Doc No: WG21 N3637

Date: 2013-04-17
Reply to: Herb Sutter (hsutter@microsoft.com)
Subgroup: SG1 - Concurrency

Previous Version: N3630

async and ~future (Revision 3)

Herb Sutter, Chandler Carruth, Niklas Gustafsson
This paper is a followup to paper N3630.

In discussion of N3630, SG1 expressed support for the following direction:

1. Have a distinct ‘future’ type whose destructor never waits. Have a unique and a shared version
of this type.

2. Have a distinct ‘future’ type whose destructor always waits if the caller did not already call .get()
or .wait(). Have a unique and a shared version of this type.

3. Have compatibility for existing code that uses async and relies on its existing semantics, including
deferred work. Ideally, code that is valid C++11 but that changes meaning should not compile.

Summary
Accomplish the above as follows:

1. Have future<T> with unique ownership, and shared_future<T> with shared ownership, be the
type whose destructor never waits. This already true except only when the shared state came
from async with launch::async.

2. Add waiting_future<T> with unique ownership, and shared_waiting_future<T> with shared
ownership, as the type whose unique or last destructor always waits for non-deferred tasks if
the caller did not already call .get() or .wait(). A waiting_future<T> is explicitly move-convertible
to a future<T> by calling .detach(), modeled after .share().

3. Have async return a waiting_future<T>.

The type conversions are:

future waiting_future

share share

shared_future shared_waiting_future

Here are the types in action, with existing valid C++11 code shaded:

future<int> f1 = async([]{ return 1; });

// error, detach required

// (this is the only breaking change case, incl. shared_future variant below)

auto f2 = async([l{ return 1; });

future<int> f3 = f2.detach();

waiting_future<int> f4 = async([l{ return 1; });

waiting_future<int> 5 = f2;

waiting_future<int> f6 = move(f2);

waiting_future<int> f7 = 3;

waiting_future<int> f8 = move(f3);

future<int> f9 = f8;
future<int> f10 = f8.detach();

shared_future<int> f11 = async([]{ return 1; });
shared_future<int>f12 = f2.detach();
shared_future<int> f13 = move(f8);
shared_future<int> f14 = f8.detach();

shared_waiting_future<int> f15 = async([]{ return 1; });
shared_waiting_future<int> f16 = f8;
shared_waiting_future<int> f17 = move(f8);
shared_waiting_future<int> f18 = f9;
shared_waiting_future<int> f19 = move(f9);

shared_future<int> f20 = f3;

shared_future<int> f21 = move(f3);
shared_future<int> f22 = f3.share();

Proposed Wording

1. future and shared_future
Change 30.6.6/9-11 as follows:

10

~future();

Effects:

// ok, preserves C++11 meaning

// ok
// ok

// error, move required

// ok

// error, move required

// ok

// error, detach required

// ok

// error, detach required

// ok
// error, detach required
// ok (move/share implicit)

// ok

// error, move required

// ok

// error, move required

// ok

// error, move or share required

// ok
// ok

— releases any shared state (30.6.4) without blocking until the shared state is ready;

— destroys *this.

future& operator=(future&& rhs) noexcept;

Effects:

— releases any shared state (30.6.4) without blocking until the shared state is ready;-

— move assigns the contents of rhs to *this.

11 Postconditions:
— valid() returns the same value as rhs.valid() prior to the assignment.
— rhs.valid() == false.

Change 30.6.7/11-15 as follows:
~shared_future();

11 Effects:
— releases any shared state (30.6.4), without blocking for the shared state to be ready;
— destroys *this.

shared_future& operator=(shared_future&& rhs) noexcept;

12 Effects:
— releases any shared state (30.6.4) , without blocking for the shared state to be ready;-
— move assigns the contents of rhs to *this.

13 Postconditions:
— valid() returns the same value as rhs.valid() prior to the assignment.
— rhs.valid() == false.

shared_future& operator=(const shared_future& rhs) noexcept;

14 Effects:
— releases any shared state (30.6.4), without blocking for the shared state to be ready;-
— assigns the contents of rhs to *this. [Note: As a result, *this refers to the same shared
state as rhs (if any). —end note]

15 Postconditions: valid() == rhs.valid().

Change 30.6.4 as follows:

5 When an asynchronous return object or an asynchronous provider is said to release its shared
state, it means that without blocking for the shared state to be ready:
— if the return object or provider holds the last reference to its shared state, the shared state
is destroyed; and
— the return object or provider gives up its reference to its shared state.

2. waiting_future and shared_waiting_future
Add a new sections 30.6.X and .X++ as follows to add waiting_future and shared_waiting_future (based
on std::future and std::shared_future, with the major differences from the originals highlighted):

30.6.X Class template waiting_future [futures.waiting_future]

1 The class template waiting_future defines a type for asynchronous return objects which do
not share their shared state with other asynchronous return objects and wait () for non-
deferred shared state automatically when assigned to or destroyed. A default-constructed future
object has no shared state. Awaiting_future object with shared state can be created from a
future, or from the type returned by std: :async() (30.6.8), or by moving from another
waiting_future, and shares its shared state with the original asynchronous provider. The result
(value or exception) of awaiting_future object can be set by calling a function on an object
that shares the same shared state.

2 [Note: Member functions of waiting_ future do not synchronize with themselves or with
member functions of future, shared_future, or shared_waiting future. —end note]

3 The effect of calling any member function other than the destructor, the move-assignment
operator, or valid on awaiting_future object for which valid() == false is undefined.
[Note: Implementations are encouraged to detect this case and throw an object of type
future_error with an error condition of future_errc::no_state. —end note]

namespace std {
template <class R>
class waiting_future {
public:

waiting_ future() noexcept;

waiting future(waiting_future &&) noexcept;
waiting_future(future &&) noexcept;

waiting future(const waiting future& rhs) = delete;
~waiting future();

waiting future& operator=(const waiting future& rhs) = delete;
waiting future& operator=(waiting future&&) noexcept;

future<R> detach();
shared_waiting_future<R> share();

// retrieving the value
see below get();

// functions to check state
bool valid() const noexcept;

void wait() const;
template <class Rep, class Period>
future_status wait_for(
const chrono::duration<Rep,Period>& rel_time) const;
template <class Clock, class Duration>
future_status wait_until(
const chrono::time_point<Clock,Duration>& abs_time) const;
}s
}

10

11

12

13

14

The implementation shall provide the template waiting_future and two specializations,
waiting future<R&> andwaiting_ future<void>. These differ only in the return type and
return value of the member function get, as set out in its description, below.

waiting future() noexcept;
Effects: constructs an empty waiting_future object that does not refer to a shared state.

Postcondition: valid() == false.

waiting future(waiting_future&& rhs) noexcept;
waiting future(future&& rhs) noexcept;

Effects: move constructs a waiting_ future object that refers to the shared state that was
originally referred to by rhs (if any).

Postconditions:
— valid() returns the same value as rhs.valid() prior to the constructor invocation.
— rhs.valid() == false.

~waiting future();

Effects:

— if valid() is true and the shared state does not contain a deferred function, calls wait();
— releases any shared state (30.6.4);

— destroys *this.

waiting_future& operator=(waiting_future&& rhs) noexcept;

Effects:

— if valid() is true and the shared state does not contain a deferred function, calls wait();
— releases any shared state (30.6.4).

— move assigns the contents of rhs to *this.

Postconditions:
— valid() returns the same value as rhs.valid() prior to the assignment.
— rhs.valid() == false.

future<R> detach();

Effects: transfers ownership of any shared state (30.6.4) of *this to a newly constructed
future<R> object.

Returns: a future<R> object that refers to the shared state that was originally referred to by
*this (if any).

Postconditions: valid() == false.

15

16

17

18

19

20

21

22

23

24

25

shared_waiting_future<R> share();
Returns: shared_waiting_ future<R>(std::move(*this)).

Postcondition: valid() == false.

R waiting_future::get();
R& waiting_future<R&>::get();
void waiting_future<void>::get();

Note: As described above, the template and its two required specializations differ only in the
return type and return value of the member function get.

Effects: wait()s until the shared state is ready, then retrieves the value stored in the shared
state.

Returns:

— future::get() returns the value v stored in the object’s shared state as std: :move(v).
— future<R&>: :get() returns the reference stored as value in the object’s shared state.
— future<void>: :get() returns nothing.

Throws: the stored exception, if an exception was stored in the shared state.

Postcondition: valid() == false.

bool valid() const noexcept;

Returns: true only if *this refers to a shared state.

void wait() const;

Effects: blocks until the shared state is ready.

template <class Rep, class Period>
future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const;

Effects: none if the shared state contains a deferred function (30.6.8), otherwise blocks until the

shared state is ready or until the relative timeout (30.2.4) specified by rel_time has expired.

Returns:

— future_status::deferred if the shared state contains a deferred function.

— future_status::ready if the shared state is ready.

— future_status::timeout if the function is returning because the relative timeout (30.2.4)
specified by rel_time has expired.

template <class Clock, class Duration>

26

27

future_status wait_until(
const chrono::time point<Clock, Duration>& abs_time) const;

Effects: none if the shared state contains a deferred function (30.6.8), otherwise blocks until the
shared state is ready or until the absolute timeout (30.2.4) specified by abs_time has expired.

Returns:

— future_status: :deferred if the shared state contains a deferred function.

— future_status::ready if the shared state is ready.

— future_status: :timeout if the function is returning because the absolute timeout (30.2.4)
specified by abs_time has expired.

30.6.X++ Class template shared_waiting_future [futures.shared_waiting_future]

1

The class template shared_waiting future defines a type for asynchronous return objects
which may share their shared state with other asynchronous return objects and wait () for non-
deferred shared state automatically when the shared_waiting_future that is the last
asynchronous return object that references the shared state is assigned to or destroyed. A
default-constructed shared_waiting_future object has no shared state. A

shared_waiting_ future object with shared state can be created by conversion from a future
orwaiting_future object and shares its shared state with the original asynchronous provider
(30.6.4) of the shared state. The result (value or exception) of a shared_waiting_future object
can be set by calling a respective function on an object that shares the same shared state.

[Note: Member functions of shared_waiting_future do not synchronize with themselves, but
they synchronize with the shared shared state. —end note]

The effect of calling any member function other than the destructor, the move-assignment
operator, or valid() on a shared_waiting_ future object for which valid() == falseis
undefined. [Note: Implementations are encouraged to detect this case and throw an object of
type future_error with an error condition of future_errc::no_state. —end note]

namespace std {

template <class R>

class shared_waiting future {

public:
shared_waiting_future() noexcept;
shared_waiting future(const shared waiting_ future& rhs);
shared_waiting future(waiting future<R>&&) noexcept;
shared_waiting_future(shared_waiting_ future&& rhs) noexcept;
~shared_waiting future();
shared_waiting future& operator=(const shared _waiting future& rhs);
shared_waiting future& operator=(shared _waiting future&& rhs) noexcept;

// retrieving the value
see below get() const;

10

11

// functions to check state
bool valid() const noexcept;

void wait() const;
template <class Rep, class Period>
future_status wait_ for(
const chrono::duration<Rep, Period>& rel_time) const;
template <class Clock, class Duration>
future_status wait_until(
const chrono::time point<Clock, Duration>& abs_time) const;

};
}

The implementation shall provide the template shared_waiting future and two
specializations, shared_waiting_future<R&> and shared_waiting_future<void>. These
differ only in the return type and return value of the member function get, as set out in its
description, below.

shared_waiting_future() noexcept;

Effects: constructs an empty shared_waiting future object that does not refer to an shared
state.

Postcondition: valid() == false.

shared_waiting future(const shared waiting future& rhs);

Effects: constructs a shared_waiting_future object that refers to the same shared state as rhs
(if any).

Postcondition: valid() returns the same value as rhs.valid().

shared_waiting_future(shared_future<R>&& rhs) noexcept;
shared_waiting_future(shared_waiting_future&& rhs) noexcept;

Effects: move constructs a shared_waiting_ future object that refers to the shared state that
was originally referred to by rhs (if any).

Postconditions:
— valid() returns the same value as rhs.valid() returned prior to the constructor invocation.
— rhs.valid() == false.

~shared_waiting_future();

Effects:
— if valid() is true, and *this is the last asynchronous return object that references the
shared state, and the shared state does not contain a deferred function, then calls wait();

12

13

14

15

16

17

18

19

— releases any shared state (30.6.4);
— destroys *this.

shared_waiting_future& operator=(shared_waiting_ future&& rhs) noexcept;

Effects:

— if valid() is true, and *this is the last asynchronous return object that references the
shared state, and the shared state does not contain a deferred function, then calls wait();

— releases any shared state (30.6.4);

— move assigns the contents of rhs to *this.

Postconditions:
— valid() returns the same value as rhs.valid() returned prior to the assignment.
— rhs.valid() == false.

shared_waiting_future& operator=(const shared_waiting_future& rhs);

Effects:

— if valid() is true, and *this is the last asynchronous return object that references the
shared state, and the shared state does not contain a deferred function, then calls wait();

— releases any shared state (30.6.4);

— assigns the contents of rhs to *this. [Note: As a result, *this refers to the same shared state

as rhs (if any). —end note]

Postconditions: valid() == rhs.valid().

const R& shared_waiting future::get() const;
R& shared_waiting_future<R&>::get() const;
void shared_waiting_ future<void>::get() const;

Note: as described above, the template and its two required specializations differ only in the
return type and return value of the member function get.

Note: access to a value object stored in the shared state is unsynchronized, so programmers
should apply only those operations on R that do not introduce a data race (1.10).

Effects: wait()s until the shared state is ready, then retrieves the value stored in the shared
state.

Returns:

— shared_waiting_ future::get() returns a const reference to the value stored in the
object’s shared state. [Note: Access through that reference after the shared state has been
destroyed produces undefined behavior; this can be avoided by not storing the reference in any
storage with a greater lifetime than the shared_waiting_future object that returned the
reference. —end note]

— shared_waiting future<R&>::get() returns the reference stored as value in the object’s

shared state.
— shared_waiting_ future<void>::get() returns nothing.

20 Throws: the stored exception, if an exception was stored in the shared state.

bool valid() const noexcept;

21 Returns: true only if *this refers to a shared state.

void wait() const;

22 Effects: blocks until the shared state is ready.

template <class Rep, class Period>
future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const;

23 Effects: none if the shared state contains a deferred function (30.6.8), otherwise blocks until the
shared state is ready or until the relative timeout (30.2.4) specified by rel_time has expired.

24 Returns:
— future_status::deferred if the shared state contains a deferred function.
— future_status: :ready if the shared state is ready.
— future_status::timeout if the function is returning because the relative timeout (30.2.4)
specified by rel_time has expired.

template <class Clock, class Duration>
future_status wait_until(
const chrono::time_point<Clock, Duration>& abs_time) const;

25 Effects: none if the shared state contains a deferred function (30.6.8), otherwise blocks until the
shared state is ready or until the absolute timeout (30.2.4) specified by abs_time has expired.

26 Returns
— future_status::deferred if the shared state contains a deferred function.
— future_status: :ready if the shared state is ready.
— future_status: :timeout if the function is returning because the absolute timeout (30.2.4)
specified by abs_time has expired.

3. async changes
In 30.6.1, change the declarations of async as follows:

1 The function template async provides a mechanism to launch a function potentially in a new
thread and provides the result of the function in awaiting future object with which it shares
ownership of a shared state.

template <class F, class... Args>

waiting future<typename result_of<typename decay<F>::type(typename
decay<Args>::type...)>::type>

async(F&& f, Args&&... args);

template <class F, class... Args>

waiting future<typename result_of<typename decay<F>::type(typename
decay<Args>::type...)>::type>

async(launch policy, F&& f, Args&&... args);

Change 30.6.8/1 as follows:

template <class F, class... Args>

waiting future<typename result_of<typename decay<F>::type(typename
decay<Args>::type...)>::type>

async(F&& f, Args&&... args);

template <class F, class... Args>

waiting future<typename result_of<typename decay<F>::type(typename
decay<Args>::type...)>::type>

async(launch policy, F&& f, Args&&... args);

Change 30.6.8/4 as follows:

4 Returns: An object of type waiting future<typename result of<typename
decay<F>: :type(typename decay<Args>::type...)>::type> that refers to the shared state
created by this call to async.

Change 30.6.8/5 as follows:
5 Synchronization: Regardless of the provided policy argument,

— the invocation of async synchronizes with (1.10) the invocation of f. [Note: This
statement applies even when the corresponding future object is moved to another
thread. —end note]; and

— the completion of the function f is sequenced before (1.10) the shared state is made
ready. [Note: £ might not be called at all, so its completion might never happen. —end
note]

If the implementation chooses the launch: :async policy,

— a call to a waiting function on an asynchronous return object that shares the shared state
created by this async call shall block until the associated thread has completed, as if
joined (30.3.1.5);

— the associated thread completion synchronizes with (1.10) the return from the first
function that successfully detects the ready status of the shared state-erwith-the-return

from-thelastfunctonthatreleases the shared state, whichever-happensfirst,,

— the associated thread holds a reference to the associated shared state
which is released (30.6.4) when the associated thread exits.

