

ISO/IEC JTC 1/SGFSN1283 Date

ISO/IECTR 100002:1995(E)

TITLE:

Information technology - Framework and taxonomy of International Standardized Profiles - Part 2: Principles and Taxonomy for OSI Profiles

 ReferenceLanguageVersion: English ξ French •

 IntroductoryNote

 Source
 Editor - Principles and Taxonomy for OSI Profiles: ISO/IEC_ITC1 Special Group on Functional Standardization

 STATUS
 Finaltext

 This is the final text provided by the editor for publication of a new edition of TR 100002. This edition is fully aligned with TR 100001 and TR 100003, which this time will be published concurrently.

 This is a progression of the text of DTR 100002: 1994 (SGFSN1248) in accordance with Resolution 1 of the Berlin meeting of SGFS, June 19 to 23, 1995. The editos's report on the comments and contributions received is provided in SGFSN1286.

This text reflects the resolution of comments from the DTR ballot resolution meeting, held June 21/22, 1995.

It is provided to SGFS members and S-Liaison organizations for information. In parallel it will be submitted to ITTF for publication as Technical Report Type 3.

Contents

Foreword	IV
Introduction	vi
1 Scope	1
2 References	
3 DEFINITION	2
4 ABBREVIATIONS	
4.1 General abbreviations	
4.2 Abbreviations used in Profile identifiers	
5 THE OSI TAXONOMY: PRINCIPLES	
5.1 General	
5.2 The Class concept for OSI Profiles	
5.3 Relationship between OSI Profiles	4
5.3.1 A/T and B/U Boundaries 5.3.2 A/F and B/F Boundaries	
5.4 The Group concept for OSI Lower Layer Profiles	
5.5 Profile classes	
5.5.1 Transport Profiles 5.5.1.1 Principles	
5.5.1.2 Transport Profile Identifier.	
5.5.1.3 Connection-mode Transport Service: profile class T	8
5.5.1.4 Connectionless-mode Transport Service: Profile class U	9
5.5.1.5 Interworking between Transport Profile Groups	9
5.5.1.6 Introduction to the Taxonomy of Subnetwork Profiles	
5.5.1.6.1 Packet Switched Data Network.	
5.5.1.6.2 Digital Data Circuit 5.5.1.6.3 Analogue Telephone Circuit	
5.5.1.6.4 Integrated Services Digital Network	
5.5.1.6.5 Local Area Networks.	11
5.5.1.6.6 Frame Relay Data Networks	
5.5.2 Relay Profiles	
5.5.2.1 Principles	
5.5.2.2 Relay Profile Identifier	12
5.5.3.1 Principles	
5.5.3.2 Common Upper Layer Requirements	
5.5.3.3 Application Profile Identifier	13
5.5.3.4 Introduction to the Taxonomy of Application Profiles	13
5.5.3.4.1 File Transfer, Access and Management.	
5.5.3.4.2 Message Handling	
5.5.3.4.3 Directory 5.5.3.4.4 Virtual Terminal	
5.5.3.4.5 OSI Management.	
5.5.3.4.6 Transaction Processing.	
5.5.3.4.7 Remote Database Access	
5.5.3.4.8 Manufacturing Messaging	
5.5.3.4.9 Library and Documentation	
5.5.3.4.10 Document Filing and Retrieval.	
5.5.3.4.11 Interactive Manipulation of ODA Documents	
5.5.4.1 Principles	
5.5.4.2 Interchange Format and Representation Profile Identifier.	
5.5.4.3 Introduction to the Taxonomy of Interchange Format and Representation Profiles	18
5.5.4.3.1 Open Document Format	
5.5.4.3.2 Computer Graphics Metafile Interchange Format	18

5.5.4.3.3 SGML Interchange Format	
5.5.4.3.4 Directory Data Definitions.	
5.5.4.3.5 Virtual Terminal Environment	
5.5.4.3.6 Character Sets	
5.5.4.3.7 Medical Image Interchange	19
6 TAXONOMY OF PROFILES	21
6.1 Transport Profiles	21
6.1.1 Taxonomy of Subnetworks	
6.1.2 Transport Groups	
6.2 Relay Profiles	
6.2.1 Relaying the Network Internal Layer Service, as defined in ISO/IEC 10028	
6.2.2 Network Layer Protocol Relaying	
6.2.3 Relaying the MAC Service	
6.2.4 CO/CL Interworking	
6.3 Application Profiles	
6.3.1 File Transfer, Access and Management	
6.3.2 Message Handling	
6.3.3 Directory	
6.3.3.1 Edition 1988	
6.3.3.2 Edition 1993	
6.3.4 Virtual Terminal	
6.3.5 OSI Management 6.3.6 Transaction Processing	
6.3.7 Remote Database Access	
6.3.8 Manufacturing Messaging.	
6.3.9 Library and Documentation.	
6.3.10 Document Filing and Retrieval	
6.3.11 Interactive Manipulation of ODA Documents	
6.4 Interchange Format and Representation Profiles	
6.4.1 Open Document Format	
6.4.2 Computer Graphics Metafile Interchange Format	
6.4.3 SGML Interchange Format.	
6.4.4 Directory Data Definitions	
6.4.4.1 Edition 1988	
6.4.4.2 Edition 1993	
6.4.5 Virtual Terminal Environment	
6.4.6 Medical Image Interchange	
6.4.7 Character Sets	
7 Conformance of OSI Profiles	
ANNEX A	
Bibliography	

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

The main task of technical committees is to prepare International Standards, but in exceptional circumstances a technical committee may propose the publication of a Technical Report of one of the following types:

- type 1, when the required support cannot be obtained for the publication of an International Standard, despite repeated efforts;
- type 2, when the subject is still under technical developmentor where for any other reason there
 is the future but not immediate possibility of an agreementon an International Standard;
- type 3, when a technical committee has collected data of a different kind from that which is normally published as an International Standard ("state of the art", for example).

Technical Reports of types 1 and 2 are subject to review within three years of publication, to decide whether they can be transformed into International Standards. Technical Reports of type 3 do not necessarily have to be reviewed until the data they provide are considered to be no longer valid or useful.

ISO/IEC TR 100002, which is a Technical Report of type 3, was prepared by Joint Technical CommitteeISO/IECJTC1, *Informationtechnology*

This edition cancels and replaces ISO/IECTR 100002:1992, which has been technically revised.

ISO/IECTR 10000 consists of the following parts, under the general title *Information technology* - *Framework and taxonomy of International Standardized Profiles:*

- -Part 1: General Principles and Documentation Framework
- -Part2: Principles and Taxonomyfor OSI Profiles
- —Part 3: Principles and Taxonomyfor Open System Environment Profiles

Otherparts to be defined as necessary.

AnnexA of this part of ISO/IECTR 10000is for information only.

Introduction

The context of Functional Standardization is one part of the overall field of Information Technologystandardization activities covering

- Base standards, which define fundamentals and generalized procedures. They provide an infrastructure that can be used by a variety of applications, each of which can make its own selection from the options offered by them.
- Profiles, which define conforming subsets or combinations of base standards used to provide specific functions. Profiles identify the use of particular options available in the base standards, and provide a basis for the development of uniform, internationally recognized, conformancetests.
- Registration mechanisms, which provide the means to specify detailed parameterization within the framework of the base standards or profiles.

Within ISO/IECJTC1, the process of Functional Standardization is concerned with the methodology of defining profiles, and their publication in documents called "International Standardized Profiles" (ISPs) in accordance with procedures contained in Directives of JTC1. The scope of Information Technology standardization to which this process is being applied is that which corresponds to the generally understood, but loosely defined, concept of 'Open Systems' The objective is to facilitate the specification of IT systems characterized by a high degree of interoperability and portability of their components.

In addition to ISO/IECTR 10000, the secretariat of the Special Group on Functional Standardization maintains a standing document (SD4) entitled "Directory of ISPs and Profiles contained therein". This is a factual record of which ISPs exist, or are in preparation, together with an executive summary of each profile. It is subject to regular updating by the Secretariat of ISO/IEC_JTC1/SGFS.

Information technology - Framework and taxonomy of International Standardized Profiles

Part 2: Principles and Taxonomy for OSI Profiles

1 Scope

The purpose of this part of ISO/IECTR 10000 is to provide principles and a classification scheme for OSI profiles which may be or have been submitted for ratification as International StandardizedProfiles (ISPs).

ISO/IECTR 100001 defines the concept of profiles which are documented in ISPs. OSI profiles are a subset of OSE profiles. ISO/IECTR 100003 defines the concept of OSE profiles and, along with ISO/IECTR 100001, gives guidance to organizations making proposals for Draft ISPs, on the nature and content of the documents they are producing.

The existence of a profile classification in this part of ISO/IECTR 10000 does not reflect a judgment by ISO/IECJTC1/SGFS that a profile is required for such capability. It merely provides a capability to identify uniquely such a function and to enable evaluation of PDISPs.

Since profiles will be proposed according to needs identified to SGFS and according to the progress of international base standardization, the Taxonomy will be periodically updated or have new parts added in order to reflect the progress reached. It is also recognized that there will be proposals for the extension of the Taxonomy to cover functions which were not identified during preparation of this edition of ISO/IECTR 10000. These extensions may be identified by a variety of proposers and involve simple extensions to the existing Taxonomy or the addition of new functional areas not currently covered by ISO/IECTR 10000. The inclusion of such extensions is administered following the procedures elaborated by SGFS.

A distinction has been made between a profile and an ISP documenting one or more profiles. The Taxonomy is only concerned with profiles, but further information is given in the

"Directory of ISPs and Profiles contained therein" as to which ISP contains the documentation of a profile.

This *Directory* is maintained as an SGFS standing document SD4 (see Annex A). For each draft profile submitted to SGFS, it will also provide additional information, including the status of the identified profiles.

2 References

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO/IEC96466 : 1994, Information technology-OSIconformance testing methodology and framework-Part 6: Protocol Profile Test Specification. { ITU-T Rec. X.295 (1995)}

ISO/IEC9646-7: 1995, Information technology-OSIconformance testing methodology and framework-Part 7: Implementation Conformance Statements. { ITU-T Rec. X.296 (1995)}

ISO/IECTR 100001: 1995, Information technology- Framework and taxonomy of International Standardized Profiles, Part 1: General Principles and Documentation Framework.

ISO/IECTR 100003 : 1995, Information technology- Framework and taxonomy of International Standardized Profiles, Part 3: Principles and Taxonomy for Open System Environment Profiles.

TECHNICALREPORT © ISO/IEC

A number of other ISO, IEC, and ISO/IECJTC1Standards and ITU-T Recommendations are quoted in examples which do not constitute provisions of this part of ISO/IECTR 10000.

3 Definition

For the purposes of this part of ISO/IECTR 10000, the following definition applies:

Group: A set of OSI profiles that are compatible, in the sense that an IT implementing one profile from a Group can interwork, according to OSI, with another IT system implementing a different profile from the same Group, in terms of the operation of the protocols specified within these profiles.

4 Abbreviations

4.1 General abbreviations

CGM	Computer Graphics Metafile
CL	Connectionlessmode
CLNS	Connectionless mode Network Service
CLTS	Connectionless mode Transport Service
CO	Connectionmode
CONS	ConnectionmodeNetworkService
COTS	Connection mode Transport Service
CSDN	Circuit Switched Data Network
CSI	Communication Services Interface
CSMA/CE	DCarrier Sense, Multiple Access/ Collision Detection
CULR	CommonUpperLayerRequirements
DFR	Document Filing and Retrieval
DSA	DirectoryServiceAgent
DTAMÐN	1 DocumentTransferand Manipulation - Document
	Manipulation
DTE	Data Terminal Equipment
DUA	Directory User Agent
EDI	ElectronicDataInterchange
EDIMG	EDIMessaging
FDDI	Fibre Distributed Data Interface
FRPVC	FrameRelay Permanent Virtual Circuit
FRSVC	FrameRelay Switched Virtual Call
FRBS	FrameRelay Bearer Service
FRDN	FrameRelay Data Network
FRDTS	FrameRelay Data Transmission Service

IIF ImageInterchangeFacility

IPI	ImageProcessing and Interchange
IPM	InterpersonalMessage
ISDN	Integrated Services Digital Network
ISP	International Standardized Profile
LAN	Local Area Network
MAC	Media Access Control
MMS	ManufacturingMessageSpecification
MOTIS	MessageOrientedTextInterchangeSystem
MS	MessageStore
MTA	MessageTransferAgent
MTS	MessageTransferSystem
ODA	OpenDocumentArchitecture
P1	MessageTransferProtocol
P2	InterpersonalMessagingProtocol
P3	MTSAccessProtocol
P7	MS Access Protocol
PSDN	Packet Switched Data Network
PSTN	Public Switched Telephone Network
PVC	X.25 Permanent Virtual Circuit
QOS	Quality of Service
SGFS	ISO/IEC JTC 1/Special Groupon Functional
	Standardization
SGML	StandardizedGeneralMarkupLanguage
TP	TransactionProcessing
TPSU	TPServiceUser
UA	UserAgent
VC	X.25 Virtual Call
VT	VirtualTerminal

TECHNICALREPORT © ISO/IEC

ISO/IECTR 10000-2: 1995(E)

4.2	Abbreviations used in Profile	<u>Abbr.</u>	Profile sub-class (Lower Layers)	
	identifiers	TA	COTSoverCLNS	
		ТВ	COTSoverCONS	
<u>Abbr.</u>	Profile sub-class (Applications)	TC	COTSoverCONS	
ADF	Document Filing and Retrieval	TD	COTSoverCONS	
ADI	Directory(1988) ¹	TE	COTSoverCONS	
ADY	Directory (1993) ¹	UA	CLTSoverCLNS	
AFT	File Transfer, Access and Management	UB	CLTSoverCONS	
ALD	Library, Documentation	RA	Relaying the CLNS	
AMH	MessageHandling	RB	Relaying the CONS	
AMI	MedicalImageInterchange	RC	X.25 Protocol Relaying	
AMM	ManufacturingMessaging	RD	Relaying the MACS ervice using transparent bridging	
		RE	Relaying the MACS ervice using source routing	
AOD	Interactive Manipulation of ODADocuments	RZ	Relaying between CLNS and CONS	
ARD	RemoteDatabaseAccess			
ATP	TransactionProcessing			
AVT	Virtual Terminal	5	The OSI Taxonomy: Principles	
Abbr.	Profile sub-class (Formats)	5.1	General	
FCG	ComputerGraphicsMetafileInterchangeFormat		ofiles are primarily arranged into classes, each class	
FCS	Character Sets	•	nting a category of functionality of reasonable	
FDI	Directory Data Definitions $(1988)^1$	-	idence from other classes. The different classes of profile	
FDY	Directory Data Definitions (1993) ¹	correspond to the major divisions of the taxonomy.		
FMI	MedicalImageInterchange			
FOD	OpenDocumentFormat	Withine	ach class, a class-specific subdivision will be used.	
FSG	SGMLInterchangeFormat			
FVT	Virtual Terminal Registered Objects	OSI pro	ofile identifiers are structured in accordance with the	

OSI profile identifier comprises:

• a root mnenomic which is a character string commencing with one letter that indicates the primary class of the profile;

general OSE taxonomy defined in ISO/IECTR 100003. Thus, an

• an alphanumeric string that is as long as necessary to reflect the position of the profile within the hierarchic structure.

The syntax of all but the first letter is subject to individual definitions (see below).

the suffix "C" (for a CSI profile);

NOTE- In the context of the general OSEtaxonomydefined in ISO/IECTR 100003, OSI profiles are identified as Communication Services Interface profiles by the suffix "C:"This suffix is omitted in the description of the OSI taxonomyin this part of ISO/IECTR 10000.

¹ The taxonomy substructure for the 1988 edition of the Directory specifications differs from the taxonomy substructure developed for the 1993 edition.

TECHNICAL REPORT © ISO/IEC

ISO/IECTR 10000-2: 1995(E)

5.2 The Class concept for OSI Profiles

In order to decouple representation of information or objects from communication protocols, and application-related protocol from subnetwork types, OSI and OSI-related profiles are divided into the following classes:

- T Transport profiles providing connection mode Transport Service
- U- Transportprofiles providing connectionless mode Transport Service
- R- Relayprofiles
- A- Application profiles requiring connection mode Transport Service
- B- Application profiles requiring connectionless-mode Transport Service
- F- Interchangeformat and representation profiles

Other classes may be required.

Transport profiles of classes T and U specify how the two modes of OSI Transport Service are provided over the two modes of OSI Network Service, and over specific subnetwork types, such as individual types of LANs, PSDNs, etc. In this way they isolate the A/ B-profiles and F-profiles from network technology.

T- and U-profiles are further subdivided into Groups. See "5.4 The Group concept for OSI Lower Layer Profiles" for details.

Application profiles of classes A and B specify communications protocol support for particular application types over the two modes of OSIT ransport Service, respectively.

F-profiles specify the characteristics and representation of various types of information interchanged by A- and B-profiles.

R-profiles specify Relay functionality needed to enable IT systems using different T- or U-profiles to interwork. Interworking between T- and U-profiles is not contemplated in any JTC1 work.

Within each of these classes, sub-classes of profiles are identified which, again, may require further subdivision such that the granularity of the Taxonomy meets the requirements outlined in ISO/IECTR 100001. This leads to a hierarchical structure of profile (sub-)classes which is given in full in clause 6 Taxonomy of Profiles.

For the identification of sub-classes and a further subdivision within a given class, a class-dependent methodology is applied. This is explained in the subsequent class-individual sections.

5.3 Relationship between OSI Profiles

The schematic illustration in Figure 1 brings together examples of the relationships which exist between OSI profiles, particularly the three main subdivisions of the Taxonomy, and the combinations which can be made between profiles from different classes.

5.3.1 A/T and B/U Boundaries

Actual use of an A- or B-profile requires that an IT systemoperate it in combination with a T- or U-profile, in order to provide a particular application protocol over a particular subnetwork type. The separation of A- and B-profiles from T- and U-profiles is represented by an A/T or B/U boundary. This relationship is illustrated vertically in Figure 1. The location of a set of A-profiles above a set of T-profiles, separated by a common A/T boundary, represents the possibility of combining any pair of A- and T-profiles, one from each of the two classes.

A similar situation exists for the B- and U-profiles. The A/T boundaries correspond to the OSI Connectionmode Transport Service, and the B/U-boundaries to the OSI Connectionless mode Transport Service. The possibility of making the combination arises from the fact that a T- or U-profile is specified to provide the OSI Transport Service and an A- or B-profile is specified to use the OSI Transport Service.

TECHNICALREPORT © ISO/IEC

5.3.2 A/F and B/F Boundaries

The combination of an A- or B-profile with one or more F-profiles will be selected by the user to meet the functional requirements in each case. The various general possibilities are illustrated by the vertical relationships in Figure 1. The location of one or more F-profiles above one or more A-/B-profiles, represents the possibility of combining profiles from each class.

Unlike the A/T and B/U boundaries, the A/F and B/F boundaries are not characterised by a single service definition.

TECHNICALREPORT © ISO/IEC

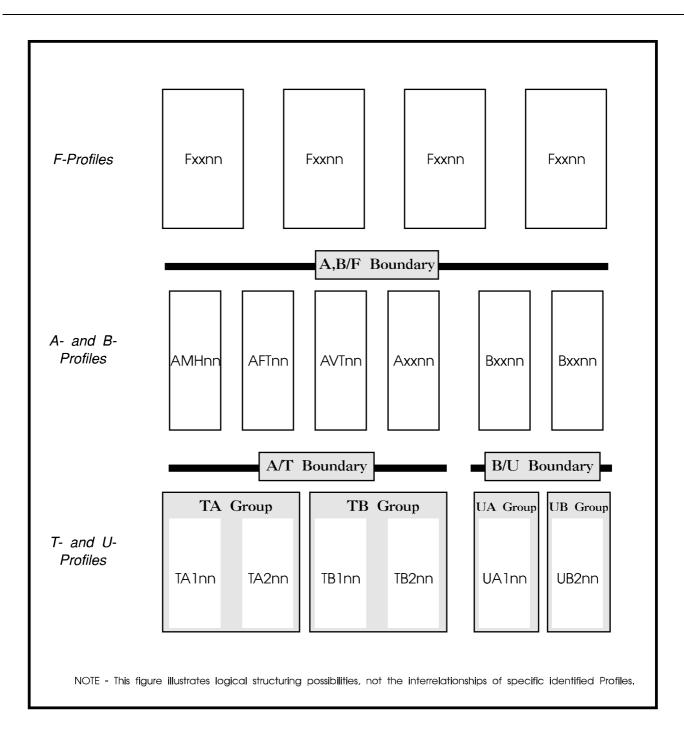


Figure 1: Examples of relationships between Profiles in the OSI Taxonomy

The Application Layer base standards require, implicitly or explicitly, the structure of information carried or referenced by them to be specified for each instance of communication. The combination of A-/B-profiles with one or more F-profiles will be selected by the user to meet the functional requirements in each case. However, the choice may be subject to constraints which can be expressed within either A-/B-profiles, F-profiles, or both.

In other A-/B-profiles, the Application Layer base standards themselves constrain the choice of presentation context.

Constraints may also exist within an F-profile, arising either from its base standard, or as a result of profile creation. These constraints will limit the A-/B-profiles which can be used to transfer the information.

In summary, therefore, there are three forms of constraints affecting the combination of A-/B- and F-profiles:

- a) the choice of information to be transferred may be constrained by the Application Layer base standards, and possibly further constrained by the A-/B-profile;
- b) some interchange and representation base standards may limit transfer to particular Application base standards; this choice may be further constrained by the F-profiles;
- c) the combinations are not constrained by base standards, but may be constrained by either A-/B- or F-profiles to achieve some general function.

Note that, as always, in making his choice of combination, a user must in practice take account not only of the constraints derived from profiles, but also the capabilities implemented in the end systems involved in each instance of communication, to support the various profiles.

5.4 The Group concept for OSI Lower Layer Profiles

The Group concept is used in the Taxonomyas follows:

A Group is a set of T- or U-profiles that are compatible in the sense that an IT system implementing one profile from the Group and another IT system implementing a profile from the same Group can be expected to interwork, according to OSI, to some

minimum level which is determined by the mandatory features of the profiles in the Group.

Interworking according to OSI means end-to-end operation across a single subnetwork, or across multiple subnetworks linked by means of Network (or lower) Layerrelays.

An example of a Group is the set of T-profiles that provide the Connection-mode Transport Service, using Class4 Transport Protocol over the Connectionless-mode Network Service, provided by ITU-T Rec. X.233 | ISO/IEC8473-1. This Group has members which correspond to different subnetwork technologies but interworking between IT systems conforming to them is made possible by LAN bridges and/or Network Layerrelays.

A Group is identified by labels of the form YXnnn, where Y is the class identifier and X is a letter identifying the Group.

5.5 Profile classes

5.5.1 Transport Profiles

5.5.1.1 Principles

Transport profiles define the use of protocol standards from OSI layers 1 to 4, to provide the OSI Transport Service.

A primary distinction is made between Transport profiles, based on the mode of Transport Service offered:

- Connection mode Transport Service: profile class T
- Connectionless-mode Transport Service: profile class U

For the Transport profile classification within each class, the following methodology is applied:

a) As a <u>first level</u> distinction the Group concept (see "5.4 The Group concept for OSI Lower Layer Profiles") is used in the following way:

A lower layer Group is a collection of profiles which:

• support the same combination of modes of Transport and Network Service;

• support the same Transport Protocol Class(es);

The notion of a Group is incorporated in the classification.

 b) The <u>second level</u> distinction between profiles, i.e. within a Group, is made according to the subnetwork type supported (see "6.1.1 Taxonomy of Subnetworks" for examples of subnetwork types).

c) <u>Further subdivisions</u> are made according to the characteristics of a particular subnetwork, e.g., switched versusleasedline (see 6.1.1 for examples of such characteristics).

5.5.1.2 Transport Profile Identifier

The identifier for a profile in the lower layers is of the form:

YXabcde

where:

Y = class designator, indicating the Transport Service mode:

T for Connection mode U for Connectionless mode

- X = one letter indicating the lower-layer Group within the class, as defined in "5.5.1.3 Connection mode Transport Service: profile class T'and "5.5.1.4 Connection less mode Transport Service: Profile class U'below.
- abcde = the structured numerical identifier indicating the subnetworktype supported in this profile. It is possible that a further level of identifier may become necessary. In general, when referencing a profile, only that level of identifier which is necessary for uniqueness needs to be used.

The identifier structure is not meant to capture the variety of details and options of OSI layer 1 such as attachment speeds and connectors. However, it is re-

cognized that this issue must be covered by the appropriate profile specification.

5.5.1.3 Connection mode TransportService: profile class T

Based on functional standardization already under way in organizations represented in SGFS and on standards already developed, the following lower layer Groups are identified as being of value. They are characterized as follows:

a) Connectionmode Transport Service over Connectionlessmode Network Service:

GroupTA

The Connection mode Transport Service (COTS) is provided over the Connectionless mode Network Service (CLNS) by requiring the use of the Class 4 Transport Protocol as defined in ITU-T Rec. X.224 \mid ISO/IEC8073.

- NOTE- An IT systemimplementing a profile from Group TA and claiming conformance to ITU-T Rec. X.224 | ISO/IEC8073 also has to implement the mandatory transport protocol classes for operation over CONS as required by ITU-T Rec. X.224 | ISO/IEC8073.
- b) Connection mode Transport Service over Connection mode Network Service

The Connection mode Transport Service (COTS) is provided over the Connection mode Network Service (CONS).

Profiles of this characteristic are further grouped according to their required support of Transport Protocol class(es):

mandatory(see note 1) transportprotocolclasses

GroupTB:	0 and 2 and 4 (see note 2)
GroupTC:	0 and 2 (see note 2)
GroupTD:	0
GroupTE:	2 (see note 3)

NOTES

1	'Mandatory' meansthose TransportProtocol classes made mardatory by the base standard, ISO/IEC8073, plus any class required for Group membership
2	The class negotiation rules to be employed are those in ITU-T RecommendationX.224.

3 A n IT system implementing a profile from Group TE and claiming conformance to ITU-T Recommendation X.224 also has to implement transport protocol class 0.

5.5.1.4 Connectionless - mode Transport Service: Profile class U

a) ConnectionlessmodeTransportService over ConnectionlessmodeNetworkService:

GroupUA

The Connectionlessmode Transport Service (CLTS) is provided using the ITU-T Rec. X.234 | ISO/IEC8602 Connectionless-mode Transport Protocol. This Group supports the mandatory operation of the ITU-T Rec. X.234 | ISO/IEC8602, overCornectionless-modeNetworkService.

b) ConnectionlessmodeTransportServiceover ConnectionmodeNetworkService:

GroupUB

The Connectionlessmode Transport Service (CLTS) is provided using the ITU-T Rec. X.234 | ISO/IEC8602 Connectionless-mode Transport Protocol. This Group supports the option of the ITU-T Rec. X.234 | ISO/IEC8602 that operates over Connection-mode Network Service.

NOTE- An IT systemimplementing a profile from Group UB and claiming conformanceto the ITU-T Rec. X.234 | ISO/IEC8602 also has to implement the mandatory operation over CLNS as required by the ITU-T Rec. X.234 | ISO/IEC8602.

5.5.1.5 Interworking between Transport Profile Groups

The following tables 1 and 2 show the interworking capabilities betweenprofiles. Table 1 shows the interworking betweenprofiles in profile class T, and table 2 shows the interworking among profiles in profile class U. Successful establishment of a Transport Connection is dependent upon successful negatiation of parameters, some of which are not considered in the following tables.

No interworking is possible between Groups in class T and U because of the different mode of Transport Service provided.

Entries in the tables have the following meaning:

Full:	Full OSI interworking(an OSI relay maybe required (see "6.2 Relay Profiles")
Restricted:	Interworking capabilities are restricted in the sense that the choice of Transport Protocol classes may be restricted by the static capability of the responder. Successful inter- working is dependent on the satisfactory out- come of class negotiation.
Special:	Non-OSI relay required for interworking (see also "5.5.2.1 Principles")
Special 1:	Special restrictions for interworking exist (see "6.2.4 CO/CLInterworking".
Special2:	Interworking between these profile types is not contemplated in any JTC1 work.
NOTE- Succ	essful interworking depends not only on the satisfactory outcome of the

OTE-Successful interworking depends not only on the satisfactory outcome of the transport protocol class negotiation but also on dynamic responses during transport initiation. Such dynamic responses can include, amongstothers, responder reactions to the offered Quality of Service (QOS) or to the specific options requested by the initiator.

Responder in Group	Network Service mode	ТА	ТВ	тс	TD	TE
TA	CL	full	special 1	special 1	special 1	special 1
TB	CO	special 1	full	full	full	full
TC	CO	special 1	restricted	full	full	full
TD	CO	special 1	restricted	restricted	full	special 2
TE	CO	special 1	restricted	restricted	special 2	full

Table 1 - Interworkingamongst Groups in class T

Table2 - InterworkingamongstGroupsin classU

Responder in		
Group	UA	UB
UA	full	special 2
UB	special 2	full

5.5.1.6 Introduction to the Taxonomy of Subnetwork Profiles

Subnetwork types are characterized by a structured numerical identifier. The first digit of the numerical identifier classifies the major subnetwork type being used for system interconnection while the subsequent digits represent a subdivision of the subnetwork type, indicating how use is made of the subnetwork type, or describing how the subnetwork is accessed. The major subnetwork types, as identified by the first digit of the subnetwork identifier, are the following:

- 1 PacketSwitchedDataNetwork(PSDN)
- 2 Digital Data Circuit
- 3 AnalogueTelephoneCircuit
- 4 IntegratedServicesDigitalNetwork(ISDN)
- 5 Local Area Network (LAN)
- 6 FrameRelayDataNetwork(FRDN)

The number of ways in which subnetworks may be implemented and used is potentially very large. There are also cases where one subnetwork type is used to access another subnetwork type which has a higher network functionality. For example, an ISDNor a FRDN may be used to access a PSDN which offers a higher functionality. The subnetwork taxonomy needs to reflect such combinations which are defined by ITU recommendations and offered by public network service providers. Other subnetwork variations have been deemed to be, in practice, less important to the goal of end system interoperability, e.g. some electrical and physical interfaces that are prerequisites to subnetwork connection establishment but transparent to data exchange. Therefore, aspects such as line speed, connectortype, or modem type have, in general, not been reflected in the subnetwork taxonomy. Such requirements may be included in actual ISPs, if considered important, or this area may be left as a local matterfor system installation.

5.5.1.6.1 Packet Switched Data Network

The second digit of the subnetwork taxonomy identifier makes the overall distinction as to whether the access to the PSDN is permanent or switched. For each of these two major types of access to the PSDN, the third digit of the subnetwork identifier denotes the type of network used to gain access to the PSDN. Currently defined networks for gaining access to the PSDN are a PSTN line, a CSDN line, an ISDNB-channel, and a FRDN.

Except for the more complicated case of a FRDN access, the fourth digit of the PSDN subnetwork taxonomy identifier indicates whether the X.25 logical channel operates on a Virtual Call or a Permanent Virtual Circuit. In the case of switched access to the PSDN, only Virtual Call operation is possible.

In the case of FRDN access to a PSDN, the fourth digit of the subnetwork identifier indicates that a Frame Relay Permanent Virtual Circuit (FR PVC) is used while a fifth digit indicates that the PSDN is used to provide for X.25 DTE operation.

Place holders have been left in the PSDN subnetwork taxonomy to allow for future specification of access to the PSDN through other means, e.g. through an ISDN D-channel or H-channel, or through various combinations of a Frame Relay service operating over ISDN.

5.5.1.6.2 Digital Data Circuit

A Digital Data Circuit is typically an X.21 based service offering although other interfaces are conceivable, e.g. ITU-T Rec. G.703 based service offerings. The taxonomy currently makes no distinction on this point which is left to actual profile definitions.

The second digit of the subnetwork taxonomy identifier determines whether the circuit is established permanently (leased service) or established by circuit-switching (dial-up). There is no further subdivision of the Digital Data Circuit subnetwork taxonomyidentifier.

5.5.1.6.3 Analogue Telephone Circuit

The subnetwork identifiers for Analogue Telephone Circuits are structured identically to the subnetwork identifiers for Digital Data Circuits, i.e. the second digit of the subnetwork identifier indicates whether the analogue circuit is established permanently (leased service) or by circuit-switching (dial-up).

5.5.1.6.4 Integrated Services Digital Network

The second digit of the ISDN subnetwork taxonomy identifier indicates the type of service being assumed from the ISDN. Four types of such service have been identified at this time; these being permanent service (including semi-permanent service), circuit-mode service, packet-mode service and frame relay bearer service.

The permanent and circuit-mode services operate on ISDN Bchannels (indicated by the third digit of the subnetwork identifier) through which the communicating DTEs are connected transparently. In this case, the taxonomy uses the fourth digit to indicate whether the B-channelis used to operate the X.25 packet layer protocol between DTEs or whether the connection is used to operate the ITU-T Rec. X.233 | ISO/IEC8473-1. connectionlessmode network protocol between DTEs. This last case of operating the ITU-T Rec. X.233 | ISO/IEC8473-1. connectionless-mode network protocol without an underlying X.25 protocol is applicable only to the RA and TA groups of profiles whereas the X.25 operation over an ISDN subnetwork may be used to provide either the connection-mode network service or the connectionless-mode network service.

In the case of packetmode service or frame relay bearer service being used from the ISDN, the third digit of the ISDN subnetwork taxonomy identifier determines the type of ISDN channel being used to access the service. Such channels may be a (semi-)permanent B-channel, a demand access B-channel, a D-channel, or a permanentH-channel.

For packetmode service or frame relay bearer service over ISDN, the fourth digit of the ISDN taxonomy identifier indicates the type of virtual path being used (Virtual Call, Permanent Virtual Circuit or Switched Virtual Call) while the fifth digit, if present, provides further detail on call control (with or without use of ITU-T Rec. Q.931) or the type of DTE operation (TE1 operation for frame relay bearer service).

Place holders have been left in the ISDN subnetwork taxonomy to allow for future expansion of the level of detail in operation of the frame relay bearer service, as well as addition of a frame switching bearer service over ISDN.

5.5.1.6.5 Local Area Networks

The subnetwork identifier has only two digits where the second digit indicates the type of LAN, no matter what protocol is operating over such LAN. The types of LAN that are currently recognized in the taxonomy are CSMA/CD, Token Bus, Token Ring and FDDI.

5.5.1.6.6 Frame Relay Data Networks

The FRDN subnetwork taxonomy is applicable to situations where a FRDN is used directly for system interconnection. Frame relay subnetwork technology may also be used to access a PSDN (covered under the PSDN subnetwork taxonomy) or to operate as a service within an ISDN (covered under the ISDN subnetwork taxonomy). The second digit of the subnetwork taxonomy denotes whether access to the FRDN is permanent (leased service) or switched (dial-up). The third digit of the FRDNtaxonomy indicates the type of network used to access the FRDN. This may be an analogue data circuit (PSTNleased or dial-up) or a special FRDTS (Frame Relay Data Transmission Service, permanent or switched access).

The fourth digit of the FRDN taxonomy is used to distinguish between the types of frame relay virtual connection (permanent virtual circuit or switched virtual call) whereas a fifth digit is used to indicate the type of terminal operation (Frame Relay TE1 as defined by the ITU-T).

Place holders have been left in the FRDN subnetwork taxonomy to allow for future expansion of the level of detail in operation of the framerelay service.

5.5.2 Relay Profiles

5.5.2.1 Principles

Relay profiles define the use of standards from OSI layers 1 to 4, to provide relaying functions between OSI Transport profiles.

No relays exist between different profiles of different Transport profile classes(T, U).

Relays may operate at various layers up to layer4. However, relays operating at layer4 are not OSI relays and hence some restrictions or limitations may be expected in their operation. Many proposals for such relays have significant architectural issues associated with them relating to integrity, security, QOS, etc., and the fact that an identifier has been allocated to them does not indicate that such issues have been resolved.

5.5.2.2 Relay Profile Identifier

The identifier for a Relay profile is of the form

RXp.q

where

R = relayfunction

X = relaytype identifier

This identifier will cover

- the layer at which the relay operates
- the service mode being supported
- the type of relay

p, q= subnetworktype identifier

p and q may each take the value of the abcde-structured numerical identifier defined for Transport profiles. The fully qualified structure need only be used where necessary (e.g., for circumstances where a distinction must be made between LANs).

RXp.q represents a relay of type X between subnetwork type p and subnetwork type q.

A relay RXp.q is considered to provide the same functionality as RXq.punless otherwise stated.

5.5.3 Application Profiles

5.5.3.1 Principles

Application profiles define the use of protocol standards from OSI layers 5 to 7, to provide for the structured transfer of information betweenend systems.

Each Application profile is a complete definition of the use of protocol standards from OSI layers 5 to 7, though it may share one or more common definitions of some part of its content with other Application profiles.

To avoid, wherever appropriate, duplication of text related to common parts, the concept of the Common Upper Layer Requirements has been introduced. These CommonUpper Layer Requirements can be documented in a separate ISP or part thereof, to be referenced by using Application profiles (see "5.5.3.2 CommonUpper Layer Requirements".

Furthermore, Application profiles can build on each other in such a way that one Application profile makes use of services provided by another Application profile for specific modes of communication (i.e. ALD22 profile, which is based on AMH2n profiles and AMH2n profiles, which themselves are based on AMH1n profiles). The resulting combination of A-/B-profiles with one or more underlaying A-/B-profile(s) will be selected by the user to meet the functional requirements in each case. However, the choice may be subject to constraints which can be expressed within either A-/B-profile.

In analogy with the primary distinction made between Transport profiles, a primary distinction is made between Application profiles, based on the mode of Transport Service they require:

- Profile class A: Application profiles requiring Connection-mode Transport Service, i.e., using T-profiles
- Profile class B: Application profiles requiring Cornectionless-mode Transport Service, i.e., using U-profiles

A further distinction is based on Application categories, related to Application Layer OSI standards defined by JTC1 and ITU-T.

In addition, Application categories have been identified related to the use of OSI protocols by other Technical Committees such as ISOTC 184 (Manufacturing Messaging) and TC46 (Library and Documentation).

5.5.3.2 Common Upper Layer Requirements

Profiling specifications on Common Upper Layer Requirements (CULR) describe sets of upper layer elements for commonuse by several Application profiles and are documented in an ISP.

CULR define the common use of OSI standards for the session layer, presentation layer and part of the application layer.

An ISP defining an Application profile may reference the CULR as the common basis for the selection of options for the upper layers and may add its own requirements in the form of further additional choices for the use of the upper layer standards.

CULR do not specify a complete profile, and therefore have no entry within the taxonomy of this Technical Report and no profile identifier will be assigned.

5.5.3.3 Application Profile Identifier

The identifier for a profile in the Application class is of the form:

CXYabc

where:

- C = Application profile class designator:
 - A for profiles requiring Connection-mode TransportService
 - B for profiles requiring Connectionless-mode TransportService
- XY = two letters corresponding to the names of the primary subdivisions. These subdivisions are taken from the main categories of application functions and OSI management, as identified as main projects in JTC 1.
- abc = the structured numerical identifier for the member(s) of the subdivision. It is possible that a further level of subdivision may become necessary. Only that level of identifier will be used which is necessary for uniqueness. This level may vary among application functions (see Note).
- NOTE- An extension has been adopted for the use by the Network Management taxonomy, which proposes to use also lower case letters. See "5.5.3.4.5 OSI Management" for details.
- 5.5.3.4 Introduction to the Taxonomy of Application Profiles
- 5.5.3.4.1 File Transfer, Access and Management

The profiles for File Transfer, Access and Managementare based on ISO/IEC8571. These profiles are subdivided into four classes.

The AFT1n profiles are for the file transfer service covering a single transfer of a file or part of a file between the filestores of two end systems, taking into account files with differing complexity of their internal file structure (constraint sets).

The AFT2n profiles are for the file access service covering repeated read/write access to files between the filestores of two

end systems, again for files with differing complexity of their internal file structure.

AFT3 is a profile for the creation and deletion of files and the management of their characteristics, and AFT4 profiles the function to manage directories of files in the filestore of a remote system.

5.5.3.4.2 Message Handling

The Message Handling profiles AMH1n, AMH2n and AMH3n are based on ISO/IEC10021 and the equivalent CCITT/ITUT X.400 Recommendations.

The common messaging profiles (AMH1n) specify generic requirements that are expected to be supported by all MHS implementations. The AMH13 profile covers the common requirements to be supported by a UA or MS component when using the P7 protocol versions defined in ISO/IEC100215:1990| ITU-T X.413(1988). The AMH14 profile covers the common requirements to be supported by a UA or MS component when using the new P7 protocol versions defined in ISO/IEC 10021-5:1994| ITU-T X.413(1995). Additionally, the AMH13 and AMH14 profiles allow minimal support of content type-specific MS attributes to be claimed if support of the corresponding content type is claimed.

The content type-specific profiles (AMH2n, AMH3n and further content types to be defined in the future) cover both end-to-end UA-to-UA communication (the content protocol and associated UA functionality) and use of MessageHandling services (by requiring conformance to the appropriate AMH1n profile(s) plus any additional content type-specific requirements).

The AMH24/AMH34and AMH25 profiles allow an IPM/EDIMGUA to interact with an MS in a full and flexible manner without having to retrieve complete messages. The AMH24/AMH34 profiles cover the P7 protocol aspects in relation to IPM/EDIMG as defined in ISO/IEC 10021-5:1990 | ITU-T X.413(1992), ISO/IEC 10021-9:1995 | ITU-T X.435(1991). The AMH25 profile covers the IPM P7 aspects defined in the context of the new P7 protocol versions, as defined in ISO/IEC 100215:1994 | ITU-T X.413(1995) and ISO/IEC10021-7:1995 | ITU-T X.420. Minimal attribute support for MS access in an IPM/EDIMG environment can be specified by claiming conformance AMH13 and/or AMH14 with an additional claim of IPM/EDIMG contenttype and attribute support.

5.5.3.4.3 Directory

Profiles for the Directory, based on the use of ISO/IEC9594 and the corresponding ITU-T X.500 Recommendations fall into two classes:

- Protocol and associated procedures;
- Schemaand contents.

The first of these is represented by the ADInn series of profiles, the second by the FDInn series (see "5.5.4.3.4 Directory Data Definitions".

Withing the ADInn series, three classes are currently defined which relate to the protocol for accessing The Directory from Directory User Agents, the protocol for interworking between Directory SystemAgents within The Directory, and procedures for distributed operation of The Directory.

A fourth class is under study to handle the topic of strong authentication- for instance the use of Public Key Cryptographyin The Directory.

Sub-categorisation relates to support for mechanisms related to the distinct rôles of Directory User Agents and Directory System Agents, responders and initiators.

A new taxonomy has been developed for the 1993 edition of the Directory specifications. The ISPs developed for the 1988 edition of the Directory specification will be current in parallel with the ISPs for the 1993 edition. There should therefore be no overlap between taxonomy identifiers for the two editions. The taxonomy developed for the 1993 edition of the Directory uses the taxonomy identifier ADYnn.

Interoperability between profiles belonging to the ADInn series and the profiles belonging to the ADYnnseries is being addressed by the ADYnnprofiles.

5.5.3.4.4 Virtual Terminal

The Application profiles for the Virtual Terminal protocol have taxonomy identifiers of the form AVTab, in which the identifier component *a* is a single digit and *b* is an integer that is not restricted to a single digit. At present only two values are defined for the component *a*, corresponding to the two modes of operation of the Virtual Terminal Basic Class protocol specified in ISO 9041-1. These are the asynchronous mode (A-mode) and the synchronous mode (S-mode) of operation. Other values of the component *a* are reserved for future developments that may specify additional modes of operation within the Basic Class, or additional classes of operation of the Virtual Terminal protocol besides the Basic Class.

The Virtual Terminal protocol also makes use of Interchange Format and Representation Profiles. An introduction to the taxonomy of these profiles is given in "5.5.4.3.5 Virtual Terminal Environment"

5.5.3.4.5 OSI Management

The taxonomy identifiers for OSI Management are of the form AOMabc.e

The first digit of the taxonomyidentifier, *a*, identifies the nature of profiles within OSI Management:

AOM1*bc* are the Management Communications profiles, i.e. the profiles that specify the use of the OSI Upper layers and CMIP protocol. Within AOM1*bc* profiles, the second digit, *b*, identifies Management Communications profiles offering different support levels of the OSI management communications features.

AOM2*bc* are the SystemsManagementFunctions profiles, i.e. the profiles that specify the use of Systems Management Functions as defined in ISO/IEC10164 series and corresponding ITU-T X.700 Recommendations. Within AOM2*bc* profiles, the second digit, *b*, identifies separate Management functionalities or capabilities such as Performance or Security. These functionalities can undergo one or more levels of refinement and grouping, with identifiers in the form AOM2*ab.e.* For these taxonomyidentifiers, a value of "1" in positions *c*, *d* or *e* indicates a "general" profile, i.e. a profile that represents a grouping of functionalities which is of a general applicability nature and includes all detailed capabilities associated with other values of the taxonomyidentifierin the same position.

In the area of Network Managementit is probable that the use of numerical identifiers alone would limit the substructuring of the taxonomy. It is therefore planned to use alphanumerical identifiers in the sequence 1, 2, ..., 8, 9, a, b, ..., y, z. Only lowercase letters shall be used and the lower case letter "I" has to be avoided.

5.5.3.4.6 Transaction Processing

The first level of the Taxonomy substructure corresponds to the definition of the three conformance classes defined in the OSI TP standard. The second level corresponds to the selection between Polarized Control and Shared Control for each of the conformance classes.

5.5.3.4.7 Remote Database Access

(for further study)

5.5.3.4.8 Manufacturing Messaging

The Manufacturing Message Specification allows interworking of various equipments on a computers and programmable devices within the manufacturing environment. It resides in the Application Layer of the OSI Reference Model and uses an object modelling approach for the description of manufacturing applications. MMS defines a set of messages suitable for the manipulation of the real devices in the manufacturing environment.

MMS has evolved into a multi-part ISO standard, ISO 9506. Parts 1 and 2, known as the core, describe the modelling approach, the syntax and semantics of the service and protocol. Additional parts, known as the companion standards, describe the extensions of the core for specific application areas, for example numerical controllers, robot controllers and process control systems.

5.5.3.4.9 Library and Documentation

The Library and Documentation (ALD) profiles are based on ISO/IEC10163 Search & Retrieve (SR) and ISO/IEC10161 Interlibrary Loan (ILL) protocols. These specifications for SR and ILL enable interworking between IT systems supporting services for organizations such as libraries, informatin utilities and union cataloguecentres.

SR is intended for use by IT systems supporting information retrieval services. SR provides capabilities for an IT system to search a database in another open system for a record and receivea result set of records in response.

ILL is intended for use by IT systems supporting interlibrary loan services. These may participate in an interlibrary loan transaction in the role of a requester (i.e. an initiator of ILL requests), responder (i.e. a provider of bibliographic material or information) and/or intermediary (i.e. an agent that acts on behalf of a requester to find suitable responders).

5.5.3.4.10 Document Filing and Retrieval

Functional Standards for ISO/IEC 10166 DFR are required in order to satisfy the market needs of interactive access to documents stored in office and library systems. This approach covers the most urgent needs of open document interchange for the office systems in the market today.

The market requires open access to office libraries and archives in a heterogenous environment, i.e. interchange of documents accross domains using open standards. Existing products are specifically designed to the needs of their application areas. Therefore they support only parts of the basic DFR functionality, however, providing extended functionality for the domain they are designed for. In order to ensure a DFR based integration of these products in a heterogeneous office joint functional subsets of DFR have to be defined.

The functionality covered by DFR is currently implemented by a wide variety of products supporting a subset of the DFR functionality, namely:

- accessto manuals on line
- accessto project documentation
- documentarchives and retieval systems
- databasestailored for the storage of images or forms
- distributedfile systems

DFR functional standards provide the common subset of the different systems - offering a unified access protocol to these different applications, flexible enough to provide the functionality concerned with the storage and archiving requirements of the different office systems.

Besides native DFR implementations gateways may be used. A gateway maps the internal protocol of the client applications in one domainto the DFR protocol, therefore allowing applications to access other DFR sotres connected to the network. Also the DFR protocol is mapped to the internal protocol, allowing outside DFR client applications to use the data stored within the domain. If required the information content may be converted to a standardized format within the gateway. To use existing applications without modifications to the greatest extent possible, functionallevels have to be introduced in the DFR protocol.

The following substructure of the taxonomy has been chosen:

a) CommonFiling and Retrieval (ADF1n)

In many offices, some document stores and terminals such as personal computers are connected by network. However, one terminal can not access to all document stores on the network, because there are many kinds of protocols between document stores and terminals. The market needs interactive access to all multi-vendors' document stores on the network. Therefore DFR Functionalstandards are required.

b) Remote Store Management(ADF2n)

There is a need of having functional profiles oriented to the management of a document store from remote applications.

An example of this kind of application is when a user is provided with the ability to handle a document store and manipulate, remotely, a selected document. For the selection of the document and hte handling of the store, DFR is needed. For the inner manipulation of the documents, a second standards for inner manipulation of the document is necessary. For example, if documents follow the ODA standard structure, the ODA Abstract Interface for Manipulation, combined with a communication mechansism, could be used.

The Remote Store Management" profiles are oriented towards:

 remote manipulation of the remote store structure, without reading documents or creating new ones, because all documentmanipulation is performed at the server; remote handling of DFR objects for further manipulation of selected documents by other applications that know the structure of the document.

All ADFnn profiles are defined hierarchically, with ADFn1 having the lowest functionality, ADFn2 including the functionality of ADFn1, etc.

5.5.3.4.11 Interactive Manipulation of ODA Documents

This taxonomy (AOD) specifies profiles for the remote interactive manipulation of ODA documents. The profiles will specify constraints on the ODA manipulation operations, as specified in [1], and on the communication protocols to use.

The taxonomy is based first on the communication protocols to use:

- AOD1nprofiles: DTAMDM service and protocol[2]
- AOD2nprofiles: MHS services and protocols[3]

Then, a second level of structure is the subset of manipulation operations used. The different aspects of the Abstract Interface (AI) for the manipulation of ODA documents [1] and related communications standards, DTAMManipulation [2] and MHS [3], that will be considered when developing profiles for interactive ODAmanipulations are:

- Which operations to implement;
- which restrictions to apply to the arguments and results of the allowed operations. Arguments and results have a direct relationsship with the use of the mechanism for identification of ODA documents [4];
- which errors to support;
- which application contexts to use.

Other aspects of the manipulation process should be considered in the applications using the profiles, but not in the profiles themselves. These may include:

- Which manipulation rules should be used:
- which DFR profiles should be used.

[1] ITU-T Recomendation T.413 | ISO/IEC 8613-3, Abstract interface for the manipulaiton of ODA documents;

[2] ITU-T Recommendations T.435 and T.436, Document Transfer and Manipulation - Document Manipulation - Service and Protocol;

[3] CCITT X.400 series of Recommendations | ISO/IEC 10021, Message Handling System | Message Oriented Text Interchange System(MOTIS);

[4] ITU-T Recommendation T.422 | ISO/IEC 8613-12, Identification of document fragments.

5.5.4 Interchange Format and Representation Profiles

5.5.4.1 Principles

Interchange Format and Representation Profiles define the structure and/or content of the information being interchanged by Application profiles. Hence, the main feature which distinguishes them from Application profiles is the absence of a transfer function.

Currently, only interchange formats defined in standards prepared by JTC1/SC18, SC21, SC24 and ITU-T Study Group 7 and 8 are included.

5.5.4.2 Interchange Format and Representation Profile Identifier

The identifier for a profile in the Interchange Format and Representation class is of the form:

FXYabc

where:

- F = InterchangeFormat
- XY = two letters corresponding to the names of the primary subdivisions.
- abc = the structured numerical identifier for the member(s) of the subdivision. It is possible that a further level of subdivision may become necessary. Only that level of identifier will be used which is necessary for unique ness. This level may vary among the primary subdivisions.

5.5.4.3 Introduction to the Taxonomy of Interchange Format and Representation Profiles

5.5.4.3.1 Open Document Format

The Open Document Format (FOD) profiles consist of a hierarchy of related ODA Document Application profiles supporting formatted, as well as, processable documents and image applications.

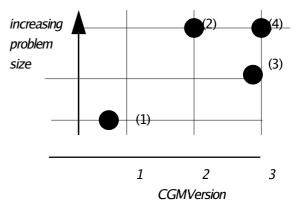
The structure of the Open Document Format (FOD) profile Taxonomy consists of three levels of subdivision: a, b and c and will have the appearance of FOD abc

- Level a reflects the source of application or use and two initial values are proposed:
 - 0 Documentprocessingapplications
 - 1 Image applications
- Level b reflects the hierarchically related complexity and functionality of the document structures and provides for three values as currently defined:
 - 1 Simple Document Structure
 - 2 EnhancedDocumentStructure
 - 3 ExtendedDocumentStructure

The Simple Document Structure is intended to address the general requirements of current word processing applications. The Enhanced Document Structure is intended to address the general requirements of emerging word processing applications that have been enhanced from the earlier, simple document structures supported by current word processing applications. The Extended Document Structure is intended to address the general requirements of emerging personal publishing, documentprocessing applications.

- Level *c* reflects the combination of content architectures supported and four values as currently defined (see note 2):
 - 1 CharacterContentArchitectureonly.
 - 2 RasterGraphicsContentArchitectureonly.
 - 3 Geometric Graphics Content Architecture only.

6 Character, Raster Graphics and Geometric Graphics ContentArchitectures.


NOTES

1

- For a given profile all three levels should be specified.
- 2 Other values may be added as additional ISPs with different content architectures are developed.

5.5.4.3.2 Computer Graphics Metafile Interchange Format

The CGM Format (FCG) profiles support the interchange of picture information. Profiles fit within the conceptual model shown in the figure below. This shows profiles being described within the model by the complexity of the problem and by the CGM version (as defined in the base standard).

The following profiles are defined and are described on the model shown in the figure above:

- (1) FCG11 Basic Scientific and Technical Graphics (BST);
 e.g. business presentation graphics, simple desk top publishing;
- (2) FCG23 Advanced Scientific and Technical Graphics (AST); e.g. CAD, mapping, earth sciences;
- (3) FCG32 Basic Presentation and Visualization (BPV); the model profile from the CGM standard, e.g. graphics arts, high end desk top publishing;
- (4) FCG33 Advanced Presentation and Visualization (APV); e.g. imaging, scientific visualization.

5.5.4.3.3 SGML Interchange Format

(for further study)

5.5.4.3.4 Directory Data Definitions

The Directory Data Definition Format (FDI) profiles specify the properties of Object Classes, Attribute Types, and Attribute Syntaxes related to the use of the Directory Application profiles (ADInn - see "5.5.3.4.3 Directory"). Two types of usage are covered - commonusage relevant to all such cases, and specific usage relevant to particular Application profiles.

Similarly to the profiles for the Directory, a new taxonomy has been developed for the 1993 edition of the Directory specifications. The ISPs developed for the 1988 edition of the Directory specification will be current in parallel with the ISPs for the 1993 edition. There should therefore be no overlap between taxonomy identifiers for the two editions. The taxonomy developed for the 1993 edition of the Directory uses the taxonomy identifier FDYnn.

5.5.4.3.5 Virtual Terminal Environment

The Interchange Format and Representation profiles for the Virtual Terminal protocol have taxonomy identifiers of the form FVTabc, in which the identifier components *a* and *b* are single digits and *c* is an integer that is not restricted to be a single digit. Each taxonomy entry corresponds to an information object that may be referenced in a particular instance of communication by the Virtual Terminal Basic Class protocol specified in ISO9041-1.

The specifications of these information objects are subject to registration in accordance with ISO/IEC9834. Two of the parts of ISO/IEC9834, namely parts 4 and 5, concern registration procedures that are specific to the Virtual Terminal service and protocol. The three values defined in the identifier component a distinguish between the object types that are subject to one of these specific procedures and the object types that are subject to the general registration procedures of ISO/IEC98341.

The significance of the identifier component *b* differs according to the value of the component *a*. The objects registered in accordancewith ISO/IEC98344 are VTE-profiles that are specific to one of the two modes of operation of the Virtual Terminal Basic Class protocol. The component *b* distinguishes between these two modes. The objects registered in accordance with ISO/IEC98345 are control object type definitions, each of which is entered into one of a number of sub-registeres defined by these registration procedures. The component *b* distinguishes between these different sub-registers. The Virtual Terminal service defined in ISO9040 also identifies a number of other object types that are subject to registration under the general procedures of ISO/IEC9834-1. For these, the component *b* distinguishes between these different types of object.

5.5.4.3.6 Character Sets

Taxonomy identifiers for character set profiles are of the form FCSab. The first level, FCSa, represents the top level categorization of character set profiles. To date, only one category has been identified - Code Structures. Other categories may be added as the result of future study. Within code structures, the secondlevel, FCS1b, corresponds to the different classes of code structure. To date, two classes are identified. Further classes may be added. Within each class a number of options may be identified. Each option may identify a type of use which may be, for instance, dependent on a particular region of the world.

5.5.4.3.7 Medical Image Interchange

The FMI1 branch includes profiles which are suited to encoding single instances of medical digital images. These would be combined with other related digital images and associated non-imageinformation by application-specific means.

The FMI2 branch includes profiles which explicitly provide for multiple related digital images and related information, such as would be obtained in a typical medical examination. The relationship between the images is not defined. For example, they might be all images from a given series of examinations, or multiband images corresponding to the same moment in time. The FMI3 branch specifies profiles for multiple related images with related data and graphics, where individual images may be annotated with text and/or overlaid with other digital images and/or graphics to indicate, for example particular Regions of Interest in the underlying digital image. The overlays and annotations are not intrinsically bound to the image, although they must always occupy the same display space relative to the image coordinates. Thus it will still be possible after image transfer to display the digital image either with or without the overlaid information.

The FMI4 branch of the taxonomyspecifies Multimedia profiles.

The FMI5 branch of the taxonomy specifies profiles for representing Moving Images.

6 Taxonomy of Profiles

OSI profile identifiers are structured in accordance with the general OSE taxonomy defined in ISO/IECTR 100003. Thus, an OSI profile identifier comprises:

- the suffix "C" (for a CSI profile) 2;
- a root mnenomic which is a character string commencing with one letter that indicates the primary class of the profile;
- an alphanumeric string that is as long as necessary to reflect the position of the profile within the hierarchic structure.

The syntax of all but the first letter is subject to individual definitions.

For historical reasons ISPs exist which use profile identifiers without the suffix "C". ISPs using these profile identifiers remain valid. In case of existing ISPs, the suffix "C" will be added when revisions or maintenance occurs. New ISPs containing OSI profiles will include the suffix "C".

The inclusion of a profile in this clause is purely for the purpose of assigning a unique, meaningful identifier. It should be noted that the inclusion of a profile identifier in this clause does not imply that such a profile has been developed or is under development. For such information, see the "Directory of ISPs and Profiles contained therein" (Standing document SD-4).

Furthermore, additional details of the functionality addressed by a specific taxonomy entry can be found in the Executive Summaryof the profile, which is included in SD4.

6.1 Transport Profiles

6.1.1 Taxonomy of Subnetworks

The following Taxonomy classifies subnetworks and, where existing, different modes of operation over a particular subnetwork, to provide the OSI Network Service. The Taxonomy is used in all Transport profile Groups, unless otherwise stated.

<u>abcde</u>	<u>Subnetwork Type</u>
1	Packet Switched Data Network (PSDN)
11	PermanentAccessto a PSDN
111	PSTNleasedline
1111 1112	Virtual Call (VC) Permanent Virtual Circuit (PVC)
1112	
112 1121 1122	Digital data circuit / CSDNleasedline Virtual Call (VC) Permanent Virtual Circuit (PVC)
<u>abcde</u>	Subnetwork Type
113 1131 1132	ISDNB-channel, permanent Virtual Call (VC) Permanent Virtual Circuit (PVC)
	·
114 115 116 1162 11621	ISDNH-channel, permanent ISDND-channel ³ FrameRelayDataNetwork(FRDN) FrameRelayPVC ⁵ X.25 operation, Virtual Call ^{5 7 8}

PSTNCase

Virtual Call (VC)

121

1211

 $[\]boldsymbol{3}$ also includes the semi-permanent case.

⁴ for further study.

⁵ It is for further study that the profiles make a distinction between the cases when the Frame Relay connection is established over a circuit-switched connection and when the Frame Relay connection is established using the frame relaying capabilities of the FRDN.

⁶ This profile may be replaced with the following profiles: X.25 DTE operation, VC ; X.25 DTE operation, PVC

⁷ In case of X.25 DTE, it is for further study that the profiles make a distinction between the case when an ISO/IEC 7776 frame is encapsulated within LAPF frame and the case when ISO/IEC 8208 operates directly over LAPF using the generic multiprotocol encapsulation method..

⁸ It is for further study that the profiles make a distinction between the cases when access to PSDN is by port access or by call control mapping.

² This suffix is omitted in the description of the OSI taxonomy in this part of ISO/IEC TR 10000.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	122 1221	CSDNCase Virtual Call (VC)	433 4331	B-channeldemandaccess Virtual Call (VC)
442 B-channel permanent 4423 FrameRelayPVC 2 Darw. Dava Cacur 44231 TEloperator 21 Leased(Permanent)Service 444 H-channel,permanent 22 Dialup (CSDN) 5 Locul Area Nerworks 3 Aval.coar TeleproxeCincur 5 Locul Area Nerworks 31 Leased(Permanent)Service 5 Locul Area Nerworks 32 Dialup (PSTN) 51 CSMACD 4 Immediation Service 53 TokenBus 41 PermanentService 53 TokenBus 3 Aval.coar TeleproxeCincur 6 Fivaer Relay Data TransmissionService 41 PermanentService 61 Permanentaccess 411 B-channel 61 Permanentaccess 412 CircuitmodeService 612 FrameRelayData TransmissionService 411 X-25DTEto DTEoperation 6122 FrameRelayPermanentVirualConnection 421 B-channel 6122 FrameRelayPermanentVirualConnection 431 D-channelaccess 6122 FrameRelayPermanentVirualConnection 431 D-channelaccess 61.2 Transport Groups 4311 Virual Call (VC) Forthe detailed subnetworkTaxonomy<			44	FrameRelayBearerService(FRBS)
4423 FrameRelayPVC 2 Datro. Data Graza 21 Leased(Permanent)Service 444 4443 FrameRelayPVC 22 Dialup (CSDN) 4443 3 Avaccaz FizzeroreGrazar TELoperation 31 Leased(Permanent)Service 51 32 Dialup (PSTN) 51 4 Interavtes Services Diatra, Network (ISDN) 51 41 PermanentService 53 74 PermanentService 53 75 Fower Rezur Data Network (ISDN) 74 Store Diatra, Network (ISDN) 75 Content Network (ISDN) 74 Store Rezur Data Network (ISDN) 75 Fower Rezur Data Network (IRDN) 74 PermanentService 75 FrameRelayData TransmissionService 76 FrameRelayData TransmissionService 77 Gircuit mode Service 78 Circuit mode Service 79 FrameRelayData TransmissionService 71 Z2DEto DTEoperation 71 Store Service 74 Floater Relay Permanent Vitual Connection 71 Circuit mode Service 71 Store Service 721 Bitter DTEoperation	1231	Virtual Call (VC)	442	B-channel, permanent
2 Daraz Data Graut 44231 TEloperation 21 Leased(Permanent)Service 444 H-channel,permanent 22 Dialup (CSDN) 3 FrameRelay/PVC 33 Awt.ocal TELEPLONE Gecur 44431 TELoperation 31 Leased(Permanent)Service 5 Local Area Networks 32 Dialup (PSTN) 51 CSWACD 4 Incoversion Service 53 TokenBus 31 PermanentService 53 TokenBus 31 Bechannel 6 FrameRelay/Data Network (FRDN) 411 Bechannel 6 FrameRelay/Data Network (FRDN) 4111 X25DTEto DTEoperation 611 PermanentAccess 421 Bechannel 6122 FrameRelay/Data TransmissionService (FRDTS), permanentVitualConnection 411 X25DTEto DTEoperation 6122 FrameRelayPermanentVitualConnection 421 Bechannel 6122 FrameRelayPermanentVitualConnection 431 Dechannelaccess 6122 FrameRelayPermanentVitualConnection 4311 Vitual Call(VC) Forthe detailed subnetwork Taxonomy see*6.11 Taxonomyof Subnetwork 4311 Vitual Call(VC) Permanentwork ZSPP.PerX250PenLagePerex30 data Transmised Pagamenthaceprematers.			4423	
21 Leased(Permanent/Service 4443 FrameRelayPVC 22 Dialup (CSDN) 44431 TELoperation 3 Avucoal Telemox Circur 5 Loou Area Networks 31 Leased(Permanent)Service 5 Loou Area Networks 32 Dialup (PSTN) 51 CSMA(CD) 4 Integrand Services Dorral, Network (ISDN) 51 CSMA(CD) 53 TokenBus 53 TokenBus 41 PermanentService 53 TokenBus 3 S4 FDDI 6 4111 Scharnel 61 Permanentaccess 4112 CLNSDTE to DTE operation 61 Permanentaccess 421 Beharnel 6122 FrameRelayData TransmissionService (FRDTS), permanentaccess 421 Beharnel 6122 FrameRelayPermanentVinual Connection 43 PacketmodeService 6122 FrameRelayPermanentVinual Connection 431 Deharnelaccess 7 GroupTA: COTSover CLNS 43111 Virtual Call (VC) TA GroupTA: COTSover CLNS 43112 withorouse of Q.931	2	Digital Data Circuit	44231	-
4443 FrameRelayPVC 22 Dialup (CSDN) 44431 TEloperation 3 Avalocate Telephoxe Grout 9 31 Leased(Permanent)Service 5 Loou Area Networks 32 Dialup (PSTN) 51 CSMACD 4 Interconted Services Dottal Network (ISDN) 51 CSMACD 53 TokenBus 53 TokenBus 41 PermanentService 53 TokenBus 411 B-channel 6 FrameRelay/Data Network (FRDN) 4111 X25DTEto DTEoperation 61 Permanentaccess 4112 CLNSDTE to DTEoperation 612 FrameRelay/Data TransmissionService (FRDN) 421 B-channel 6122 FrameRelay/Data TransmissionService (FRDTS), permanentaccess 421 B-channel 6122 FrameRelayPermanentVitualConnection 421 B-channel 6122 FrameRelayPermanentVitualConnection 431 D-channelaccess 6121 TElo TEloperation ² a 4311 Vinual Call (VC) TA GroupTA: COTSover CLNS 43111 withoutuse of Q.931 Forthe detailed subnetwork Taxonomy 4312 PermanentVinual Circuit (PVC) see "6.1.1 Taxonomy of Subnetwork"3 4321 Vintual Ca	21	Leased(Permanent)Service	444	H-channel, permanent
22 DiaPup (CSDN) 9 3 Avucous Telephone Gracur 31 Leased (Permanent) Service 5 Local Area Networks 32 DiaPup (PSTN) 51 CSMACD 4 Integrated Services Diarial Network (ISDN) 51 CSMACD 53 Token Ring 53 Token Ring 3 54 FDDI 411 B-channel 6 Frawe Relay Data Network (FRDN) 4111 X.25DTE to DTE operation 61 Permanentaccess 42 Circuit-mode Service 612 FrameRelay Data Transmission Service (FRDTS), permanentaccess 421 B-channel 612.2 FrameRelay PermanentVirtual Connection 421 Schannel 612.2 FrameRelay PermanentVirtual Connection 421 CLINSDTE to DTE operation 612.2.1 TE to TE to peration? ¹²⁰ 43 Packetmode Service 61.2 Transport Groups 431.1 Virtual Call (VC) TA Group TA: COTSover CLNS 43112 without use of Q.931 For the detailed subnetwork Taxonomy set "6.1.1 Taxonomy of Subnetwork" 4321 Virtual Call (VC) permanentVirtual Call (VC) procet(probab/XZSP PacketAry Por XZSDMetro Fragmetars Ary Layer 3 4321 Virtual Call (VC) procetan			4443	FrameRelayPVC
3 Avaccue Telephone Gracutt 31 Leased (Permanent) Service 5 Local AREA Networks 32 Dialup (PSTN) 51 CSMA/CD 4 Integranted Services Diata, Network (ISDN) 51 CSMA/CD 53 Token Blus 53 Token Blus 41 PermanentService 53 Token Blus 3 S 54 FDDI 4111 Bechannel 6 Frawe ReLaw Data Network (FRDN) 4112 CLINSDTE to DTE operation 61 Permanentaccess 4112 CLINSDTE to DTE operation 612 FrameRelay Data Transmission Service (FRDTS), permanentaccess 421 Bechannel 6122 FrameRelay PermanentVinual Connection 421 S. ZOTE to DTE operation 6122 FrameRelay PermanentVinual Connection 431 Dechannel Access 61.2 Transport Groups 4311 Vinual Call (VC) TA Group TA: COTSover CLNS 43111 Vinual Call (VC) Service "G.1.1 Taxonomy of Subnetwork" 4312 PermanentVinual Cricuit (PVC) service (Group Subnetwork" Taxonomy service (Group Subnetwork" Taxonomy service (Group Subnet	22	Diałup (CSDN)		TE1 operation
31 Leased (Permanent) Service 5 Local AREA NETWORKS 32 Diakup (PSTN) 51 CSMACD 4 INTEGRATED SERVICES DIGITAL NETWORK (ISDN) 51 CSMACD 53 Token Bus 53 Token Bus 41 PermanentService 53 Token Ring 3 54 FDDI 4111 B-channel 6 Frame Relav Data Network (FRDN) 4111 X.25 DTE to DTE operation 61 Permanentaccess 4112 CLINSDTE to DTE operation 612 Frame Relay Data Transmission Service (FRDTS), permanentaccess 421 B-channel 612.2 Frame Relay Data Transmission Service (FRDTS), permanent Virtual Connection 421 B-channel 612.2 Frame Relay Permanent Virtual Connection 421 X.25 DTE to DTE operation 61.2 Transport Groups 431 D-channelaccess 61.2 Transport Groups 4311 Virtual Call (VC) TA Group TA: COTSover CLNS 43111 with use of Q.931 Forthe detailed subnetwork Taxonomy of Subnetworks' 4321 Permanent Virtual Circuit (PVC) sacandatesamorgamy of the social contend	3		9	
32 Diałup (PSTN) 3 Diodup (PSTN) 4 INTEGRATED SERVICES DIGITAL NETWORK (ISDN) 51 CSMACD 52 41 Permanent Service 53 Token Ring 54 3 54 FDDI 4111 B-channel 6 4111 X.25DTE to DTE operation 61 4112 CLINSDTE to DTE operation 612 42 Circuit mode Service 612.2 421 B-channel 612.2 4211 X.25DTE to DTE operation 612.2 4212 CLINSDTE to DTE operation 612.2 43 Packetmode Service 61.2 431 D-channel access 61.2 4311 Virtual Call (VC) TA 4311 with use of Q.931 For the detailed subnetwork Taxonomy 4312 Permanent Virtual Circuit (PVC) see "6.1.1 Taxonomy of Subnetwork" 4321 Virtual Call (VC) proteod (probably.25Packet.ager Procedures (PLP) or X.25 Daa Transfer Place(DTP) 4321 Virtual Call (VC) proteod (probably.25Packet.ager Procedures (PLP) or X.25 Daa Transfer Place(DTP) 4321 Virtual Call (VC) proteod (probably.25Packet.ager Procedures (PLP) or X.25 Daa Transfer Place(DTP) 4321 Virtual Call (VC) premmanent access ³			F	
4 INTEGRATED SERVICES LIGITAL NETWORK (ISLN) 52 TokenBus 41 PermanentService 3 53 411 B-channel 4111 X.25DTEto DTE operation 4112 CLNSDTE to DTE operation 4112 CLNSDTE to DTE operation 4112 CLNSDTE to DTE operation 42 Circuit mode Service 41 X.25DTE to DTE operation 42 Circuit mode Service 411 X.25DTE to DTE operation 42 Circuit mode Service 612 FrameRelayData TransmissionService (FRDTS), permanent Access 4211 X.25DTE to DTE operation 43 Packetmode Service 61.2 Transport Groups 4311 D-channelaccess 4311 Vitual Call (VC) 43112 with use of Q.931 4312 Permanent/Vitual Circuit (PVC) 432 B-channelpermanentaccess ³ 4321 Vitual Call (VC) 4322 B-channelpermanentaccess ³ 9 9 4321 Vitual Call (VC)			2	LOCAL AREA INETWORKS
41 PermanentService 52 TokenBus 3 53 TokenRing 411 B-channel 6 FrameReLav Data Network(FRDN) 4111 X.25DTEto DTE operation 61 Permanentaccess 4112 CLNSDTEto DTE operation 61 Permanentaccess 42 Circuitmode Service 612 FrameRelayData TransmissionService (FRDTS), permanentaccess 421 B-channel 612.2 FrameRelayPermanentVirtualConnection 4211 X.25DTEto DTE operation 612.2.1 TEl to TEl operation 4212 CLNSDTE to DTE operation 612.2.1 Tel to TEl operation 431 D-channelaccess 61.2 Transport Groups 4311 VirtualCall (VC) TA GroupTA: COTSover CLNS 4311.1 withoutse of Q.931 Forthe detailed subnetwork Taxonomy 4312 PermanentVirtualCall (VC) see "6.1.1 Taxonomyof Subnetworks" 432 B-channelpermanentaccess ³ 9 A FrameRelayTEls defined as a Terminal Equipmenthat operates any Layer 3 4321 VirtualCall (VC) protocol(probably/X229-actual performactors(Q.923.A.X.25 Data TransferPhasectOTP) 4321	1		51	CSMA/CD
11 Permanentalexitservice 54 FDD 31 54 FDD 411 B-channel 6 Frawe ReLAY DATA NETWORK (FRDN) 4111 X.25DTEto DTE operation 61 Permanentaccess 4112 CLINSDTE to DTE operation 61 Permanentaccess 42 Circuit-mode Service 612 FrameRelayData TransmissionService (FRDTS), permanentaccess 421 B-channel 612.2 FrameRelayPermanentVirtualConnection 4212 CLINSDTE to DTE operation 612.2.1 TE1 to TE1 operation ^{7 to} 4212 CLINSDTE to DTE operation 61.2 Transport Groups 431 D-channelaccess 61.2 Transport Groups 4311 Virtual Call (VC) TA Group TA: COTSover CLINS 43111 withuse of Q.931 For the detailed subnetwork Taxonomy 4312 Permanent Virtual Circuit (PVC) see "6.1.1 Taxonomy of Subnetworks" 432 B-channel permanentaccess ³ 9 A FrameRelay TE1 is defined as a Terminal Equipmenthat operates any Layer 3 protocol (probably X25 Packet Layer Procedure (PLP) or X25 Data Transfer PraseCIP) 432 B-channel permanentaccess ³ 9 A FrameRelay TE1 is defined as	4	INTEGRATED JERVICES DIGITAL NETWORK (IJDIN)	52	TokenBus
11 Permanent Network 3 54 FDD 411 B-channel 6 4111 X.25DTEto DTEoperation 61 4112 CLNSDTE to DTE operation 61 42 Circuit-mode Service 612 421 B-channel 612.2 421 X.25DTE to DTE operation 612.2 421 X.25DTE to DTE operation 612.2.1 4212 CLNSDTE to DTE operation 61.2 4212 CLNSDTE to DTE operation 61.2.2.1 431 D-channel access 61.2 431 D-channelaccess 61.2 431.1 Virtual Call (VC) TA 431.1 virtual Call (VC) TA 431.2 Permanent/virtual Circuit (PVC) see "6.1.1 Taxonomy of Subnetwork" 311.2 with use of Q.931 For the detailed subnetwork Taxonomy 431.2 Permanent/virtual Call (VC) see "6.1.1 Taxonomy of Subnetwork" 432.1 Virtual Call (VC) sea "6.1.1 Taxonomy of Subnetwork" 432.1 virtual Call (VC) protocol (probably X25 Parket ayer Proceduse (PLP) or X25 Dat Tarefs PraseCTP) <	11	Dormanont Son ico	53	TokenRing
411 B-channel 4111 X.25 DTE to DTE operation 61 Permanent access 4112 CLNSDTE to DTE operation 61 Permanent access 42 Circuit-mode Service 612 FrameRelayData TransmissionService (FRDTS), permanent Virtual Connection 421 B-channel 612.2 FrameRelayPermanentVirtualConnection 4211 X.25 DTE to DTE operation 612.2.1 TE1 to TE1 operation ^{7 to} 4212 CLNSDTE to DTE operation 61.2 Transport Groups 431 D-channel access 61.2 Transport Groups 43111 without use of Q.931 For the detailed subnetwork Taxonomy 4312 Permanent Virtual Circuit (PVC) see "6.1.1 Taxonomy of Subnetworks" abcde SubnetworkType 9 A FrameRelayTElis defined as a Terminal Equipment that operates any Layer 3 procedures (PLP) or X25 DTata Transfer Phase (DTP) 4321 Virtual Call (VC) prococl(probably X25 PracetuayerPhocedures (PLP) or X25 DTata Transfer Phase (DTP) 4321 Virtual Call (VC) as areminal Equipment that operates X25 PLP or X25 DTata Transfer Phase (DTP) 4321 Virtual Call (VC) prococl(probably X25 PracetuayerPhocedures (PLP) or X25 DTata Transfer Phase (DTP)		remainencervice	54	FDDI
4112 CLNSDTE to DTE operation 61 Permarent access 42 Circuit-mode Service 612 FrameRelayData TransmissionService (FRDTS), permanentaccess 421 B-channel 612.2 FrameRelayPermanentVirtual Connection 4211 X.2SDTE to DTE operation 612.2 FrameRelayPermanentVirtual Connection 4212 CLNSDTE to DTE operation 612.2.1 TE1 to TE1 operation ^{7 to} 431 D-channelaccess 6.1.2 Transport Groups 4311 Virtual Call (VC) TA Group TA: COTSover CLNS 43112 with use of Q.931 For the detailed subnetwork Taxonomy 4312 Permanent Virtual Circuit (PVC) see "6.1.1 Taxonomy of Subnetwork" 4321 Virtual Call (VC) packetmode sa Terminal Equipment that operates any Layer 3 4321 Virtual Call (VC) scanddate samongmany others) over the coef unctions (Q.922.Anx 25 Data Transfer Phase(DTP) 4321 Virtual Call (VC) scanddate samongmany others) over the coef unctions (Q.922.Anx 25 Data Terminal Equipment Draser (P.P) or x 25 Data Terminal E	411	B-channel	6	Frame Relay Data Network (FRDN)
4112 CLNSDTE to DTE operation 42 Circuit-modeService 612 FrameRelayData TransmissionService (FRDTS), permanentaccess 421 B-channel 6122 FrameRelayPermanentVirtualConnection 4211 X.25DTE to DTE operation 61221 TE1 to TE1 operation ^{7.10} 4212 CLNSDTE to DTE operation 61.2 FrameRelayPermanentVirtualConnection 43 PacketmodeService 61.2 Transport Groups 4311 D-channelaccess 61.2 Transport Groups 43111 virtualCall(VC) TA GroupTA: COTSover CLNS 43112 with use of Q.931 For the detailed subnetwork Taxonomy 4312 Permanent Virtual Circuit (PVC) see "6.1.1 Taxonomy of Subnetworks" abcde Subnetwork Type 9 A FrameRelay TE1 is defined as a Teminal Equipment that operates any Layer 3 protocol (probably X25 Packet Layer Procedures (PLP) or X25 Data Transfer Phase (OTP) as candidate samong many others) over the core functions of Q.922. An X25 Data Terminal Equipment to Proce durates (PLP) or X25 Data Terminal Equipment of Q.931 43212 with use of Q.931 as candidate samong many others) over the core functions of Q.922. An X25 Data Terminal Equipment of The Detait apprates X25 PL For X25 Data Terminal Equipment of The Detait aperates X25 PL For X25 Data Terminal Equipment Virtual Circuit (PVC)	4111	X.25 DTE to DTE operation	61	Demonentaccess
422 Citcule Hindels envice (FRDTS), permanent access 4211 X.25 DTE to DTE operation 61221 Frame Relay Permanent Virtual Connection 4212 CLNSDTE to DTE operation 61221 TE1 to TE1 operation ^{7 to} 431 Packet mode Service 6.1.2 Transport Groups 431 D-channel access 6.1.2 Transport Groups 43111 Virtual Call (VC) TA Group TA: COTS over CLNS 43112 with use of Q.931 For the detailed subnetwork Taxonomy 4312 Permanent Virtual Circuit (PVC) see "6.1.1 Taxonomy of Subnetworks" abc de Subnetwork Type 9 A FrameRelay TE1 is defined as a Terminal Equipment that operates any Layer 3 4321 Virtual Call (VC) protocol (probably X25P acket Layer Procedures (PLP) or X25 Data Transfer Phase (OTP) 43211 without use of Q.931 a candidates amorg many others) over the core functions of Q.922.An X25 Data Terminal 43212 with use of Q.931 Equipment (OTE) is a DTE that operates X.25 PLP or X25 DTE in Layer 3 of datatransfer. 43212 with use of Q.931 Equipment (OTE) is a DTE that operates X.25 PLP or X.25 DDTE in Layer 3 of datatransfer. 43212 with use of Q.931 Equipment (OTE) is a DTE that oper	4112	-	01	r emanentaccess
4211 X.25 DTE to DTE operation 61221 TE1 to TE1 operation ^{7 to} 4212 CLNSDTE to DTE operation 61221 TE1 to TE1 operation ^{7 to} 43 Packetmode Service 6.1.2 Transport Groups 431 D channel access 6.1.2 Transport Groups 4311 Virtual Call (VC) TA Group TA: COTS over CLNS 43111 without use of Q.931 For the detailed subnetwork Taxonomy 4312 Permanent Virtual Circuit (PVC) see "6.1.1 Taxonomy of Subnetworks" 432 B-channel permanent access ³ 9 A FrameRelay TE1 is defined as a Teminal Equipment that operates any Layer 3 protocol (probably X.25 Packet Layer Procedures (PLP) or X.25 Data Transfer Phase (DTP) 43211 Without use of Q.931 as candidates amorg many others) over the core functions of Q.922. An X.25 Data Transfer Phase (DTP) 43212 with use of Q.931 as candidates amorg many others) over the core functions of Q.922. An X.25 Data Transfer Phase (DTP) 43212 with use of Q.931 as candidates amorg many others) over the core functions of Q.922. An X.25 Data Transfer Phase (DTP) 43212 with use of Q.931 therefore, "X.25 DTE operation" is considered as a special case of "TE1 operation" and this 4322 PermanentVirtual Circuit (PVC) Therefo	42	Circuit-modeService	612	-
4211 X.25DTEto DTEoperation 61221 TE1to TE1operation ^{7 10} 4212 CLNSDTEto DTEoperation 61.2.1 TE1to TE1operation ^{7 10} 43 PacketmodeService 6.1.2 Transport Groups 4311 D-channelaccess 6.1.2 Transport Groups 43111 Virtual Call (VC) TA GroupTA: COTSover CLNS 43112 with use of Q.931 For the detailed subnetwork Taxonomy 4312 PermanentVirtual Circuit (PVC) see "6.1.1 Taxonomy of Subnetworks" 432 B-channelpermanentaccess ³ 9 A FrameRelay TE1 is defined as a Terminal Equipment that operates any Layer3 protocol (probably X.25 Packet Layer Procedures (PLP) or X.25 Data Transfer Phase (DTP) as candidates amorgamany others) over the core functions of Q.922. An X.25 Data Transfer Phase (DTP) as candidates amorgamany others) over the core functions of Q.922. An X.25 Data Transfer Phase (DTP) as a candidates amorgamany others) over the core functions of Q.922. An X.25 Data Terminal Equipment(DTE) is a DTE that operates X.25 DTP in Layer 3 of data transfer. 432.12 with use of Q.931 as candidates amorgamany others) over the core functions of Q.922. An X.25 Data Terminal Equipment(DTE) is a DTE that operates X.25 DTP in Layer 3 of data transfer. 432.2 PermanentVirtual Circuit (PVC) Therefore, "X.25 DTE operation" is considered as a special case of "TE1operation" and this	421	B-channel	6122	FrameRelayPermanentVirtualConnection
4212 CLNSDTE to DTE operation 43 Packet mode Service 6.1.2 Transport Groups 431 D-channel access 4311 Virtual Call (VC) 43111 without use of Q.931 4312 Permanent Virtual Circuit (PVC) 432 B-channel permanent access ³ 9 A FrameRelay TEL is defined as a Terminal Equipment that operates any Layer 3 9 A FrameRelay TEL is defined as a Terminal Equipment that operates any Layer 3 9 A FrameRelay TEL is defined as a Terminal Equipment that operates any Layer 3 9 A FrameRelay TEL is defined as a Terminal Equipment that operates any Layer 3 9 Totocol (probably X25 Packet Layer Procedures (PLP) or X25 Data Transfer Phase (DTP) 43211 with use of Q.931 as candidates amongmany others) over the core functions of Q.922. An X25 Data Terminal Equipment(DTE) is a DTE that operates X.25 PLP or X25 DTP in Layer 3 of data transfer. 4322 Permanent Virtual Circuit (PVC) Therefore, "X25 DTE operation" is considered as a special case of "TEL operation" and this			61221	TE1 to TE1 operation ⁷ ¹⁰
 b-channelaccess 431 D-channelaccess 4311 Virtual Call (VC) 43111 vithoutuse of Q.931 43112 with use of Q.931 4312 Permanent Virtual Circuit (PVC) 432 B-channel permanentaccess³ 4321 Virtual Call (VC) 43211 vithoutuse of Q.931 4322 B-channel permanentaccess³ 43211 Virtual Call (VC) 43211 vithoutuse of Q.931 43221 Virtual Call (VC) 43211 vithoutuse of Q.931 43212 vith use of Q.931 43213 Virtual Call (VC) 43211 vithoutuse of Q.931 43212 vith use of Q.931 4322 Permanent Virtual Circuit (PVC) 		-		
 431 D-channelaccess 4311 Virtual Call (VC) 43111 withoutuse of Q.931 43112 with use of Q.931 4312 Permanent/Virtual Circuit (PVC) 432 B-channel permanentaccess³ 4321 Virtual Call (VC) 43211 withoutuse of Q.931 43212 with use of Q.931 43213 Virtual Call (VC) 43214 virtual Call (VC) 43220 PermanentVirtual Circuit (PVC) 	43	PacketmodeService		
 4311 Virtual Call (VC) 43111 withoutuse of Q.931 43112 with use of Q.931 4312 Permanent Virtual Circuit (PVC) 432 B-channel permanentaccess³ 4321 Virtual Call (VC) 4321 Virtual Call (VC) 4321 Virtual Call (VC) 4322 B-channel permanentaccess³ 4321 Virtual Call (VC) 4322 B-channel permanentaccess³ 4321 Virtual Call (VC) 43221 Virtual Call (VC) 43222 Permanent Virtual Circuit (PVC) 			6.1.2	Γransport Groups
 43111 withoutuse of Q.931 43112 with use of Q.931 4312 Permanent Virtual Circuit (PVC) abcde Subnetwork Type 432 B-channel permanent access³ 4321 Virtual Call (VC) 43211 Virtual Call (VC) 43211 without use of Q.931 43212 with use of Q.931 43212 with use of Q.931 4322 Permanent Virtual Circuit (PVC) 	431	D-channelaccess		
43112with use of Q.931For the detailed subnetwork Taxonomy see "6.1.1 Taxonomy of Subnetworks"4312Permanent Virtual Circuit (PVC)see "6.1.1 Taxonomy of Subnetworks"abcdeSubnetwork Type432B-channel permanent access 39 A Frame Relay TEL is defined as a Terminal Equipment that operates any Layer 3 protocol (probably X.25 Packet Layer Procedures (PLP) or X.25 Data Transfer Phase (DTP)43211with out use of Q.931as candidates amorg many others) over the core functions of Q.922. An X.25 Data Terminal4322Permanent Virtual Circuit (PVC)Therefore, "X.25 DTE operation" is considered as a special case of "TE1 operation" and this	4311	Virtual Call (VC)	TA <u>Gro</u>	pupTA: COTSover CLNS
4312 Permanent Virtual Circuit (PVC) see "6.1.1 Taxonomyof Subnetworks" a b c d e Subnetwork Type 432 B-channel permanent access ³ 9 A Frame Relay TE1 is defined as a Terminal Equipment that operates any Layer 3 protocol (probably X.25 Packet Layer Procedures (PLP) or X.25 Data Transfer Phase (DTP) 43211 without use of Q.931 as candidates among many others) over the core functions of Q.922. An X.25 Data Terminal 4322 Permanent Virtual Circuit (PVC) Therefore, "X.25 DTE operation" is considered as a special case of "TE1 operation" and this	43111	without use of Q.931		
a b c d e Subnetwork Type 432 B-channel permanentaccess ³ 9 A FrameRelay TE1 is defined as a Terminal Equipment that operates any Layer 3 4321 Virtual Call (VC) protocol (probably X.25 Packet Layer Procedures (PLP) or X.25 Data Transfer Phase (DTP) 43211 without use of Q.931 as candidates among many others) over the core functions of Q.922. An X.25 Data Terminal 4322 Permanent Virtual Circuit (PVC) Therefore, "X.25 DTE operation" is considered as a special case of "TE1 operation" and this	43112	with use of Q.931	F	or the detailed subnetwork Taxonomy
432 B-channel permanentaccess ³ 9 A FrameRelay TE1 is defined as a Terminal Equipment that operates any Layer ³ 4321 Virtual Call (VC) protocol (probably X.25 Packet Layer Procedures (PLP) or X.25 Data Transfer Phase (DTP) 43211 without use of Q.931 as candidates among many others) over the core functions of Q.922. An X.25 Data Terminal 4322 with use of Q.931 Equipment (DTE) is a DTE that operates X.25 PLP or X.25 DTP in Layer3 of data transfer. 4322 Permanent Virtual Circuit (PVC) Therefore, "X.25 DTE operation" is considered as a special case of "TE1 operation" and this	4312	PermanentVirtualCircuit(PVC)	Se	ee "6.1.1 Taxonomy of Subnetworks"
4321 Virtual Call (VC) protocol (probably X.25 Packet Layer Procedures (PLP) or X.25 Data Transfer Phase (DTP) 43211 without use of Q.931 as candidates among many others) over the core functions of Q.922. An X.25 Data Transfer. 43212 with use of Q.931 Equipment (DTE) is a DTE that operates X.25 PLP or X.25 DTP in Layer3 of data transfer. 4322 Permanent Virtual Circuit (PVC) Therefore, "X.25 DTE operation" is considered as a special case of "TE1 operation" and this	<u>abcde</u>	SubnetworkType		
4321 Virtual Call (VC) protocol (probably X.25 Packet Layer Procedures (PLP) or X.25 Data Transfer Phase (DTP) 43211 without use of Q.931 as candidates among many others) over the core functions of Q.922. An X.25 Data Transfer 43212 with use of Q.931 Equipment (DTE) is a DTE that operates X.25 PLP or X.25 DTP in Layer3 of data transfer. 4322 Permanent Virtual Circuit (PVC) Therefore, "X.25 DTE operation" is considered as a special case of "TE1 operation" and this	432	B-channelpermanentaccess ³	9 A FrameRela	yTE1 is defined as a Terminal Equipment that operates any Laver 3
43212 with use of Q.931 Equipment (DTE) is a DTE that operates X.25 PLP or X.25 DTP in Layer3 of data transfer. 4322 Permanent Virtual Circuit (PVC) Therefore, "X.25 DTE operation" is considered as a special case of "TE1 operation" and this	4321	Virtual Call (VC)		
4322 Permanent Virtual Circuit (PVC) Therefore, "X.25 DTE operation" is considered as a special case of "TE1 operation" and this	43211	without use of Q.931	as candidates ar	nongmany others) over the core functions of Q.922. An X.25 Data Terminal
4322 Permanent virtual Circuit (PVC)	43212	with use of Q.931		
	4322	PermanentVirtualCircuit(PVC)		

profile maybe replaced with the following profiles: TE1 operation; X.25 DTE operation. 10 This profile may be replaced with the following profiles: TE1 operation to TE1 operation; X.25 DTE to X.25 DTE operation, VC; X.25 DTE to X.25 DTE operation, PVC.

TB Group TB: COTSover CONS: with mandatory Transport Protocol Classes: 0 and 2 and 4

For the detailed subnetwork Taxonomysee 6.1.1.

TC Group TC: COTSover CONS: with mandatory Transport Protocol Classes: 0 and 2

For the detailed subnetwork Taxonomysee 6.1.1.

TD <u>GroupTD: COTSoverCONS:</u> with mandatoryTransportProtocol Class:0

For the detailed subnetwork Taxonomysee 6.1.1.

TE <u>Group TE: COTS over CONS:</u> with mandatory Transport Protocol Class: 2

For the detailed subnetwork Taxonomysee 6.1.1.

UA GroupUA: CLTSover CLNS

For the detailed subnetwork Taxonomysee 6.1.1.

UB GroupUB: CLTSover CONS

For the detailed subnetwork Taxonomysee 6.1.1.

- 6.2 Relay Profiles
- 6.2.1 Relaying the Network Internal Layer Service, as defined in ISO/IEC 10028
- RA Relaying the Connectionless mode Network Service

For the subnetwork identifiers p, q (as defined in "5.5.2.2 Relay Profile Identifier") see the detailed sub network Taxonomyin "6.1.1 Taxonomy of Subnetworks" RB Relaying the Connection mode Network Service

For the subnetwork identifiers p, q (as defined in "5.5.2.2 Relay Profile Identifier") see the detailed sub network Taxonomy in "6.1.1 Taxonomy of Subnetworks"

6.2.2 Network Layer Protocol Relaying

RC X.25 Protocol Relaying

An approach for this type of relay could be as suggested in ISO/IECTR 10029.

For the subnetwork identifiers p, q (as defined in "5.5.2.2 Relay Profile Identifier") see the detailed sub network Taxonomy in "6.1.1 Taxonomy of Subnetworks"

Only the following subnetwork type identifiers are valid: 11n, 21n, 31n, 41n, 43111, 4312, 43211, 4322, 5n.

6.2.3 Relaying the MAC Service

RD Relaying the MACS ervice using transparent bridging

For the subnetwork identifiers p, q (as defined in "5.5.2.2 Relay Profile Identifier) see the detailed sub network Taxonomyin "6.1.1 Taxonomy of Subnetworks"

Only subnetwork type identifiers of the form 5n are valid for use with RD relays.

RE <u>Relaying the MACS ervice using source routing</u>

For the subnetwork identifiers p, q (as defined in "5.5.2.2 Relay Profile Identifier) see the detailed sub network Taxonomy in "6.1.1 Taxonomy of Subnetworks"

Only subnetwork type identifiers of the form 53 and 54 are valid for use with RE relays.

6.2.4	CO/CL Interworking	6.3.2	Message Handling
RZ	Relaying between Connectionless mode Network Service and Connection mode Network Service	AMH	MessageHandling
		<u>abc</u>	Substructure
	The final position in the Taxonomyand the substructure		
	of this relay type is for further study.	1	Common Messaging
	An approachfor this type of relay could be as suggested	11	MessageTransfer(P1)
	in ISO/IECTR 10172.	111	Normalmode
		112	X.410(1984)mode
6.3	Application Profiles	12	MTSAccess(P3)
		13	MSAccess(P7)
6.3.1	File Transfer, Access and Management	14	MS94Access(P7)
AFT	File Transfer, Access and Management	2	Interpersonal Messaging (IPM)
<u>ab</u>	Substructure	21	IPMContent
		22	IPM Requirements for Message Transfer (P1)
1	FILE TRANSFER SERVICE	23	IPMRequirements for MTSAccess (P3)
		24	IPM Requirements for Enhanced MS Access
11	Simple (Unstructured)		(P7)
12	Positional (Flat)	25	IPM Requirements for Enhanced MS 94 Access
13	Full (Hierarchical)		(P7)
2	File Access Service		
22		3	EDI Messaging (EDIMG)
22	Positional (Flat)		
23	Full (Hierarchical)	31	EDIMGContent
3	File Management Service	32	EDIMGRequirementsfor MessageTransfer (P1)
		33	EDIMGRequirementsfor MTSAccess(P3)
4	Filestore Management Service	34	EDIMGRequirementsfor EnhancedMS Access (P7)

6.3.3	Directory
6.3.3.1	Edition 1988
ADI D	irectory
ab	Substructure
1	Directory Access
11	DUASupport of Directory Access
12	DSA Support of Directory Access
2	DRECTORYSYSTEM
21	DSAResponderRole
22	DSAInitiatorRole
3	Dstributed Operations
31	DUAS upport of Distributed Operations
32	DSASupport of Distributed Operations
4	Directory Use of Strong Authentication
41	Specific Digital Signature Schemes
6.3.3.2	Edition 1993
ADY D	irectory
ab	Substructure
1	DUABasic Functionality
11	DUASupport of Directory Access
12	DUASupport of Distributed Operations
2	DSABasic Functionality
21	DSA Support of Directory Access
22	DSASupport of DistributedOperations
4	SECURITY CAPABILITIES
41	DUAAuthenticationas DAPinitiator
42	DSAAuthentication as DAP responder
44	DSAAuthentication for DSP
44	DSA Simple Access Control
45	DSABasic Access Control

5	Shadowing Capabilities
51	ShadowingusingROSE
52	ShadowingusingRTSE
53	Shadowingsubset
6	Directory Administration and Management
61	Administrative areas
62	Establishmentand utilisation of shadowing
	agreements
63	Schemaadministration and publication
7	DRECTORY OPERATIONAL BINDING MANAGEMENT PROTOCOL
	(DOP) CABAILITIES
71	ShadowingOperational Binding
72	Hierarchical Operational Binding
73	Non-specific Hierarchical Operational Binding
6.3.4	Virtual Terminal
AVT	VirtualTerminal
<u>ab</u>	Substructure
1	Basic Glass (A-mode)
11	A-mode Default
12	Telnet
13	Scroll
14	ITU-T X.3 PAD Interworking
15	Transparent
16	GeneralizedTelnet
<u>ab</u>	Substructure
2	BASIC CLASS (S-MODE)
21	S-mode Default
22	Forms
23	Paged
24	Enhanced ¹¹ Forms
25	EnhancedPaged

¹¹ The "enhanced" entries are placeholders for the addition of facilities which will be specified in the forthcoming second addenda to the Basic Class Virtual Terminal standards. These include specifically "ripple" editing functions.

6.3.5	OSI Management	24	Security			
AOM OSI Management 241 General Security Capability						
		242	SecurityManagementCapabilities			
<u>abcde</u>	Substructure	2421	General Security Management Capability			
		2422	Security Alarm Reporting Capabilities			
1	Management Communications	2423	Security Audit Trail Capabilities			
		243	Security Services and Mechanismfor			
11	Basic Management Communications		Management			
12	EnhancedManagementCommunications	2431	General Security Services and Mechanisms			
			for Management			
2	Management Functions	2432	Access Control			
		24321	GeneralAccessControl			
20	SuperCombinations ¹²	24322	Item rules Access Control List			
21	ManagementCapabilities	24323	Item rules Security Labels			
		24324	Item rules Capability List			
211	GeneralManagementCapabilities	24325	Global rules Access Control List			
212	Alarm Reporting and State Management	24326	Global rules Security Labels			
	Capabilities	24327	Global rules Capability List			
213	Alarm Reporting Capabilities					
		<u>abcde</u>	Substructure			
22	EventReportManagement					
		25	Performance			
221	GeneralEventReportManagement					
		251	GeneralPerformance			
23	Log Control	252	Metric Objects			
		2521	General Metric Capability			
231	General Log Control	2522	Monitor Metric Object			
		2523	Mean Monitor Metric Object			
		2524	AlgorithmIndicating Mean Monitor Metric			
			Object			
		2525	Moving Average Mean Monitor Metric Object			
		2526	Mean and Variance Monitor Metric Object			
		2527	Mean and Percentile Monitor Metric Object			
		2528	Mean and Min Max Monitor Metric Object			
		253	SummarizationObjects			
		2531	General Summarization Capability			
		2532	SimpleScannerObject			
		2533	DynamicSimpleScannerObject			
		2534	HeterogeneousScannerObject			
		2535	BufferedScannerObject			
		2536	MeanScannerObject			
		2537	MeanVarianceScannerObject			

¹² The identification of these profiles is for further study.

Min MaxScannerObject

2539

6.3.6	Transaction Processing	6.3.8	Manufacturing Messaging
ATP	TransactionProcessing	AMM	ManufacturingMessaging
ab	Substructure	ab	Substructure ¹³
1	Application Supported Transactions	1	General Applications
		11	$MMSGeneral Application Base Profile^{\!$
11	PolarizedControl	2	ROBOT CONTROLLER APPLICATIONS
12	SharedControl	21	Robot Controller Application Base $Profile^{14}$
		3	Numerical Controller Applications
2	Provider Supported Unchained Transactions	31	Numerical Controller Application Base Profile ¹⁴
		4	Programmable Logic Controller Applications
21	PolarizedControl	5	Process Industries Applications
22	SharedControl		
3	Provider Supported Chained Transactions	6.3.9	Library and Documentation
31	PolarizedControl	ALD	Library, Documentation
32	SharedControl		
c o 7	Demote Detabase Assess	<u>ab</u>	<u>Substructure</u> ⁵
6.3.7	Remote Database Access		
	RemoteDatabaseAccess	1	Searchand Retrieve (SR)
ARD	Remole Database Access	11	ACSE
ab	Substructure	2	InterlibraryLoan (ILL)
		2	ACSE
(to be s	studied)		
		22	Store-and-Forward (IPMS) ⁶

¹³ Further refinement of the substructure, beneath this level, to increase the granularity of the profile classification, is for further study.

¹⁴ This taxonomy entry has been added, based on a contribution from ISO/TC 18/SC 5/WG 2, which seems to reflect a significant level of approval, although it has not been formallly approved and is therefore included provisionally.

¹⁵ Further refinement of the substructure, beneath this level is for further study.

¹⁶ This A-profile is intended to be used "over" AMH2x profiles.

This combination of A-profiles is an extention of the concept of A-profiles, which also has been reflected in section 5.5.3.1.

6.3.10 Document Filing and Retrieval

ADF	Document Filing and Retrieval
<u>ab</u>	Substructure
ADF	Document Filing and Retrieval
1	Common Filing and Retrieval
11	Read-Only
12	Archiving
13	DocumentStore Manipulation
2	Remote Store Management
21	SimpleManagement
22	Full Management
6.3.11	Interactive Manipulation of ODA Documents
AOD	Interactive Manipulation of ODADocuments
<u>ab</u>	Substructure
1	DTAM _{BASED} PROFILES
11	DTAM/ Read-only
12	DTAM/ Insert
13	DTAM/ Manipulation
2	MHS BASED PROFILES
23	MHS/ Manipulation
6.4	Interchange Format and Representation Profiles
The ne	rticular classification of the Enrofiles in the context of

The particular classification of the F-profiles in the context of OSE is for further study. For historical reasons these profiles are considered OSI profiles.

For historical reasons ISPs exist which use profile identifiers without a suffix. These ISPs and profile identifiers remain valid. New ISPs and profile identifiers containing Interchange Format and Representation profiles will include the appropriate suffix. For existing ISPs the suffix will be added when revisions or maintenanceoccurs.

FOD	Open Document Format
<u>abc</u>	Substructure ¹⁷
0	Document Processing Applications
01	SimpleDocumentStructure
011	Character content architecture only
02	EnhancedDocumentStructure
026	Character, Raster Graphics and Geometric
	Graphicscontentarchitecture
03	Extendeddocumentstructure
036	Character, Raster Graphics and Geometric
	Graphicscontentarchitecture
1	IMAGE APPLICATIONS
11	SimpleDocumentStructure
112	Raster Graphics content architecture only
12	EnhancedDocumentStructure
126	Character, Raster Graphics and Geometric
	Graphicscontentarchitecture
6.4.2	Computer Graphics Metafile Interchange Format
FCG	Computer Graphics Metafile Interchange Format
ab	Substructure
11	Basic Scientific and Technical Graphics
	(BST)
23	Advanced Scientific and Technical Graphics (AST)
32	Basic Presentation and Visualization (BPV)
33	Advanced Presentation and Visualization (APV)

Open Document Format

6.4.1

¹⁷ The FOD Taxonomy has been changed from two to three levels of subdivision.

Since the currently defined profiles (FOD11, FOD26, FOD36) are all intended for document processing applications, they will be referred to as FOD011, FOD026, FOD036.

6.4.3	SGML Interchange Format	6.4.4.2	Edition 1993 ¹⁹
FSG SG	GMLDocumentInterchangeFormat	FDY Di	rectory Data Definitions
<u>ab</u>	Substructure	<u>ab</u>	Substructure
(to be stud	ied)	1	Schema
(,	11	CommonDirectoryUse
6.4.4	Directory Data Definitions	12	DirectorySystemSchema
6.4.4.1	Edition 1988	2	MHSUSE OF THE DIRECTORY
FDI Dir	rectory Data Definitions	3	FTAMUSE OF THE DIRECTORY
<u>ab</u>	Substructure		
_		4	TPUSE OF THE DIRECTORY
1	Common Directory Use	41	Basic Naming and Addressing
		42	TPSUcharacteristics
		43	Application characteristics
11	Normal		
12	Strong Authentication ¹⁸	5	VT Use OF THE DIRECTORY
2	MHSUSE OF THE DIRECTORY	6	EDIUSE OF THE DIRECTORY
3	FTAMUSE OF THE DRECTORY		
		6.4.5	Virtual Terminal Environment
4	TP Use OF THE DIRECTORY	FVT Vi	tualTaminalDagistaradOhiacts
41	Basic Namingand Addressing		rtualTerminalRegisteredObjects
42 43	TPSUcharacteristics Application characteristics	<u>abc</u>	Substructure
5	VT Use OF THE DIRECTORY	1	Basic Class VTE-Profiles
6	EDIUSE OF THE DIRECTORY	11	A-mode
		111	Telnet
		112	Scroll
		113	ITUT X.3 PADInterworking
		114	Transparent
		115	GeneralizedTelnet

 $^{18\ {\}rm The}\ {\rm use}\ {\rm of}\ {\rm strong}\ {\rm authentication}\ {\rm in}\ {\rm distributed}\ {\rm operations}\ {\rm is}\ {\rm for}\ {\rm further}\ {\rm study}.$

¹⁹ The harmonization process among the workshops is not completed. Given the minor difference between the FDI and the FDY taxonomy, It may not be necessary to have a FDY taxonomy.

12	S-mode	22	Field Entry Instruction Control Object (FEICO)®
121	Forms	221	FormsFEICONo.1
122	Paged	222	PagedFEICONo.1
123	EnhancedForms		
124	EnhancedPaged	23	Field Entry Pilot Control Object (FEPCO) ²⁰
	-	231	FormsFEPCONo.1
		232	PagedFEPCONo.1
2	Basic Class Control Objects	24	ReferenceInformationObject(RIO) ²⁰
21	Miscellaneous	25	Termination Conditions Control Objects (TCCO)
211	SequencedApplication	251	TCCONo.1
212	UnsequencedApplication		
213	SequencedTerminal	3	BASIC CLASS ASSIGNMENT TYPES
214	UnsequencedTerminal		
215	Application RIO Record Loading	31	Repertoire ²⁰
216	TerminalRIORecordNotification	311	Repertoire Assignment Type for ISO/IEC
217	Horizontal Tabulation		10646
218	LogicalImage	312	Repertoire Assignment Type for ISO/IEC2022
219	StatusMessage		Level2
<u>abc</u>	Substructure		
		32	Font
2 1 10	Entry Control		
2111	WaitingTime	321	FontAssignmentTypeNo.1
2112	Printer	322	FontAssignmentTypeNo.2
2113	Field Definition Management	2.2	Colour ²⁰
2114	TerminalSignalTitles	33	Colour
2115	FormHelpText	6.4.6	Medical Image Interchange
2116	Generalized Telnet Synch	0.4.0	Medical image interchange
2117	Generalized TelnetSignal	FMI	MedicalImageInterchangeProfiles
2118	Generalized Telnet Negotiation		inculcul inageniterentarger folices
2119	GeneralizedTelnetSubnegotiation	<u>abc</u>	Substructure
		1	SIMPLE DIGITAL IMAGE ENCODING (SINGLE IMAGE)
		11	IPHIF
		111	simpleuncompressedbooleanimage
		112	simpleuncompressedcolourimage
		12	JPEG
		13	JBIG
		14	IS&C
		15	G3Fax

- 16 G4Fax and Mixed Mode
- 17 TIFFencoding

²⁰ Entries in this classification are subject to registration.

<u>abc</u>	Substructure	6.4.7	Character Sets
2	Multiple related digital images and related information	FCS	Character Set Profiles
21	IPHIF		
211	Full PIKS with JPEG lossless compression	<u>abc</u>	Substructure ²²
212	Full PIKS with lossless or lossy compression		
213	TIFFencoding	1	Code Structures
22	IS&C		
23		11	ISO/IEC2022CodeStructure
231	Rastergraphics with G3 Fax images	111	2022 Option 1
232	Rastergraphics with G4 Fax images		
24	TIFFencoding	12	ISO/IEC10646CodeStructure
		121	10646 Option 1
3	$M_{\rm J}$ LTIPLE RELATED IMAGES WITH RELATED DATA AND GRAPHICS		
	AND OVERLAYS		
31	IPI-IIF with geometric graphics		
311	Full PIKS		
312	IPHIF Full		
32	IS&C		
33	ODA		
331	Geometric graphics and Raster graphics with		
	G3 Faximages		

Geometric graphics and Raster graphics with

G4Faximages

TIFFencoding

MULTIMEDIA

ODA

MHEG

MOVING IMAGES

MPEG

IPI

332

34

4

41

42

5

51

52

²¹ It is recognized that some of the FMI taxonomy entries may be more appropriately positioned within existing branches of the TR 10000 taxonomy.

²² This taxonomy entry has been added, based on a contribution (SGFS N1149), which reflects a significant level of approval, although it has not been formally approved and is therefore included provisionally.

7 Conformance of OSI Profiles

The general principles of Conformance requirements of OSI profiles are outlined in ISO/IECTR 10000-1.

The detailed Conformance requirements of OSI profiles are defined in the ITU-T Rec. X.296 | ISO/IEC96467, which define the requirements related to the Profile Implementation Conformance Statement (Profile ICS) and the Profile Requirements List (Profile RL). These requirements have to be addressed in the Conformancesection of an OSI profile.

For each profile, a Profile Test Specification (PTS) should be provided, either as part of the ISP which defines a profile, or as a free-standing ISP, with an explicit reference to it from the profile definition. The details of the PTS are defined in ITU-T Rec. X.295 | ISO/IEC96466.

Annex A

(informative)

Bibliography

 $SGFSS tanding Document SD 4. {\ }^{\scriptscriptstyle 23} \textit{ Directory of } ISPs and \textit{Profiles contained therein.}$

²³ updated and published regularly by the SGFS Secretariat as an ISO/IEC JTC 1 SGFS N-numbered document.