
N3604: Centralized Defensive-Programming Support for Narrow Contracts Page 1 of 20

Doc No: N3604
Date: 2013-03-18

Authors: John Lakos (jlakos@bloomberg.net)
 Alexei Zakharov (azakharov7@bloomberg.net)

Centralized Defensive-Programming Support for Narrow
Contracts

Abstract

Reducing defects in software is a central goal of modern software engineering.
Providing essentially defect-free library software can, in large part, be accomplished
through thorough unit testing, yet even the best library software—if misused—can

lead to defective applications. When invoking a function, not every combination of
syntactically valid inputs will (or should) necessarily result in defined behavior.

Functions for which certain combinations of inputs and (object) state result in
undefined behavior are said to have narrow contracts. Aggressively validating
function preconditions at runtime—commonly referred to as defensive programming—

can lead to more robust applications by (automatically) detecting out-of-contract use
of defensive library software early in the software development life cycle. Most

classical approaches to defensive precondition checks, however, necessarily result in
suboptimal runtime performance; moreover, when misuse is detected, the action
taken is invariably determined by the library, not the application.

In this proposal, we describe a centralized facility for supporting defensive runtime
validation of function preconditions. What makes this overall approach ideally (and

uniquely) suited for standardization is that it allows the application to (1) indicate
coarsely (at compile time) the extent to which precondition checking should be
enabled based on how much defensive overhead the application (as a whole) can

afford, and (2) specify exactly (at runtime) what action is to be taken should a
precondition violation be detected. Moreover, the flexibility of this supremely general

solution to precondition validation lends itself to a thorough, yet surprisingly easy-to-
use testing strategy, often called negative testing, for which a supportive framework is
also provided. Finally, this general approach to implementing and validating

defensive checks is not just a good idea: It has been successfully used in production
software at Bloomberg for over a decade, was presented at the ACCU conference in

2011, and is currently available along with copious usage examples embedded in
running library code as part of Bloomberg’s open-source distribution of the BSL
library at https://github.com/bloomberg/bsl.

Contents

1 Introduction ... 2

2 Background: Narrow versus Wide Contracts ... 3

2.1 Is Artificially Widening Narrow Contracts a Good Idea? 3

mailto:jlakos@bloomberg.net
mailto:azakharov7@bloomberg.net
https://github.com/bloomberg/bsl

N3604: Centralized Defensive-Programming Support for Narrow Contracts Page 2 of 20

2.2 Summary of Why Artificially Wide Contracts are Bad 6

3 Motivation .. 6

3.1 So what’s the problem? .. 7

3.2 High-Level Requirements .. 9

4 Scope ... 9

5 Existing Practice ... 9

6 Impact on the Standard .. 10

7 Design Decisions .. 10

8 Summary of Proposal for Standardization ... 11

8.1 Build Modes and Assert Macros ... 11

8.2 Violation Handling ... 12

8.3 Test Macros.. 12

9 Formal Wording .. 12

9.1 Header <preassert> synopsis ... 12

9.2 Precondition assert macros .. 13

9.3 Precondition assert macros state flags .. 13

9.4 Precondition assert test macros .. 14

9.5 Precondition assert handler function .. 15

10 Examples .. 16

10.1 Assert a contract precondition in normal build mode 16

10.2 Throw an exception on contract precondition violation 16

10.3 Test that a function correctly asserts its contract preconditions 16

11 Precondition assert test macros reference implementation 17

11.1 Overview ... 17

11.2 Implementation ... 17

12 References ... 20

1 Introduction

Optimizing quality, cost, and time-to-market are all basic tenets of present-day
application software development. A library feature that purports to significantly

improve any one of these important aspects would make it well worth consideration
for standardization; one that has been demonstrated for over a decade to improve all

three at once in a real-world production setting fairly demands it.

First and foremost, our goal as library software developers must be to ensure that, to
the extent possible, what is produced with our library code behaves as desired and is

implemented without defects. We always try to design library software to be easy
understand and use, yet hard to misuse. Ideally, we prefer that—all other things
being equal—any misuse be detected at compile time, rather than at runtime.

Unfortunately, such designs are not always possible, or practical. The standard
library is rife with examples where misuse cannot be detected at compile time (see

section 2).

What we are proposing here is a centralized, application-configurable standard
library facility supporting the runtime detection of misuse of functions where such

misuse cannot reasonably be detected at compile time.

N3604: Centralized Defensive-Programming Support for Narrow Contracts Page 3 of 20

2 Background: Narrow versus Wide Contracts

Some functions naturally have no preconditions apart from adhering to the general

rules of the C++ language. For example, there is no precondition specified in the
contract for

void std::vector::push_back(const TYPE&); // wide

that if violated would result in undefined behavior. The same is true in general for
copy (and move) constructors and assignment operators. Such functions naturally
have what are called wide contracts. On the other hand, both

const TYPE& std::vector::operator[](size_t index) const; // narrow

and

void std::vector::pop_back(); // narrow

would exhibit undefined behavior on an empty vector (which, in general, is simply not

possible to detect at compile time). Such functions are said to have narrow
contracts.

2.1 Is Artificially Widening Narrow Contracts a Good Idea?

Some advocate that widening the defined behavior to cover all combinations of

syntactically valid arguments (and state) is somehow beneficial. Consider the
standard member function

const TYPE& std::vector::at(size_t index) const; // wide

which provides the same behavior as defined for

const TYPE& std::vector::operator[](size_t index) const; // narrow

but, instead of being undefined when index >= size(), is required to throw an

std::out_of_range exception. There is no combination of input and state

information for which the behavior is undefined, and therefore could result in

arbitrary behavior. Hence, the contract for the at method of an std::vector is

considered (artificially) wide (we say “artificially”, because we would never
intentionally exploit the added behavior, and misuse can be detected more effectively
without it, see below).

There are other ways in which one might widen what would otherwise be a useful
narrow contract. For example, consider a value semantic [1] date class that

maintains, as one of its object invariants, a valid date value. Now consider a nominal

member function, set_ymd, that sets a date object to have the value represented by

the specified year, month, and day:

class date {

 // ...

 public:

 // ...

 void set_ymd(int year, int month, int day); // narrow

 // Set the value of this object to the specified

 // 'year', 'month', and 'day'. The behavior is

 // undefined unless 'year', 'month', and 'day'

N3604: Centralized Defensive-Programming Support for Narrow Contracts Page 4 of 20

 // together represent a valid/supported date value.

One way to widen this contract would again be to always validate the inputs and

throw an exception if they do not represent a supported date value (incurring a
runtime cost in every build mode). Another possibility would be to validate the

inputs and then promise to silently do nothing if invalid (most likely masking a
defect). A third possibility is to validate the inputs and again do nothing on invalid
input, but return status either way (precluding automatic detection of bad date values

in any build mode). Narrow contracts, on the other hand, do not suffer from any of
these problems.

2.1.1 Artificially Widening Contracts is Misguided

We assert (pun intended) that artificially widening an otherwise useful narrow
contract—just to eliminate any undefined behavior—is profoundly misguided for

several reasons:

 Even if we do nothing else, validating input has costs.

 Widening forces us to define, document, and test questionably useful code.

 More code runs slower!

 Wide contracts make backward compatible extension much harder.

 Artificially wide contracts preclude defensive programming.

For example, consider the standard C function

size_t strlen(const char *string);

 // Return the number of characters in the specified (null-terminated)

 // 'string'.

What should the behavior be if string is 0? One possibility is that it be defined to

return 0:

size_t strlen(const char *string)

{

 if (!string) { // wide !!!

 return 0;

 }

 // Determine and return the length of 'string'.

}

Doing so, however, would necessarily have a non-zero added cost for everyone,
including those who would never invoke the function on a null pointer. What’s more,

this kind of widening would serve to hide defects. We might instead consider

returning static_cast<size_t>(-1) as a form of status, but that brings with it its

own issues, see below. (Note that simply omitting the check would, in this case, most
likely result in program termination, exposing the bug). Finally, by artificially

extending the defined behavior to cover null input, we necessarily eliminate the
possibility of the library’s automatically warning that something is wrong in an
application-customizable manner. The optimal solution is to leave the behavior for

N3604: Centralized Defensive-Programming Support for Narrow Contracts Page 5 of 20

null strings undefined and, in some (but not all) build modes, detect and report
misuse as directed.

Some will argue that correctness is more important than performance, and that
always checking function preconditions is a small price to pay. But what if it’s not?

As a second example, let’s revisit our set_ymd function discussed above. If we widen

the contract to return status (or throw an exception, or even do nothing) on a bad

date value, we will then always have to check the date value—even when we know
that it is valid:

class date {

short d_year;

char d_month;

char d_day;

 // ...

 public:

 // ...

 int set_ymd_if_valid(int year, int month, int day); // wide

 // Set the value of this object to the specified

 // 'year', 'month', and 'day'. Return 0 on success,

 // and a non-zero value if ' 'year', 'month', and 'day'

 // fail to represent a valid/supported date value.

In the case of a date object that stores its year, month, and day value in three

separate fields, the cost of validation overwhelms the cost of setting the date value:

inline

int date::set_ymd_if_valid(int year, int month, int day) // wide

{

 if (!isvalid_ymd(year, month, day)) { // relatively very expensive

 return -1; // error: bad input

 }

 d_year = year;

 d_month = month;

 d_day = month;

 return 0; // success

}

Precisely the same situation applies to throwing from its value constructor:

inline

int date::date(int year, int month, int day) // wide

: d_year(year), d_month(monst), d_day(day)

{

 if (!isvalid_ymd(year, month, day)) { // relatively very expensive

 throw std::bad_input;

 }

}

We know from profiling that such redundant checks can increase runtime by several
hundred percent [2].

For anyone who cares about performance, always checking the validity of input
values that the caller supplies is a non-starter because, in many circumstances, the
caller will already know that their input is valid (if not, they are obligated to check it).

N3604: Centralized Defensive-Programming Support for Narrow Contracts Page 6 of 20

In fact, in some cases (such as binary search on a sorted array) the cost of validating
a precondition (that the array is in fact sorted) could be of a higher order complexity

(O[n]) than that of the work done by the function (O[log(n)]). Hard coding the amount
of validation into individual function contracts, and thereby widening them, is simply

not the answer. What is needed is a way of allowing each application to coarsely
indicate the overall runtime overhead it is prepared to dedicate to (redundant)
precondition checking throughout the program.

2.2 Summary of Why Artificially Wide Contracts are Bad

This section provides a concise summary how appropriately narrow contracts are
superior compared to artificially wide ones:

 RUNTIME COST: Validating and/or otherwise analyzing input—even if we do

nothing else—always has a runtime cost: Sometimes that cost is relatively
small, sometimes it is not, and sometimes the cost completely overwhelms that

of accomplishing the useful work the function is intended to perform.

 DEVELOPMENT COST: Artificially defining additional behaviors (i.e., beyond

input validation) requires more up-front effort by library developers to design,
document, implement, and test; the more significant cost, however, is born by

application developers when these added behaviors serve only to mask defects
resulting from library misuse.

 CODE SIZE: Implementing the additional behavior will necessarily result in

larger executables. On all real-world computers, more code generally runs
slower—even when that code it is never executed!

 EXTENSIBILITY: Artificially defining behavior that is not known to be useful
severely impedes adding backward-compatible extensions should new and truly

useful functionality be discovered in the future.

 DEFENSIVE PROGRAMMING: Eliminating all undefined behavior precludes

robust library implementations from detecting and reporting out-of-contract
use depending on the build mode. If the local function contract always

specifies the behavior for all possible input/state combinations, we lose the
substantial benefit of this very important, extremely useful quality-of-
implementation feature of robust library software for application development.

3 Motivation

Detecting defects early is widely held to be a goal of any good software development
process. The benefits of so doing affects each of the various metrics—quality, cost,
and schedule—for both library and application software. The sooner we detect a
problem, the sooner and more economically we can repair it, leading to a higher

quality product.

Unit testing is an effective way of ensuring that library software works as advertised
when used properly. Functionality invoked out of contract, however, may accidentally

produce the desired result, making such defects—including those within library

N3604: Centralized Defensive-Programming Support for Narrow Contracts Page 7 of 20

software itself—resistant to detection by unit testing alone. Absent precondition
checking by lower-level library functions, the only effective way to detect such misuse

is through detailed code reviews. Such reviews are not only expensive, they are
subject to human error, and—to be fully effective—need to be repeated whenever an

implementation is modified.

Given the considerable resources needed to do comprehensive testing and thorough

peer review, it is possible to achieve exemplary quality without precondition checking.
In fact, our implementation experience over the past decade shows that enabling
precondition checks after library software has been thoroughly reviewed and tested

rarely uncovers new defects within the library software itself. On the other hand, the
time and effort to debug new library software is dramatically reduced when such

precondition checking is enabled during development and initial application of unit
tests. Hence, even library software developers can benefit from such defensive
precondition checking.

When it comes to application software, the benefits of precondition checking are

unmistakable. Whereas the cost of developing infrastructure libraries can be
amortized over many versions of many separate applications, such is seldom the case
for the applications themselves, and unit testing—where it exists at all—is

notoriously underfunded in many application development environments. Although
precondition validation is not a substitute for thorough testing, having a library that
validates the preconditions of its narrow function contracts can—just by itself—go a

very long way towards improving the quality, reducing development costs, and
shortening time-to-market for application software that takes advantage of it.

In addition to the development benefits discussed above, if the library’s defensive
programming infrastructure can be configured to perform a specific action when it
detects misuse, then it can be employed even beyond the development phase.

Consider a word processing program, such as the one used to write this proposal.
When the program is in beta testing, we expect that there will be some defects.
Nevertheless we want some customers to use the program for real work as part of the

beta. If the library infrastructure were to detect misuse and then unconditionally
abort the program, it would be unacceptable to the customer, who might wind up

losing hours of valuable work. On the other hand, if the application were to disable
the defensive programming infrastructure and ignore misuse, it might still crash
unexpectedly, or—even worse—corrupt the customer’s document.

It is therefore imperative that the application be able to configure the library
infrastructure to warn when it detects misuse (or possibly even an internal error)

without necessarily terminating the program, so that the application can at least have
the opportunity to save the customer’s data before exiting.

3.1 So what’s the problem?

Every application is unique and every application developer has their own viewpoint.

If you ask 5 application developers how much runtime overhead library software

N3604: Centralized Defensive-Programming Support for Narrow Contracts Page 8 of 20

should incur checking for misuse by its client applications, it is quite possible you
will get 5 different answers:

 None

 Negligible (e.g., < 5%)

 Not substantial (e.g., 10-20%)

 A constant factor (e.g., 50-300%)

 Bring it on! (e.g., an order of magnitude)

In fact, these answers will vary—depending on the maturity of the application
software at issue. During the early stages of development, it may be that a fairly high

degree of checking is both needed and affordable. Once the application is released to
production, all that extra overhead may no longer be acceptable. For some high-
performance applications, even relatively modest overhead may be unacceptable. In

the most extreme case, the application owner may decide to allocate zero runtime
overhead for precondition checking. Our goal is that the same infrastructure library

be able to support all these different application needs throughout all phases of their
lifecycles.

Even if we were able to get application developers to agree on the level of runtime
precondition checking, they would surely disagree on what should happen if a

violation is detected. Some would argue that the program should terminate, since it is
known to be broken and letting it continue is only asking for trouble. Others would
say that a function should always throw an exception so that the application has a

chance of catching it and cleaning up before exiting. Still others might want the
program to go into a busy loop, waiting for an operator to attach a debugger and then
proceed on. The possibilities are endless. What should a general purpose library do?

Standard library components must accommodate a diverse set of needs. We can

absolutely guarantee that the library will not be reused to its full potential if we hard
code either (1) the amount of runtime overhead that a reusable library expends trying
to detect contract violations or (2) what happens if a violation is detected. What is

needed is a centralized facility that allows library (and even application) developers to
conveniently instrument their software such that application owners are able to

specify coarsely (at compile time) the relative amount of overall precondition checking
that is to occur within the program and also to specify (at runtime) exactly what is to
happen should a violation be detected.

N3604: Centralized Defensive-Programming Support for Narrow Contracts Page 9 of 20

3.2 High-Level Requirements

This section summarizes the essential high-level requirements of any centralized
facility (especially one suitable for standardization) to be used for implementing

application-configurable defensive checks in library software.

Library developers must be able to

 Easily implement defensive checks to be active in an appropriate build mode.

 Easily test that defensive checks are working as intended.

Each individual application owner (i.e., of main) must separately be able to

 Coarsely specify (at compile time) the overall runtime validation overhead.

 Specify precisely (at runtime) the action to take if an error is detected.

 Link translation units compiled with different levels of runtime validation.

Additionally, we advocate that there should be some bilateral recommendation

provided along with this centralized facility indicating how library and application
developers are encouraged to apportion and assess, respectively, the runtime
checking costs associated with each individual assertion-level build mode. The

coarse categories suggested in section 3.1 provide a practical guideline consistent
with our experience, which also happens to be closely tied to our heuristic, yet

sound, practice for choosing whether or not to declare a function inline.

Libraries that employ a centralized, application-configurable strategy for detecting

and handling out-of-contract function invocations, as discussed here, have already
demonstrated enormous practical benefit by simultaneously improving quality, cost,
and schedule metrics for application (and even library) developers that use them.
What remains now is to specify a particular implementation of this strategy suitable
for standardization.

4 Scope

This facility is intended for ubiquitous use across all library and application software.

Every programmer—from novice to expert—is encouraged to understand and
document the valid range of inputs (and state) for each function, and codify that

information in a way that allows the application owner (as opposed to the immediate
caller) to opine on what should happen if a violation occurs. Of all the headers in our

BSL library [5], the one that defines this functionality, bsls_assert.h, is empirically

among the most widely included.

5 Existing Practice

Defensive Programming, in its various guises, is a widely used software technique,

spanning virtually all computer languages. Many C++ developers still use <cassert>

N3604: Centralized Defensive-Programming Support for Narrow Contracts Page 10 of 20

to validate preconditions, knowing that the runtime overhead can be eliminated in
optimized builds. Others, afraid of aborting, hard code precondition validation and

then always throw an exception when contract violations are detected. Neither of
these approaches is ideal, failing to address the flexibility for general purpose,

reusable library software.

For more than a decade, Bloomberg’s library infrastructure has employed the

defensive programming strategy advocated here with excellent success across a wide
range of applications and libraries. Copious examples of this strategy’s application
along with the components providing defensive-programming support are freely

available for public scrutiny [5].

6 Impact on the Standard

What we propose requires no new language features. By its very nature, the addition

of the centralized checking facility proposed here would have absolutely no direct
required effect on any other components within the standard library; however,

implementers of standard components would almost certainly want to take advantage
of this facility to provide defensive checks to warn against client misuse.

In order for defensive programing to allow for maximum flexibility, we will want to
avoid artificially defining behavior for standard functions. In particular, we will want

to avoid the use of noexcept on narrow contracts, not only to facilitate negative

testing [3], but also to allow application programs the opportunity to recover from

their own errors and preserve valuable client data. After consideration in Madrid, the
committee agreed with strong consensus on criteria [4] for all functions in the C++11

standard, that precludes the use of noexcept on functions having narrow contracts,

where it might impede defensive programming. We presume that all future standard

functions will follow suit.

7 Design Decisions

Our proposed design for standardization addresses all of the high-level requirements

identified in section 3.2. We have made every effort to adapt all of our implementation
experience to a facility suitable for standardization, consistent with standard naming
conventions. There is, however, one departure that we feel deserves mention.

In our environment at Bloomberg, we have full control over the precise nature of how

C++ code is rendered (i.e., in terms of .h/.cpp pairs) and therefore are able to provide

some additional diagnostics via our negative testing facility beyond what we have
proposed for standardization. In particular, given our logically and physically

cohesive naming conventions, our bsls_asserttest component is able to determine

automatically, during unit testing, whether a function under test was itself able to

detect misuse rather than accidently relying on precondition validation in a

(physically) separate component (.h/.cpp pair) upon which it depends. In order to

accommodate a non-restricted physical rendering style, we have chosen to remove

N3604: Centralized Defensive-Programming Support for Narrow Contracts Page 11 of 20

this diagnostic from what is being proposed for standardized negative-testing
support.

8 Summary of Proposal for Standardization

The defensive programming support facility that we are proposing for consideration
for standardization consists of four parts:

 a set of build modes that control how much resources should be expended on
precondition testing

 a set of precondition assertion macros that validate preconditions

 a violation handling mechanism that controls what is done when a

precondition violation occurs

 a set of test macros that can be used in test drivers to verify that preconditions

are properly validated

8.1 Build Modes and Assert Macros

The defensive programming support facility is based on the principle that the

application developer should have control (at compile time) over how much runtime
resource is to be expended on precondition validation in a program. This principle is

embodied in three build modes that control which precondition tests are run and
which are skipped:

 Safe build mode is used when an application developer is willing to expend

considerable resources on precondition testing, perhaps slowing down the
program by a constant factor (e.g., 50-300%). In Safe build mode all
precondition checks are enabled.

 Non-Optimized (Debug) build mode is used when an application developer is

willing to expend some resources on precondition testing, but is not willing to
slow down the program appreciably (e.g., by more than 10-20%). In Non-

Optimized build mode, more expensive precondition tests are skipped.

 Optimized build mode is used when an application developer is not willing to

expend any appreciable resources on precondition testing. In Optimized build
mode only the most inexpensive (e.g., < 5%) and critical tests are performed.

A matching assert macro is provided for each build mode, allowing the library

developer to express how expensive it is to test each precondition. Extremely
expensive tests would be performed using the Safe-mode assert macro, moderately

expensive tests would be performed using the Non-Optimized (Debug) mode assert
macro, and very inexpensive and/or critical tests would be performed using the

Optimized mode assert macro.

Once the library developer has implemented precondition tests with the appropriate
assert macros, it is possible for the application developer to control the amount of

runtime resources expended on testing by choosing the appropriate build mode in
with which to compile the translation unit. Note that translation units compiled with

N3604: Centralized Defensive-Programming Support for Narrow Contracts Page 12 of 20

different assertion levels may be linked together resulting in (typically benign)
violations of the ODR.

8.2 Violation Handling

Another principle of the assertion facility is that the application developer should
have control (at run time) over what happens when a precondition violation occurs.

A configurable violation handler mechanism is provided so that the application owner

(i.e., of main) can choose to abort the program, throw an exception, or otherwise

respond to the violation.

8.3 Test Macros

A precondition-checking facility is not fully useful unless the checks it supports can

be tested. A set of test macros are provided to allow library developers to easily test
that (a) violations do not occur when all preconditions are met, (b) violations do occur
when any preconditions are not met, and (c) each precondition is tested in all the

appropriate build modes. Note that our implementation experience shows that test
actions resulting in in-contract calls should always be honored, whereas out-of-
contract calls should be allowed to transpire only when in a build mode
corresponding to a defensive check that can respond to the particular precondition
violation.

9 Formal Wording

9.1 Header <preassert> synopsis

// precondition assert macros

#define pre_assert(precondition_expression) // unspecified

#define pre_assert_dbg(precondition_expression) // define as alias to pre_assert

#define pre_assert_safe(precondition_expression) // unspecified

#define pre_assert_opt(precondition_expression) // unspecified

// precondition assert macro state flags

#define PRE_ASSERT_IS_ACTIVE

#define PRE_ASSERT_SAFE_IS_ACTIVE

#define PRE_ASSERT_OPT_IS_ACTIVE

// precondition assert test macros

#define test_pre_assert_pass(expression) // unspecified

#define test_pre_assert_fail(expression) // unspecified

#define test_pre_assert_safe_pass(expression) // unspecified

#define test_pre_assert_safe_fail(expression) // unspecified

#define test_pre_assert_opt_pass(expression) // unspecified

#define test_pre_assert_opt_fail(expression) // unspecified

namespace std {

namespace precondition {

// types

enum class mode {

 opt,

 dbg,

N3604: Centralized Defensive-Programming Support for Narrow Contracts Page 13 of 20

 safe

};

using violation_handler = void (*)(mode which, const char * message, const char *

file, size_t line);

// handler manipulators

violation_handler set_violation_handler(violation_handler handler) noexcept;

violation_handler get_violation_handler() noexcept;

// handler invoker

[[noreturn]] assert_fail(mode which, const char * message, const char * file,

size_t line);

} // namespace precondition

} // namespace std

9.2 Precondition assert macros

#define pre_assert(precondition_expression) // unspecified

Narrow function contract precondition assert for non-optimized (debug) build
mode.

Effects: When PRE_ASSERT_IS_ACTIVE is defined, this macro does nothing if
precondition_expression evaluates to true, and calls
std::precondition::assert_fail() otherwise. The precondition_expression

is not evaluated (and side effects are not performed) when

PRE_ASSERT_IS_ACTIVE is not defined.

#define pre_assert_safe(precondition_expression) // unspecified

Narrow function contract precondition assert for safe (debug with extra checks)
build mode.

Effects: When PRE_ASSERT_SAFE_IS_ACTIVE is defined, this macro does nothing

if precondition_expression evaluates to true, and calls
std::precondition::assert_fail()otherwise. The precondition_expression

is not evaluated (and side effects are not performed) when

PRE_ASSERT_SAFE_IS_ACTIVE is not defined.

#define pre_assert_opt(precondition_expression) // unspecified

Narrow function contract precondition assert for optimized build mode.

Effects: When PRE_ASSERT_OPT_IS_ACTIVE is defined, this macro does nothing if
precondition_expression evaluates to true, and calls
std::precondition::assert_fail()otherwise. The precondition_expression

is not evaluated (and side effects are not performed) when

PRE_ASSERT_OPT_IS_ACTIVE is not defined.

9.3 Precondition assert macros state flags

#define PRE_ASSERT_IS_ACTIVE

N3604: Centralized Defensive-Programming Support for Narrow Contracts Page 14 of 20

Effects: Defined if pre_assert asserts the precondition expression.

Note: Rationale for uppercase: this and other IS_ACTIVE flags are supposed to

be tested with #ifdef just like NDEBUG, which is uppercase.

#define PRE_ASSERT_SAFE_IS_ACTIVE

Effects: Defined if pre_assert_safe asserts the precondition expression.

#define PRE_ASSERT_OPT_IS_ACTIVE

Effects: Defined if pre_assert_opt asserts the precondition expression.

9.4 Precondition assert test macros

#define test_pre_assert_pass(expression)

Test that the expression, which contains a pre_assert macro invocation,

evaluates with no precondition violations in non-optimized (debug) build mode.

Effects: Evaluates the expression, containing a pre_assert macro invocation

and returns true if the pre_assert macro invocation passes and false

otherwise. If PRE_ASSERT_IS_ACTIVE is not defined, the expression is not

evaluated (and side effects are not performed) and the return value is always
true.

#define test_pre_assert_fail(expression)

Test that the expression, which contains a pre_assert macro invocation,

causes a precondition violation in non-optimized (debug) build mode.

Effects: Evaluates the expression, containing a pre_assert macro invocation,

and returns true if the pre_assert macro invocation fails and false otherwise.

If PRE_ASSERT_IS_ACTIVE is not defined, the expression is not evaluated (and

side effects are not performed) and the return value is always true.

#define test_pre_assert_safe_pass(expression)

Test that the expression, which contains a pre_assert_safe macro invocation,

evaluates with no precondition violations in safe build mode

Effects: Evaluates the expression, containing a pre_assert_safe macro

invocation, and returns true if the pre_assert_safe macro invocation passes

and false otherwise. If PRE_ASSERT_SAFE_IS_ACTIVE is not defined, the
expression is not evaluated (and side effects are not performed) and the return

value is always true.

#define test_pre_assert_safe_fail(expression)

Test that the expression, which contains a pre_assert_safe macro invocation,

causes a precondition violations in safe build mode

Effects: Evaluates the expression, containing a pre_assert_safe macro

invocation, and returns true if the pre_assert_safe macro invocation fails and
false otherwise. If PRE_ASSERT_SAFE_IS_ACTIVE is not defined, the expression

N3604: Centralized Defensive-Programming Support for Narrow Contracts Page 15 of 20

is not evaluated (and side effects are not performed) and the return value is

always true.

#define test_pre_assert_opt_pass(expression)

Test that the expression, which contains a pre_assert_opt macro invocation,

evaluates with no precondition violations in optimized build mode

Effects: Evaluates the expression, containing a pre_assert_opt macro

invocation, and returns true if the pre_assert_opt macro invocation passes

and false otherwise. If PRE_ASSERT_OPT_IS_ACTIVE is not defined, the
expression is not evaluated (and side effects are not performed) and the return

value is always true.

#define test_pre_assert_opt_fail(expression)

Test that the expression, which contains a pre_assert_opt macro invocation,

causes a precondition violations in optimized build mode

Effects: Evaluates the expression, containing a pre_assert_opt macro

invocation, and returns true if the pre_assert_opt macro invocation fails and
false otherwise. If PRE_ASSERT_OPT_IS_ACTIVE is not defined, the expression
is not evaluated (and side effects are not performed) and the return value is

always true.

9.5 Precondition assert handler function

using violation_handler = void (*)(mode which, const char * message, const char *

file, size_t line);

The type of a handler function to be called when a precondition assert violation
occurs.

Required behavior: A violation_handler shall not return to the caller. It can,

however, throw an exception.

Default behavior: The implementation’s default violation_handler calls

std::abort().

violation_handler set_violation_handler(violation_handler handler) noexcept;

Effects: Establishes the function designated by handler as the current handler
function for precondition assertion violations.

Remarks: It is unspecified whether a null pointer value designates the default

violation_handler.

Returns: The previous violation_handler.

violation_handler get_violation_handler() noexcept;

Returns: The current violation_handler. Note: This can be a null pointer value.

[[noreturn]] assert_fail(mode which, const char * message, const char * file,

size_t line);

N3604: Centralized Defensive-Programming Support for Narrow Contracts Page 16 of 20

Remarks: Called by the implementation when any of the pre_assert assertions

fail. May also be called directly by a program.

Effects: Calls the current violation_handler function. Note: A default

violation_handler is always considered a callable handler in this context.

10 Examples

10.1 Assert a contract precondition in normal build mode

std::size_t other_strlen(const char * str) {

 pre_assert(str);

 // ... return string length

}

10.2 Throw an exception on contract precondition violation

#include <exception>

#include <preassert>

struct contract_error : std::exception {

 contract_error(std::precondition::mode w, const char * m, const char * f,

std::size_t l)

 : std::exception(m)

 , which(w)

 , file(f)

 , line(l)

 {}

 std::precondition::mode which;

 const char * file;

 std::size_t line;

};

void handle_contract_violation(std::precondition::mode which, const char *

message, const char * file, std::size_t line) {

 throw contract_error(which, message, file, line);

}

int main() {

 std::precondition::set_violation_handler(handle_contract_violation);

 pre_assert(false); // throws contract_error

}

10.3 Test that a function correctly asserts its contract preconditions

if (test_pre_assert_fail(other_strlen(nullptr))) {

 std::cout << "other_strlen precondition assert is correct\n";

}

else {

 std::cout << "other_strlen precondition assert is incorrect\n";

}

if (test_pre_assert_pass(other_strlen("a string"))) {

 std::cout << "other_strlen precondition assert is correct\n";

N3604: Centralized Defensive-Programming Support for Narrow Contracts Page 17 of 20

}

else {

 std::cout << "other_strlen precondition assert is incorrect\n";

}

11 Precondition assert test macros reference implementation

11.1 Overview

The precondition assert test macro implementation consists of the following parts:

1. Definition of an exception class that will be thrown on a precondition violation

2. Definition of a precondition violation handler function that throws the
exception

3. Definition of the function test_pre_assert_imp, which performs the following

tasks:

 Replace the default precondition violation handler function.

 Evaluate the expression under test inside a try/catch block.

 Catch the exception and verify that it was indeed expected to be thrown.

 Restore the original precondition violation function.

11.2 Implementation

The reference implementation below presents only the Non-Optimized (Debug) mode

section of preassert. It is assumed that the PRE_ASSERT_IS_ACTIVE macro will be set

by the build system if Non-Optimized (Debug) mode precondition checking is desired.

11.2.1 preassert

#include <exception>

#include <atomic>

#include <cstdlib>

// macros

#if defined(PRE_ASSERT_IS_ACTIVE)

#define pre_assert(expr) \

 do \

 { \

 if (!(expr)) \

 { \

 std::precondition::assert_fail(\

 std::precondition::mode::dbg, \

 #expr, __FILE__, __LINE__); \

 } \

 } while (0) \

#define test_pre_assert_pass(expr) \

N3604: Centralized Defensive-Programming Support for Narrow Contracts Page 18 of 20

 std::precondition::detail::test_pre_assert_imp(\

 std::precondition::mode::dbg, true, [&]{ expr; }) \

#define test_pre_assert_fail(expr) \

 std::precondition::detail::test_pre_assert_imp(\

 std::precondition::mode::dbg, false, [&]{ expr; }) \

#else

#define pre_assert(expr) do {} while(0)

#define test_pre_assert_pass(expr) (true)

#define test_pre_assert_fail(expr) (true)

#endif

namespace std

{

namespace precondition

{

// interface

enum class mode

{

 opt,

 dbg,

 safe

};

using violation_handler = void (*)(mode, const char *, const char *, size_t);

violation_handler set_violation_handler(violation_handler handler) noexcept;

violation_handler get_violation_handler() noexcept;

[[noreturn]] void assert_fail(mode which, const char * message, const char * file,

size_t line);

// implementation

namespace detail

{

inline

void default_handler(mode, const char *, const char *, size_t)

{

 std::abort();

}

std::atomic<violation_handler> handler{default_handler};

struct precondition_error : std::exception

{

 precondition_error(mode w)

 : std::exception{}

 , which{w}

 {}

 mode which;

N3604: Centralized Defensive-Programming Support for Narrow Contracts Page 19 of 20

};

struct violation_handler_guard

{

 violation_handler_guard(violation_handler handler)

 : old_handler{set_violation_handler(handler)}

 {}

 ~violation_handler_guard()

 {

 set_violation_handler(old_handler);

 }

 violation_handler old_handler;

};

inline

void precondition_handler(mode which, const char *, const char *, size_t)

{

 throw precondition_error{which};

}

template <typename Expr>

bool test_pre_assert_imp(mode which, bool expect_pass, Expr expr)

{

 violation_handler_guard g{precondition_handler};

 try

 {

 expr();

 // the assert passed, return true if it was expected

 return expect_pass;

 }

 catch (precondition_error & e)

 {

 // the assert failed, return true if it was expected

 // and the mode is correct

 if (e.which <= which)

 return !expect_pass;

 else

 return expect_pass;

 }

}

} // namespace detail

inline

violation_handler set_violation_handler(violation_handler handler) noexcept

{

 return std::atomic_exchange(&detail::handler, handler);

}

inline

violation_handler get_violation_handler() noexcept

{

 return std::atomic_load(&detail::handler);

N3604: Centralized Defensive-Programming Support for Narrow Contracts Page 20 of 20

}

[[noreturn]]

inline

void assert_fail(mode which, const char * message, const char * file, size_t line)

{

 get_violation_handler()(which, message, file, line);

}

} // namespace precondition

} // namespace std

11.2.2 Simple test driver for preassert

#include <cassert>

#include <preassert>

std::size_t other_strlen(const char * str)

{

 pre_assert(str);

 size_t len = 0;

 for (; *str; ++len, ++str)

 ;

 return len;

}

int main()

{

 assert(test_pre_assert_pass(other_strlen("a string")));

 assert(test_pre_assert_fail(other_strlen(nullptr)));

}

12 References

[1] N2479 - Normative Language to Describe Value Copy Semantics

[2] N3344 - Toward a Standard C++ 'Date' Class

[3] N3248 - noexcept Prevents Library Validation

[4] N3279 - Conservative use of noexcept in the Library

[5] Bloomberg BSL Library, open-source distribution.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2479.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3344.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3248.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3279.pdf
https://github.com/bloomberg/bsl

