
C2x Issue Report

WG14 N2420

Title: Unclear type relationship between a format specifier and its argument

Author, affiliation: Aaron Ballman, GrammaTech

Date: 2019-09-05

Proposal category: Change/Clarification Requests

Abstract: The type relationship between an argument passed to a formatted io function and its

corresponding format specifier could stand to be clarified.

Unclear type relationship between a
format specifier and its argument
Reply-to: Aaron Ballman (aaron@aaronballman.com)

Document No: N2420

Date: 2019-09-05

Summary of Changes
N2420

 Original report

Introduction and Rationale
7.21.6.1p9 states:

9 If a conversion specification is invalid, the behavior is undefined.286) If any argument is not the

correct type for the corresponding conversion specification, the behavior is undefined.

The second sentence does not make it clear what constitutes a “correct type”. For instance, given that

there is no conversion specification for objects of type _Bool, this sentence could be read that passing an

object of type _Bool to printf() is undefined behavior.

Reflector discussion (from roughly SC22WG14.17025 through SC22WG14.17060) observed that we

have concepts like exact type matches, same representation, and compatible types, and that it would be

better to reword this paragraph to bring it in line with <stdarg.h> instead of doing a minor correction.

The ensuing reflector discussion found additional confusion in that the %n specifier does not explicitly

state its type requirements in the absence of a length modifier, nor does %p suggest that it can be used to

print a const-qualified pointer to non-void type, such as const char *.

Proposed Wording
The wording proposed is a diff from ISO/IEC 9899-2017. Green text is new text, while red text is deleted

text.

Modify 7.21.6.1p8, the p and n specifiers:

8 The conversion specifiers and their meanings are:

…

p The argument shall be a pointer to void or a pointer to a character type. The value of the pointer

is converted to a sequence of printing characters, in an implementation-defined manner.

n The argument shall be a pointer to signed integer whose type is specified by the length modifiers,

if any, for the conversion specification, or shall be int if no length modifiers are specified for the

conversion specification. into which is written tThe number of characters written to the output stream so

far by this call to fprintf will be stored into the integer pointed to by the argument. No argument is

converted, but one is consumed. If the conversion specification includes any flags, a field width, or a

precision, the behavior is undefined.

…

Modify 7.21.6.1p9:

9 If a conversion specification is invalid, the behavior is undefined.286) If any argument is not the correct

type for the corresponding conversion specification, the behavior is undefined.

 Append to that same paragraph:

For an integer argument, the promoted type of the argument shall have the same integer rank as the

promoted type corresponding to the conversion specification, and the value to be printed is determined as

if converting to the unpromoted type corresponding to the conversion specification.x) An argument that

corresponds to a conversion specification that requires a pointer to void (p) or a pointer to character type

(s without the l modifier) shall have a type that is a pointer to a qualified or unqualified version of void

or of a character type. Otherwise, after default argument promotions, the type of the argument shall be the

same as the type corresponding to the conversion specification including possible length modifiers.

Add a new footnote:

x) The behavior is undefined if the value does not fit the type corresponding to a conversion specification

with a signed integer type.

Modify 7.21.6.2p12:

12 In the following, the type of the corresponding argument for a conversion specifier shall be a pointer to

a type determined by the length modifiers, if any, or shall be a pointer to int, unsigned int, or float

for signed integer, unsigned integer and floating conversion, respectively. The conversion specifiers and

their meanings are:

…

n No input is consumed. The corresponding argument shall be a pointer to signed integer .into

which is to be written tThe number of characters read from the input stream so far by this call to the

fscanf function will be stored into the integer pointed to by the argument. Execution of a %n directive

does not increment the assignment count returned at the completion of execution of the fscanf function.

No argument is converted, but one is consumed. If the conversion specification includes an assignment-

suppressing character or a field width, the behavior is undefined.

Acknowledgements
I would like to recognize the following people for their help with this work: Jens Gustedt, Martin Uecker,

Joseph Myers, and Martin Sebor.

