Slide 17: Example usage
	Slide 18: Comparison to Clang’s syntax
	Slide 19: Comparison to Clang’s syntax (2)
	Slide 20: Why qualify the pointed-to object?
	Slide 21: Why qualify the pointed-to object? (2)
	Slide 22: Why qualify the pointed-to object? (3)
	Slide 23: Why qualify the pointed-to object? (4)
	Slide 24: Function pointers
	Slide 25: Why _Optional rather than _Mandatory?
	Slide 26: Why _Optional rather than _Mandatory? (2)
	Slide 27: Conversions from maybe-null to not-null
	Slide 28: Conversions from maybe-null to not-null (2)
	Slide 29: Conversions from maybe-null to not-null (3)
	Slide 30: Migration
	Slide 31: A successful thought experiment?
	Slide 32: Online reaction
	Slide 33: Attributions

