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1 Introduction

This paper proposes the consideration of a closure construct for C2x.  The key idea of a 
closure is that of a function expression with lexical access to variables declared in the 
enclosing scope whose lifetime can exceed the lifetime of that enclosing scope. This 
allows a convenient and efficient syntactic expression of a unit of work, a task in ISO/
IEC parlance. 

1.1 History

Closures are to be found in Alonso Church's original paper on lambda.  Early 
implementations of LISP, however, used dynamic scoping, and closures were 
introduced by Guy Steele in SCHEME and then into more modern versions of LISP.  
The Smalltalk language uses closures as the implementation of compound statement in 
constructs such as if-then-else and loops.  Ruby provides a simple form of closure and 
uses it extensively for collection iteration and file (stream) processing.

1.2 Background

This proposal has its genesis within Apple, Inc. in late December 2007 and quickly 
progressed to an alpha ship in May 2008, syntax changes and a full implementation 
followed by about August 2008, and a final release as part of Apple's 10.6 "Snow 
Leopard" release in August 2009.  This release was notable at the time for two things: it 
was free, and it had no features other than performance.  The performance gain was 
quite substantial and the result of extensive rework to eliminate thread pools in favor of 
a library approach to concurrency based on closures as the unit of work.

Closures, at Apple, were introduced simultaneously to the C language as well as 
Objective-C and C++.  A concurrency library, with APIs in C, uses the closure form of 
void (*)(void) to capture anonymous work with no parameters and no return 
value.  This type is available to all three languages, each of which had substantial 
communities within Apple.  For C++, closures support capturing any object with a copy 
constructor, for Objective-C, closures were engineered to become degenerate 
Objective-C objects sufficient to participate in either of the two forms of object memory 
management: manual reference counting or conservative garbage collection, regardless 
of their language of origin.  The C usage is completely specified by closure_copy 
and closure_free as will be discussed and has no reliance on memory 
management facilities offered by either C++ or Objective-C, or Swift.



In 2014 Apple introduced the Swift programming language which also supports 
closures.  Microsoft supports Objective-C programming for iOS and Windows 10 and is 
said to be working on Swift support as well.

Closures provide an expressive way to design powerful APIs and have been used 
extensively to retrofit existing and introduce new APIs.  It has been said that one cannot 
program a Mac, iOS, watchOS, and now tvOS application without them.

An implementation of closures can be found in the open source clang and runtime 
projects where they are called "Blocks".

Closures were discussed at WG14 in N1370 at the Markham09 meeting and specifically 
proposed for C11 in N1451 at Florence10.  The vote was 6-5-4 in favor, not nearly 
consensus, and, it was said by abstainers, mostly because it was too late.

Closures have also been presented and discussed in "the early days" of CPLEX, 
"Closures vs Cilk_spawn" emails of 2013/07/13, and presented as a general alternative 
to most of what has been worked upon as "task parallelism".  A straw poll indicated that 
closures were indeed very interesting and should be taken up at WG14.  The library 
approach of Apple's was shown to be able to compose arbitrary graphs of 
synchronization among work units including, and, beyond, fork-join parallelism (as 
OpenMP can do).

2 Design

The design goals for closures at Apple were expressiveness, completeness, efficiency, 
and safety.

2.1 Expressiveness

Although closures had been proposed even earlier at Apple, a new line of thinking 
centered around the ability to quickly capture a function and its arguments for use 
elsewhere. Whereas Cilk does
    Cilk_spawn SomeFunction(expression1, expression2)
the idea was that, where ^ is used as a new unary operator,
       ^SomeFunction(expression1, expression2)   // never 
implemented
would direct the compiler to produce a "Cheap Invocation" C data structure of some sort 
that could be used in many different ways, less expensive and more universal than the  
existing Objective-C Foundation invocation object.

A second idea was that it should be possible to also do partial function evaluation (often 
confused by me as Currying), where
       ^drawline(graphicsContext, _, _, _)      // never 
implemented

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1370.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1451.pdf


would produce a function that took three arguments and would call drawline with a 
stashed away graphicsContext.

The third idea was closures, and since it turned out that it could do the other two ideas 
as well, it was best, and most expressive, to just have one general concept rather than 
three.

The syntax evolved to introducing ^ (caret) as a new unary operator and as a closure 
indicator in a declaration. Caret is used to denote pointer to closure.  Much like Church's 
lambda, the syntax for a function expression is caret, arguments, and body with of 
course a return type, ,
       ^void (void) { SomeFunction(expression1, 
expression2); }
for the first idea and
       ^void (float x, float y, float z)
{ drawline(graphicsContext, x, y, z); }
for the partial evaluation example.  Like  a function object, a closure object does not 
answer to sizeof, unlike a function, it can not be declared and has no name, it is an 
anonymous function expression.  Instead, a function expression yields a pointer to a 
closure. 

Stating this more directly, function expressions only ever appear after the new unary 
operator ^ (caret), to wit:
        dispatch_async(queue, ^void (void) 
{ SomeFunction(expression1, expression2); });

Further, if the return type of a function expression can be inferred from the consistent 
type of return expressions, or lack thereof, the return type specification may be omitted.  
So the above statement can also be written
        dispatch_async(queue, ^(void) 
{ SomeFunction(expression1, expression2); });

Even better, a closure expression that has an inferred return type that also has no 
arguments, as is the case here, can be written
        dispatch_sync(queue, ^{ SomeFunction(expression1, 
expression2); });

which is very concise and expressive, especially since this captures the heart of unit of 
work.

Pointers to closures are declared and in a directly equivalent way to pointers to 
functions by substituting caret ^ for asterisk * in declarations, to wit:
       void (^closurePointer)(void) = 
^{ SomeFunction(expression1, expression2); };
and called, as function pointers can be:



       closurePointer();

2.2 Completeness

In the previous example, expression1 and expression2 were meant to suggest 
that they could expand to include any variable in scope, and to a certain extent they can 
and do.  However, since the storage duration of an automatic variable in scope when a 
closure expression is evaluated a const qualified version of each variable with 
automatic storage duration that is named in the expression.  Variables of other storage 
durations are not captured and are referenced directly.

This choice of const capture has two implications.  First, it forbids mutation of a 
captured variable, and second, it disallows communication back to the enclosing scope 
for those cases where the enclosing scope outlives the closure.

The first restriction is relatively minor.  For every const captured variable, a non-const 
version can be declared in the function expression, initialized with the const captured 
copy, and mutated at will.  This has the advantage of making it very explicit that any 
mutations in the function expression won't make it back to the enclosing scope.  Here's 
an example:

{
     for (int index = 0; index < sizeof(array)/
sizeof(element_t); ++index) {
            iterate_linked_list(list, ^(list_item_t item) {
                   ...
                   int indexCopy = index;
                    while (indexCopy--) {
                         ...
                    }
             });
      }
}

The key notion of a true closure is the ability to not only see but share access to 
automatic variables within its scope. The compromise developed for Apple's closure is 
to require that the shared variable be declared with a new shared storage class.  Here's 
an example that shares between the closure and the enclosing scope:

{
     _Shared int maximum = -1;
     for (int index = 0; index < sizeof(array)/
sizeof(element_t); ++index) {



            iterate_linked_list(list, ^(list_item_ref item) 
{
                   ...
                   if (item->member > maximum) maximum = 
item->member;
                   ...
            });
      }
      if (maximum > THRESHOLD) { ... }
}

Sharing can also occur among many different closures, and that of course you can 
create closures within closures

{
     _Shared int maximum = -1;
     for (int index = 0; index < sizeof(array)/
sizeof(element_t); ++index) {
            iterate_linked_list(list, ^(list_item_ref item) 
{
                   ...
                   if (item->member > maximum) {

maximum = item->member;
dispatch_async(queue, ^{ ... index; ...; 

item; ...; maximum; ... });
                   }
                   
            });
      }
}

In this example the call to dispatch_async captures maximum and index from the 
outermost scope and item from the inner to schedule whatever work on an 
asynchronous work queue.  Each closure in this example differs by the value of the 
captured index and item variables.

Quite complicated constructs can be made - one closure can act as a setter for a 
shared variable and another, in the same or related scope, can act as a getter, and yet a 
third can use the shared variable effectively forming a deconstructed object.  Closures 
can reference several shared variables.

2.3 Efficiency



Although concurrency was a major goal, a strong minor was usefulness for synchronous 
uses such as collection iterators where efficiency is paramount.  As such, closures and 
shared variables are allocated in automatic memory - they each live in a compiler 
written custom structure that has a small header and then the content.

In order to live beyond the lifetime of the enclosing context, it is required that the closure 
be explicitly copied using a type generic function _Closure_copy:

    void dispatch_async(queue_ref q, void (^closure)(void)) 
{
         queue_item_t *item = allocate_queue_item();
         item->closure = _Closure_copy(closure);
          ...
     }

and when done, another type generic function must be called to recover the allocated 
memory resources:

         _Closure_free(item->closure);

Closures and their closure and shared variable references form a DAG, not a graph, 
and so a simple reference counting technique allows a closure already in allocated 
memory to simply (atomically) increment an internal reference counter instead of 
allocating a redundant further copy for every additional call of _Closure_copy.  This 
choice is, of course, up to the implementation. Closures at file scope have no automatic 
variables to capture and an implementation need not copy them to allocated memory.

A subtle point here is that there is no "this" or "self" name within a closure that 
references the closure and this ensures that a DAG and not a graph is formed.  A graph 
will have unrecoverable memory resources if copied unless some form of reference 
cycle garbage collection is employed.

_Shared variables that are intended to be accessed from multiple threads shall also 
be _Atomic to avoid data races.

The biggest surprise from the field was the treatment of arrays in automatic storage.  
They are const copied into the closure.  Since stacks other than main are fairly small, 
this isn't a huge drawback, and for those cases where the array is accessed 
synchronously (the closure is not copied), a pointer to the array can be formed and the 
pointer captured.  VLAs cannot be captured.

{
      point_t array[32];
      ...



      point_t parray[32][] = array;

      iterate_linked_list(list, ^(list_item_ref item) {
            if (parray[item->index].color == RED) { ... }
      });
}

Beyond the concurrency queue library so far discussed, closures are copied and used 
asynchronously by nearly every Apple library.  The Apple GUI libraries use closures to 
anonymously bind client data to actions instigated by the graphical user interface.  The 
networking libraries use copied closures to asynchronously handle incoming data, 
termination conditions, and other matters.

This is the general solution that eliminates void * parameters that are passed to 
supplied functions, like in the synchronous qsort case, except in asynchronous 
contexts.

2.4 Safety

An important goal of the work was that any and all closures could be copied and used 
asynchronously.  The programmer can not be prevented, for example, from capturing 
pointers to local automatic variables and causing undefined behavior, or havoc in other 
ways.  But when the default formulation is safer, efficient, concise, and eloquent, the 
end result is safer and likely more correct programs, and more quickly as well, and this 
has to be considered over a swiss-army knife set of options to wound oneself with.  This 
proposal is about making simple things easy and difficult things possible.

3 Implementation

A function expression is straightforward to implement. As with a function, a closure has 
a return type and an argument list that form its typename, and a list of captured 
variables with their types, and a list of _Shared variables with their types.  

Lets discuss the shared variable first. In the example above where there is a _Shared 
int maximum, the compiler rewrites the declaration to be a locally unique structure:

struct __shared_1234 {
    struct __shared_variable_header header;
    volatile struct __shared_1234 *stack_or_heap;
    volatile _Atomic int maximum;
} __shared_1234;

Once the function expression is parsed, a custom structure is formed for each function 
expression and, after a common header, the list of captured variables are added to the 



structure in a const qualified form, and pointers to each _Shared variable are 
declared. The structure is scheduled to be emitted at file scope.  Next, the custom 
closure implementation function is formed using the return type and arguments.  A 
pointer to the custom structure is inserted as a secret first argument with a compiler 
chosen hidden name __secret, and the closure body is rewritten to use __secret-
>captured for every use of a captured variable.  _Shared variable accesses are 
rewritten as __secret->stack_or_heap->shared, and the custom 
implementation function is emitted.

Thus, for the ^{ ... index; ...; item; ...; maximum; ... } 
expression the compiler would emit at file scope:

struct __closure_abcd {
   struct __closure_header header; // common
   const int index;
   const list_item_ref item;
   volatile struct __shared_1234 * __shared_1234;
};

static void __closure_abcd_implementation(struct 
__closure_abcd *__secret) {
    ... __secret->index; ...; __secret->item; ... __secret-
>stack_or_heap->maximum; ...
}

The compiler does need to do something slightly tricky near the function expression 
site, and that is to declare the actual closure structure in automatic memory, initialize it, 
and reference it.

The code becomes

iterate_linked_list(list, ^(list_item_ref item) {
         ...
         if (item->member > maximum) {

maximum = item->member;
              struct __closure_abcd __closure_abcd = 
{ __closure_abcd_implementation, index, item, &maximum };

dispatch_async(queue, &__closure_abcd);
         }
                   
     });
 



_Shared variables are declared in a custom structure with a pointer to itself preceding 
the variable.  When copied, the pointer is reset to the allocated memory copy, and the 
copy also has its pointer initialized with a pointer to itself, the allocated memory copy.  
The pointer within the header is declared volatile to ensure that it is reloaded every time 
it is used, thus guaranteeing that each access sees the latest version and especially 
that it catches the transition to allocated memory.  This is not a data race; it is undefined 
behavior if a closure is used from a secondary thread without being copied.  The copy is 
done from the original thread synchronously.

4 Proposal

Apple's concurrency library Grand Central Dispatch (GCD) has been open-sourced and 
is available on Linux and FreeBSD.  The Swift programming language is moving to 
Linux and IBM, and so Apple's closures have, to some degree, become part of the ABI 
on those platforms.

WG14 is in an excellent position to simply adopt this existing industry practice rather 
than redesign it, and I strongly recommend this general course of action.

There are, of course, places where WG14 can add value.

4.1 Library

These are possibly new library entry points that could be added.  The following three 
come to mind quickly, particularly since two are already established practice on Apple 
platforms.

4.1.1 thrd_create

In addition to the existing 7.26.5.1 thrd_create function

typedef int (*thrd_start_t)(void *);
int thrd_create(thrd_t *thr, thrd_start_t_ func, void 
*arg);

WG14 could add

typedef int (^thrd_start_closure_t)(void);
int thrd_create_c(thrd_t *thr, thrd_start_closure_t 
closure);

which eliminates the need for the programmer to write a function and do casting from 
void * to any parameters of interest.



4.1.2 qsort

In addition to 

void qsort(void *base, size_t nmemb, size_t size,
     int (*compar)(const void *, const void *));

WG14 could, as Apple has done, provide

void qsort_b(void *base, size_t nmemb, size_t size,
     int (^compar)(const void *, const void *));

so that variations in sorting determined at runtime can be easily encoded in a closure.

4.1.3 bsearch

In addition to

void *bsearch(const void *key, const void *base,
     size_t nmemb, size_t size,
     int (*compar)(const void *, const void *));

WG14 could, as Apple has done, provide

void *bsearch_b(const void *key, const void *base,
     size_t nmemb, size_t size,
     int (^compar)(const void *, const void *));

5 Process

C11 is considering creating a TC2 that incorporates the syntax changes and other edits 
from closed Defect Reports.  The syntactic changes, for this proposal, were sketched 
out in N1451 and need revision.  Depending on interest, a further paper can be 
developed and would provide detailed syntactic changes and constraints.  At this point, 
such detail seems premature.

Blaine Garst


