JTC1/SC22/WG14 - N3122

Title: Composite Type for Structures and Unions
Author: Martin Uecker
Date: 2023-04-22

The standard does not explicitly define a composite type for structures or unions, although such a
type is needed for determining the result type of the conditional operator and when the same
identifier is declared multiple times in the same scope. Change 1 adds an explicit rule for this
missing composite type and uses it for the conditional operator. Change 2 adds a clarification about
when the composite type might be the “same type” or not — leaving it unspecified. Change 3a and
Change 3b propose wording for enumerated types. Change 3b also defines the composite type
formed from an enumerated type and a compatible integer type as the enumerated type, but we
point out that existing compilers disagree about this. Finally, it is suggested to clarify conversion
rules for enumerated types.

Change 1 (composite type for structure and union types)
6.2.7 Compatible Type and Composite Type

3 A composite type can be constructed from two types that are compatible; if both types are the
same type, the composite type is this type. Otherwise, it is a type that is compatible with both of
the two types and satisfies the following conditions:

-- If both types are structure type or both types are union types, the composite type is
determined recursively by forming the composite types of their members.

-- If both types are array types ...

-- If both types are function types ...

-- If one of the types has a standard attribute, the composite type also has that attribute.

These rules apply recursively to the types from which the two types are derived.
6.5.15
If both the second and third operands have arithmetic type, the result type that would be determined

by the usual arithmetic conversions, were they applied to those two operands, is the type of the
result. If both the operands have structure or union type, the result is the composite typehas-the-

type-of-ene-eperand. If both operands have void type, the result has void type

Change 2 (same type):

If any of the original types satisfies all requirements of the composite type, it is unspecified
whether the composite type is the same type as such a type or a different type that satisfies all

requirements.**

%) The notion of "same type" affects redeclarations of typedef names and tags in the same
scope.

Change 3a (enumerated types)

-- If both types are enumerated types, the composite type is an enumerated type.

Change 3b (enumerated types, also including the case of integer and enumerated type)

-- If at least one type is an enumerated type, the composite type is an enumerated type.

Change 4 (conversion for enumerated types)
6.3.1.8 Usual arithmetic conversions
Otherwise, if any of the two types is an enumerated type it is converted to its compatible

standard integer type. Then, the integer promotions are performed on both operands. Then the
following rules are applied to the promoted operands:

Acknowledgment: I want to thank Jens Gustedt for comments and suggestions. Errors are all
mine.

