
Constexpr Variable Templates

Gabriel Dos Reis
Texas A&M University

Document number: N3615
Date: 2013-03-18

Working group: EWG
Reply to: gdr@cs.tamu.edu

Abstract

The aim of this proposal is to simplify definitions and uses of parameter-
ized constants. It allows the declaration of constexpr variable templates. The
upshot is a simpler programming rule to remember. It supersedes currently
known workarounds with more predictable practice and semantics.

1 The Problem
C++ has no notation for parameterized constants as direct as for functions or
classes. There are well known workarounds for this problem:

• constexpr static data members of class templates

• constexpr function templates returning the desired values

These workarounds have been known for decades and well documented. Standard
classes such as std::numeric_limits are archetypical examples. Although
these workarounds aren’t perfect, their drawbacks were tolerable to some degree
because in the C++03 era only simple, builtin types constants enjoyed unfettered
direct and efficient compile time support. All of that changed with the adoption of
constexpr variables in C++11, which extended the direct and efficient support
to constants of user-defined types. Now, programmers are making constants (of
class types) more and more apparent in programs. So grow the confusion and
frustrations associated with the workarounds.

1

1.1 Constexpr static data members of class templates
The standard class numeric_limits is the archetypical example:

template<typename T>
struct numeric_limist {
static constexpr bool is_modulo = ...;

};
// ...
template<typename T>
constexpr bool numeric_limits<T>::is_modulo;

The main problems with “static data member” are:

• they require “duplicate” declarations: once inside the class template, once
outside the class template to provide the “real” definition in case the con-
stants is odr-used.

• programmers are both miffed and confused by the necessity of providing
twice the same declaration. By contrast, “ordinary” constant declarations
do not need duplicate declarations.

1.2 Constexpr function templates
Well known examples in this category are probably static member functions of
numeric_limits, or functions such as boost::constants::pi<T>(), etc.

Constexpr functions templates do not suffer the “duplicate declarations” is-
sue that static data members have; furthermore, they provide functional abstrac-
tion. However, they force the programmer to chose in advance, at the definition
site, how the constants are to be delivered: either by a const reference, or by
plain non-reference type. If delivered by const reference then the constants must
be systematically be allocated in static storage; if by non-reference type, then
the constants need copying. Copying isn’t an issue for builtin types, but it is a
showstopper for user-defined types with value semantics that aren’t just wrappers
around tiny builtin types (e.g. matrix, or biint, or bitfloat, etc.) By contrast, “ordi-
nary” const(expr) variables do not suffer from this problem. A simple definition
is provided, and the decision of whether the constants actually needs to be layout
out in storage only depends on the usage, not the definition.

2

2 Proposed Solution
This proposal makes a very simple suggestion: allow the definition and uses of
constexpr variable templates. The technical part of the proposal actually consists
of relaxing constraints on template declarations.

2.1 Modification to the standard text
Most of the modifications consist of adding “constexpr variable templates” to the
list of entities designated by a template-id, etc.

1. Modify paragraph 14/1 to say

The declaration in a template-declaration shall

— declare or define a function or a class or a constexpr vari-
able, or

[...] A template-declaration is a declaration. A template-declaration
is also a definition if its declaration defines a function, a class, a
variable, or a static data member.

2. Modify paragraph 14.3.3/1:

A template-argument for a template template-parameter shall
be the name of a class template or an alias template or const-
expr variable template, expression as id-expression. When the
template-argument names a class template or a constexpr vari-
able template, only primary class templates or constexpr vari-
able template are considered when matching the template tem-
plate argument with the corresponding parameter; partial spe-
cializations are not considered even if their parameter lists match
that of the template template parameter.

3. Modify paragraph 14.3.3/2

Any partial specializations (14.5.5) associated with the primary
class template or constexpr variable template are considered
when a specialization based on the template template-parameter
is instantiated....

4. Modify paragraph 14.3.3/3

3

A template-argument matches a template template-parameter (call
it P) when each of the template parameters in the template-parameter-
list of the template-argument’s corresponding class template or
alias template or constexpr variable template (call it A)

5. Modify paragraph 14.4/1

Two template-ids refer to the same class or function or variable
if ...

3 Extensions
This proposal focuses on the more pressing and narrower need for a simpler no-
tation for parameterized constants. It did not escape the attention of the author
that a more general notion of variable templates (not necessarily constexpr) could
be defined. That greater generality would need more experiments and is therefore
not part of this proposal.

4 Conclusion
This proposal aims for a simple extension to C++: allow constexpr variable tem-
plates. It makes definitions and uses of parameterized constants much simpler,
leading to simplified and more uniform programming rules to teach and to re-
member.

Acknowledgement
Vicente J. Botet Escriba independently suggested support for constexpr variable
templates on the std-proposals mailing list.

4

