

N3557: Considering a Fork-Join Parallelism Library 1 of 19 | P a g e

Document Number: N3557
Date: 2013-03-18

Pablo Halpern, Intel Corp.
pablo.g.halpern@intel.com

Considering a Fork-Join Parallelism Library

Abstract

There is general consensus in the Concurrency and Parallelism study group
(SG1) that strict fork-join parallelism would be a desirable feature to add to

C++. They asked me to research whether it is possible to create a pure library
interface for strict fork-join parallelism that achieves the same benefits as the
well-established keyword-based language interface pioneered by the Cilk

project and proposed for standardization in N3409. The technical and aesthetic
advantages offered by the language approach include simple syntax,

appropriate lifetimes for arguments in asynchronous function calls, correct
overload resolution for asynchronous function calls, clear and enforceable
strictness, and correct exception handling. This paper describes the challenges

of creating a comparable library interface and explores the possibility of making
small, general-purpose, language changes to enable a library solution to
overcome those challenges. Ultimately, however, the library interface shows

significant weaknesses when integrating with core features such as object
lifetimes and exception scope. The library interface in particular is susceptible

to misuses which may introduce subtle problems into programs that would be
hard for many programmers to diagnose. Since our goal is making parallel
programming accessible to the widest possible range of programmers I question

whether a library approach could ever achieve this goal.

mailto:pablo.g.halpern@intel.com
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3409.pdf

N3557: Considering a Fork-Join Parallelism Library 2 of 19 | P a g e

Contents

1 Introduction ... 2

2 Summary of N3409 Proposed Features ... 3

3 Advantages of Strict Fork-Join Parallelism .. 4

4 Imagining a Simple Library Interface for Fork-Join Parallelism 5

5 Library Flaws Needing Solutions ... 6

5.1 Parameter Passing ... 7

5.2 Delayed Return Values .. 9

5.3 Overload Resolution and Template Instantiation 10

5.4 Enforced Strictness ... 11

5.5 Exception Handling ... 11

5.6 Simple and Transparent Syntax ... 14

5.6.1 Serialization ... 14

5.6.2 Ease of Unparallelizing Code .. 14

6 Language Solutions for Library Shortcomings ... 15

6.1 Better Parameter Passing ... 15

6.2 Simpler Return-value Handling .. 15

6.3 Better Overload Resolution and Template Instantiation 16

6.4 Constructs to Enforce Strictness ... 16

6.5 Manipulation of Exceptions ... 16

6.6 User-defined Control Constructs for Improved Syntax 16

7 C Compatibility ... 17

8 Conclusion ... 17

9 References .. 19

1 Introduction

Although there was strong interest in adding strict fork-join parallelism to C++
during the October 2012 C++ Standards meeting in Portland, some members of

the Concurrency and Parallelism study group (SG1) were less than enthusiastic
about the language-based approach advocated in N3409. Those members

reasoned that a library-based approach would be superior because:

 They oppose language changes that serve only a single purpose.

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3409.pdf

N3557: Considering a Fork-Join Parallelism Library 3 of 19 | P a g e

 Library changes are easier to move through the standardization process

than are core language changes.

 They feel that library features are easier than core language features to

deprecate if we later decide that our approach was flawed.

 Library solutions are easier for vendors implement and therefore faster to

get to market.

SG1 assigned me the task of imagining a library interface that would give most
of the benefits of the language interface. In places where the library interface

would fall short, I was asked to consider whether small language changes could
correct the problem, if such language changes were generally useful and not

focused on parallelism.

It should be our goal that any fork-join parallelism feature added to C++ be
accessible to the widest possible range of programmers, regardless of whether

the feature is in language or library form (or a combination of both). It is
important that parallelism not become an “advanced-user-only” feature that
scares programmers away with arcane idioms and/or traps for the unwary.

I will say at the onset that, in many respects, I was given an impossible task.
Implicit in the assignment was the understanding that if a good library

interface could not be constructed then the language interface would garner
greater support. No library proposal for fork-join parallelism has been proposed
that is equal in quality to the language proposal, and I cannot prove that none

is possible (that is, I cannot prove the negative). Nevertheless, I was up for
doing the thought experiment. I have no fundamental philosophical objection

to using a library interface, provided it does not significantly complicate the
task of parallel programming compared to the Cilk-like interface proposed in
Portland. However, it is important to consider whether the library interface

preserves all the important properties of the language-based interface, in
particular properties valuable to non-expert programmers.

2 Summary of N3409 Proposed Features

The following example is slightly modified from N3409. It shows a parallel tree

walk in which a computation f() is performed on the value of each node in a

binary tree, yielding an integer metric. The results of the computation are
summed over the entire tree:

int tree_walk(node *n)
{
 int a = 0, b = 0, c = 0;
 cilk_block {
 if (n->left)
 a = cilk_spawn tree_walk(n->left);
 if (n->right)

N3557: Considering a Fork-Join Parallelism Library 4 of 19 | P a g e

 b = cilk_spawn tree_walk(n->right);
 c = f(n->value);
 }
 return a + b + c;
}

In the example, the presence of cilk_spawn indicates to the compiler that

execution can proceed asynchronously to the next statement, without waiting

for the recursive tree_walk calls to complete. A cilk_spawn defines a task – a

piece of work that is permitted (but not required) to execute asynchronously

with respect to the caller and with respect to other spawned tasks. The “strict”
part of the model means that execution of the function does not proceed
beyond the end of the cilk_block until all cilk_spawn expressions within the

block complete. A function body is implicitly a cilk_block. (The example in the

original proposal used cilk_sync to wait on asynchronous tasks instead of a

lexically-scoped cilk_block. The addition of a cilk_block construct was

suggested by the members of the committee. Keyword names are placeholders;
Standard keywords (or attributes) can be determined at a later time.)

If the cilk_spawn and cilk_block keywords are removed from the example

above, the result is a valid program called the “serialization”. The serialization
of a program is always a valid interpretation of the parallel program and is

equivalent to running the parallel program with only one CPU core (or more
precisely, one worker).

3 Advantages of Strict Fork-Join Parallelism

The strict fork-join parallelism shown above has some important advantages

over less-structured approaches. The following is a condensation of the
description of these advantages in N3409. (Note that these advantages do not

require a language-based feature. Any implementation of the strict fork-join
parallelism model, whether via a language or library feature, will exhibit these
benefits.)

1. Serial semantics: A serial execution is always a legal interpretation of
the parallel program. Testing parallel correctness can be separated from
testing serial correctness.

2. Composable performance: Parallel computations can be nested
arbitrarily without resource oversubscription. This is important for

modularity.

3. Parallelism is encapsulated: A caller does not need to know whether a
function uses parallelism internally. Asynchronous tasks do not

accidentally “leak” from functions, causing data races and other
problems.

N3557: Considering a Fork-Join Parallelism Library 5 of 19 | P a g e

4. Local variables obey normal C++ rules: Variables declared in a task
block can be passed by reference to asynchronous children and will

remain alive until the children return.

5. Mathematical rigor enables powerful analysis tools: The mathematical

qualities of strict fork-join parallelism allow analysis tools to work within
reasonable memory bounds. Local parallelism results in localized
analysis.

4 Imagining a Simple Library Interface for Fork-Join Parallelism

It is possible to create a library interface for fork-join parallelism that, used

correctly, provides all of the advantages listed in the previous section. We are
interested in whether or not such a library interface can provide the same ease

of use as the language-based interface. Ease of use needs to include both
simple syntax and resistance to user error.

To explore the library possibility, I chose a syntax inspired by TBB’s and PPL’s

task_group constructs as well as C++11’s std::async(). I imagined the

following class definition as a starting point:

namespace std {

 class task_group {
 public:
 task_group();
 task_group(const task_group&) = delete;
 task_group(task_group&&) = delete;

 ~task_group(); // automatically calls sync()

 template <class F, class... Args>
 void spawn(F f, Args&&...args);

 void sync(); // Waits for spawned tasks to complete

 };
} // namespace std

The key members of task_group are as follows:

spawn(f, args...) Runs f(args...) asynchronously. This function may

return before f() returns.

sync() Waits for all spawned calls to complete.

~task_group() The destructor calls sync(). Thus, no asynchronous

functions can escape the scope of the task_group.

N3557: Considering a Fork-Join Parallelism Library 6 of 19 | P a g e

The copy and move constructors are deleted so that a program cannot violate
strictness by returning a task_group up the call stack (but see below for other

strictness issues with this interface).

Using this interface, the tree-walk subroutine is straightforward, and the

syntax is relatively clean:

int tree_walk(node *n)
{
 int a = 0, b = 0, c = 0;
 {
 std::task_group tg;
 if (n->left)
 tg.spawn([&]{ a = tree_walk(n->left); });
 if (n->right)
 tg.spawn([&]{ b = tree_walk(n->right); });
 c = f(n->value);
 }
 return a + b + c;
}

The task_group interface was chosen over the parallel_invoke interface (see

N3429) because it supports a run-time determination of the number of

asynchronous calls. In the tree-walk case, zero, one, or two asynchronous
recursive calls to tree_walk may be invoked in each recursion, depending on

the state of n on entry to the function. To get the same effect from

parallel_invoke would require the use of a painful continuation-passing

pattern.

5 Library Flaws Needing Solutions

Although the simple tree-walk example makes a library interface look
attractive, problems emerge when considering less trivial situations. In the list
below, I describe situations that the language interface handles well but where

the library solution falls short. In a subsequent section, I’ll explore some
potential remedies to the library shortcomings that involve small (and
sometimes not so small) enhancements to the core language – ideally

enhancements that benefit not only parallelism, but other aspects of C++
programming.

As will be demonstrated in the following, the most important areas where the
language proposal is superior to the task_group construct are:

 Enforced strictness

 Exception handling

 Simple and transparent syntax in more complex situations such as
complex parameter expression and return values.

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3429.pdf

N3557: Considering a Fork-Join Parallelism Library 7 of 19 | P a g e

To fully appreciate the challenges of trying to create a library interface that
approaches the quality of the language interface in the areas above, some

lower-impact issues must also be examined. For example, the return value of
an asynchronous function call presents a special challenge for a library

interface, one that directly affects the simplicity of the syntax. Therefore, in
order to give a complete picture, I will present also present the following
additional areas where the language proposal outperforms task_group:

 Parameter passing

 Delayed return values

 Overload resolution and template instantiation

These second-tier issues inform our understanding the top-tier issues of
strictness, exception handling, and syntax, and will therefore be presented
first.

5.1 Parameter Passing

Consider the following code fragment call using the cilk_spawn feature

described in N3409:

class Xyz { ... };
Xyz h(int);

// argument v by reference, x by const reference, z by value
void f(std::vector<int>& v, const Xyz& x, int z);

vector<int> v(...);

...
void calc() {
 int j = q(), k = 2 * j;
 cilk_spawn f(v, h(j), k); // asynchronous call
 ++j;
 k += 2;
 ...
}

In the asynchronous call to f(), the v argument is passed by reference and

modified within f().It is common to modify an array or vector in parallel,

avoiding races among parallel operations by operating on disjoint subsets of
elements. The call to h(j) is evaluated before the “detach point” of the

asynchronous call and results in the construction of a temporary object that is
passed by const reference to f(). The destructor for this temporary is deferred

until f() completes, even though execution of calc() continues

asynchronously. The k argument is, of course, passed by value. This carefully-

considered parameter-passing protocol closely resembles that of a serial call

N3557: Considering a Fork-Join Parallelism Library 8 of 19 | P a g e

while ensuring that any temporaries that are referenced by the asynchronous
function remain live through the execution of that function. In fact, the

protocol can be derived directly from a basic principle of cilk_spawn: Any

operations in the spawning expression that are not dependent on the

function-call completion execute serially in the caller (parent) and all
other operations execute in the detached context (child). In practice, we
have found this principle and the rules that derive from it to be intuitive and to

protect against subtle bugs.

Let’s try to get the same thing accomplished using the task_group facility I put

forth in Section 4. The simplest syntax for calling f() is to embed the call in a

lambda:

void calc() {
 std::task_group tg;
 int j = q(), k = 2 * j;
 tg.spawn([&]{ f(v, h(j), k); }); // asynchronous call
 ++j;
 k += 2;
 …
}

Unfortunately, the code above has a race condition because h(j) and ++j

execute in parallel and copying k races with k += 2. Staying with the lambda

syntax, there are several ways to avoid the race, depending on which form the
programmer finds least confusing:

tg.spawn([&,=j,=k]{ f(v, h(j), k); }); // capture j & k by value
tg.spawn([&](int j, int k){ f(v, h(j), k); }, j, k);
int jtmp = j, ktmp = k; // explicit copies: won’t work in a loop

tg.spawn([&]{ f(v, h(jtmp), ktmp); }, j); // use explicit copies

All of these workarounds have in common that they demand extra work from

the programmer to make up for the fact that compiler is unable to do the
analysis for them. The lambda by itself does not do the right kind of analysis
and results in an impoverished interface. If we avoid the lambda syntax, we

can rely a bit more on the spawn construct itself to do the correct bookkeeping.
The spawn() member of task_group, like std::async takes a variadic list of

arguments that it saves and passes to the functor call. Passing the arguments
to f() through task_group::spawn(), we get:

tg.spawn(f, v, h(j), k);

Unfortunately, task_group::spawn does not have enough information to know

that v should be captured by reference and k should be captured by value.

std::async “solves” this problem by always capturing by value and forwarding

as rvalue (except that arrays and functions decay to pointers). If we adopt the
same approach for task_group::spawn, then the above call fails to compile

N3557: Considering a Fork-Join Parallelism Library 9 of 19 | P a g e

because the first argument to f() cannot be bound to an rvalue. The fix for this

problem is to use a reference_wrapper to pass v explicitly by reference:

tg.spawn(f, std::ref(v), h(j), k);

What we have should now should work correctly, but we had to abandon the
lambda syntax in favor of something that no longer looks like a call to f() – the

transformation to the parallel call from its serialization (see Section 2) and vice-
versa cannot be considered trivial.

5.2 Delayed Return Values

When a function is called asynchronously, its return value is not available until
the function returns. If we modify the example from the previous section such
that f() returns a value of type Abc, the language-based proposal would

capture the return value of f() using a simple syntax:

Abc r = cilk_spawn f(v, h(j), k);

Although the value of r is undefined until a later cilk_sync or until the end of

the cilk_block, the strict scoping rules mean that these two events will be in

the same block – probably within the same screenful of code. Unlike futures,

the initialization of r will not be seen for the first time in some far-distant part

of the code.

The simplest way to return a value with task_group::spawn would be using a

lambda:

Abc r; // Hope Abc is DefaultConstructible…
tg.spawn([&]{ r = f(v, h(j), k); }); //… and MoveAssignable!

This approach, as we know, runs afoul of all of the issues described for
lambdas in section 5.1. An alternative is to create a variant of

task_group::spawn that takes the return value by reference:

Abc r; // Hope Abc is DefaultConstructible…
tg.spawn_r(r, f, v, h(j), k); //… and MoveAssignable!

As the comments indicate, this approach limits us to return values that are
DefaultConstructible and MoveAssignable, but is otherwise workable for those

who don’t mind the syntax. One way to avoid the DefaultConstructible and

MoveAssignable requirements is to use optional<Abc> as proposed in N3406:

std::optional<Abc> r; // r starts out disengaged (i.e. nullopt)
tg.spawn_r(r, f, v, h(j), k); // initializes r‘s contents by move-construction

There is a pitfall to the above use of optional, however: Just as in the previous

example, the value of r is not usable until after tg.sync() is called, but

optional has a test for emptiness. The trap is that users may be tempted to

use optional as if it were a future and test it for “ready” status, even though

optional’s semantics do not make any ordering guarantees:

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3406.html

N3557: Considering a Fork-Join Parallelism Library 10 of 19 | P a g e

std::optional<Abc> r;
tg.spawn_r(r, f, v, h(j), k);
…
if (r) // BAD IDEA: Test if r is ready.

 foo(*r);

A final option is to return some kind of future. The existing std::future is

fairly heavy-weight, owing to the need for dynamically-allocated memory and

synchronization with the corresponding promise. Thus, we might conceive of a
light-weight task_group::future to serve as the return value of

task_group::spawn:

{
 task_group tg;
 task_group::future<Abc> rf = tg.spawn(f, v, h(j), k);
 …
}
Abc r = rf.get();

This approach has a number of disadvantages:

 The future outlives its task group. This is not a technical problem, but I
consider it an aesthetic one.

 The call to get() must be explicit.

 The call to get() can be confused with std::future::get, which blocks if

the future is not ready. To allow for the widest possible range of efficient
implementations, we do not want to require blocking semantics for

task_group::future, which should be assumed to be ready when the

task_group has synchronized, and not before.

But the worst problem with the task_group::future idea is that nobody has

shown that it can be done efficiently. There was a group at the first SG1
meeting that tried to design something like it, and did not succeed. To be fair,

the constraints they were trying to meet may have been different, so an effort
connected to task_group might succeed where the other one did not.

5.3 Overload Resolution and Template Instantiation

Returning to the example from section 5.1, let’s change the declaration of
function f to be a template:

template <class T>
 void f(std::vector<int>& v, const T& x, int z);

The cilk_spawn statement works without change:

cilk_spawn f(v, h(j), k); // asynchronous call

However, the corresponding task_group::spawn statement fails to compile:

tg.spawn(f, std::ref(v), h(j), k); // error: f is a template

N3557: Considering a Fork-Join Parallelism Library 11 of 19 | P a g e

Similarly, if f is not a template but is overloaded, the above call will fail to

compile because overload resolution has not yet occurred, and f is considered

ambiguous. The obvious workaround for this problem is to use a lambda,
accepting the need to work around all of the parameter-passing problems

described in section 5.1:

tg.spawn([&,=j,=k]{ f(v, h(j), k); });

Unfortunately, this is the kind of hard-to-explain dark corner that could cause
parallelism to become an advanced-user-only feature.

5.4 Enforced Strictness

Not all parallelism must be strict, but strict fork-join parallelism is an

important subclass of parallelism, just as block-scoped variables are an
important subclass of memory allocation. By deleting the copy and move
constructors of my theoretical task_group class, I prevent the task group from

escaping outside of the block in which it was declared. Unfortunately, this is
not enough to prevent passing the block down to a called function. Even worse,

a program could allocate a task_group on the heap.

The most insidious violation of strictness is when a task_group is captured by

reference in a lambda expression. The following innocent-looking code violates

strictness requirements:

task_group tg;
std::parallel_for(0, N, [&](int i){
 tg.spawn(f, i);
 g(i); // Run g(i) in parallel with f(i)
});

The lambda expression within the parallel_for is a separate function call and

should not use the task_group that was captured from the caller’s scope. The

result is that the parallel_for may return with children still running.

Of course, we can tell programmers “don’t do that,” but chances are the
programmer wasn’t doing it on purpose. Tools, also, would need to assume that

task_group is used idiomatically, rather than being able to take advantage of

inherent strictness guarantees. Without experience, it is not clear if that would

be enough. Even goto can be used in a well-structured way, but that didn’t

prevent it from being considered harmful.

5.5 Exception Handling

Consider the following code using the language-based proposal:

try {
 cilk_spawn f();

 try {
 cilk_spawn g();

N3557: Considering a Fork-Join Parallelism Library 12 of 19 | P a g e

 h();
 }
 catch (...) {
 // Catch Block 2
 …
 }
}
catch (...) {
 // Catch Block 1
 …
}

If f() throws an exception, it is caught in Catch Block 1. If g() or h() throw an

exception, it is caught in Catch Block 2. If more than one of these functions

throws an exception, the one that is caught is the same as the one that would
have been caught in the corresponding serial program. In other words, this

behavior mimics the behavior of the same program with the cilk_spawn

keywords removed (the serialization of the program). There is a difference from
the serial behavior, of course, in that an exception thrown from g(), for

example, does not prevent h() from running. Furthermore, since g() and h()

can run in parallel, they may both throw, but only the exception from g() is

propagated to the catch block. The latter situation can be addressed using a

library interface to recover a list of lost exceptions.

This exception-handling behavior is possible because every try block is

implicitly a cilk_block and thus can re-throw an exception at the implicit join

point that occurs at the end of every cilk_block.

Trying to do something similar with task_group could lead programmers into a

trap:

try { // Try Block 1
 task_group tg;
 tg.spawn(f);

 try { // Try Block 2
 tg.spawn(g);
 h();
 } // End of Try Block 2
 catch (...) {
 // Catch Block 2
 …
 }
} // End of Try Block 1
catch (...) {
 // Catch Block 1
 …
}

N3557: Considering a Fork-Join Parallelism Library 13 of 19 | P a g e

The first problem we encounter is that there is no place to re-throw an
exception that is thrown by f() or g(). Logically, we would re-throw the

exception at the join point. Up until now, task_group was specified with an

implicit join point in the destructor, that is, when tg goes out of scope.

Unfortunately, throwing an exception from within a destructor is considered a
Bad Thing™. To avoid that possibility, we must add explicit calls to
task_group::sync():

 tg.sync();
} // end of Try Block 1
catch (...)

In other words, in order to avoid having destructors that throw, we need to give
up automatic joining via RAII.

Now we have to contend with some additional problems. If g() throws an

exception, it will be re-thrown at the sync() call shown above. This means that

g’s exception will be caught in Catch Block 1, which is likely to be disturbing to

the programmer who started with working serial code and added the
parallelism. This problem stems from the lack of linguistic support for

strictness. To get strictness in the presence of exceptions, each try block must

define a region from which child tasks cannot escape. We can accomplish this

manually with task_group by defining a nested task_group:

try { // Try Block 1
 task_group tg1;
 tg1.spawn(f);

 try { // Try Block 2
 task_group tg2;
 tg2.spawn(g);
 h();
 tg2.sync();
 } // End of Try Block 2
 catch (...) {
 // Catch Block 2
 …
 }
 tg1.sync();
} // End of Try Block 1
catch (...) {
 // Catch Block 1
 …
}

But our troubles are not over. If h() throws, then tg2’s destructor will be

invoked before the call to tg2.sync(). If the destructor were to call sync() and

an exception were propagated from g(), then the destructor would need to

N3557: Considering a Fork-Join Parallelism Library 14 of 19 | P a g e

discard the exception (or else terminate). Notice that the library would need to
discard the exception that would have been caught in the serialization of the

program, such that the wrong exception is caught, according to the
serialization. In summary, it is very difficult to make the exception behavior of

a library interface consistent with the behavior of serial programs.

5.6 Simple and Transparent Syntax

A syntax that is writable, readable, and has a straightforward meaning is

critical for making parallelism accessible to the widest-possible range of
programmers. The examples in the rest of this section show that what looks
like a straightforward library interface can hide a number of traps that can

result in hard-to-read code with unexpected semantics.

In addition to the immediate aesthetic advantages, cilk_spawn has the

following beneficial qualities:

5.6.1 Serialization

It is no accident that the following two lines look nearly identical:

Abc r = cilk_spawn f(v, h(j), k); // asynchronous call

Abr r = f(v, h(j), k); // synchronous call

These two statements have the same meaning except that the first statement
allows parallel execution and the second does not. In fact, the Intel® Cilk™

Plus language specification uses the second construct (called the
“serialization”) to describe the semantics of the parallel construct. It is easy to

see what the program would do if run with only one worker (CPU core). The
benefits of being able to reason about a program serially before trying to
understand its parallel behavior should not be understated.

It is possible to define the serialization of a task_group::spawn , but it is not

nearly as obvious to the reader. A task_group::spawn of f() simply does not

look like a call to f(). Even if the lambda syntax is used (with all of the perils

that involves), the lambda syntax adds significant clutter.

5.6.2 Ease of Unparallelizing Code

Parallelizing code efficiently is an iterative process. Whether parallelizing a
serial program or writing a parallel program from scratch, using whatever tools

you have at your disposal, you choose the sites in the program that are the
best candidates for parallelization. Some of these sites may yield disappointing
results. Lock contention, false sharing, insufficient parallelism, or irresolvable

race conditions may force you to change parallel code to serial code. You might,
in fact simply be experimenting to see which performs better, the parallel or the
serial version of the code. If the code is parallelized using the cilk_sync

keyword, switching back and forth between serial and parallel code involves
simply adding or removing the keyword itself.

N3557: Considering a Fork-Join Parallelism Library 15 of 19 | P a g e

In contrast, the task_group library interface (as well as every other library

interface I’ve seen), requires a near-complete rewrite of a serial function call to

make it asynchronous. Thus:

Abr r = f(v, h(j), k); // synchronous call

Becomes

Abc r;
tg.spawn_r(r, f, v, h(j), k); // asynchronous call

or

Abc r;
tg.spawn([&,=j,=k]{ r = f(v, h(j), k); }); // asynchronous call

Thus, the programmer must commit significant time to parallelizing a call, only

to discover that he/she needs to undo it later.

6 Language Solutions for Library Shortcomings

As I described in the introduction, part of my charter in writing this paper is to
imagine language changes that would improve the library interface but which

would not be specific to parallelism. The ideas below are necessarily
incomplete, as it is not clear that there would be interest in any specific ones.

6.1 Better Parameter Passing

The need to use std::ref when passing arguments by reference can be

eliminated if we adopted the signature metafunction proposed in N3466, More

Perfect Forwarding. This metafunction would give the spawn function enough

information to choose pass-by-reference or pass-by-value. I do support this
proposal, but it does not eliminate the extra move constructor call in pass-by-

value arguments, which can be expensive if the type does not have a constant-
time move constructor, nor does it make invoking lambdas asynchronously any

safer.

6.2 Simpler Return-value Handling

It is perhaps possible to make a language extension that would allow

task_group::spawn to obtain a reference to its return value, and delay

construction of the return value just as cilk_spawn does. I imagine syntax

something like this:

template <class F, class... Args>
typename result_of<F>::type
spawn(typename result_of<F>::type return r, F f, Args&&... args);

The implementation of spawn would, at some point, initialize r:

r.return(f(std::forward<Args>(args)...);

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3466.html

N3557: Considering a Fork-Join Parallelism Library 16 of 19 | P a g e

Of course, this is very inventive, and we would need to figure out what the
meaning would be if result_of<F>::type is a reference type or void, but it is a

general-purpose feature (in the sense that it is not specific to parallelism), as
befits my charter.

6.3 Better Overload Resolution and Template Instantiation

Although I do not have a specific proposal, I believe that a linguistic solution to
the problem described in section 5.3 would be beneficial for a larger class of

problem than parallelism. One possible direction would be a construct similar
to the signature metafunction proposed in N3466, but with syntax that would

allow it to be used in the argument list of a function template to select a

specific overload or template specialization from the possible candidates.

6.4 Constructs to Enforce Strictness

To solve this problem it would be necessary to declare a class such that
instances are prevented from being passed by reference to another function,
captured by reference in a lambda, or used within a nested try block. Yet, to

be useful, the semantics of such a construct would need to be defined very
carefully, so that, for example, member functions could still be called. Though
not specific to parallelism, I do not know of another use case for such a

language feature.

6.5 Manipulation of Exceptions

Some of the difficulties that the task_group idea has with exceptions are

related to the strictness problem, particularly the use of a task_group declared

outside of a try block being used within the try_block. As previously stated,

any solution to that part of the problem would be of dubious general value.

With respect to the difficulties involved with throwing an exception from a
destructor, it would perhaps be helpful if there were library functions that

provided more information about the current exception state and ability to
manipulate it by, for example, replacing the current exception by a different

one, or chaining them together. Again, I don’t have a specific proposal in mind.

To get the clean syntax originally envisioned for task_group, where explicit calls

to sync() were not necessary, there may be no choice but to throw from the

task_group destructor, using library mechanisms to avoid throwing when

another exception is in flight.

6.6 User-defined Control Constructs for Improved Syntax

The language changes described in sections 6.1, 6.2, and 6.3 would allow some
improvements to the library syntax, but the ideal way to get the desired syntax

would be to add language features for user-defined control constructs. For
example, if one could define a function-modifier template that could be
instantiated with an unevaluated expression and which could deduce from the

expression the identity of the function or functor being invoked, the types of

N3557: Considering a Fork-Join Parallelism Library 17 of 19 | P a g e

arguments being passed, and the address of the return value for the
invocation. Then it would be possible to make task_group::spawn look very

similar to cilk_spawn. Such a change would be very ambitious, but would also

add a new and exciting dimension of extensibility to C++.

7 C Compatibility

WG14 (the C standards committee) has taken up parallelism and appears

moving forward on a syntax resembling that described in N3409. Since C lacks
both templates and lambdas, it is almost certain that the C feature will be
language-based, not library-based.

Although C compatibility is not a primary consideration with regards to adding
new features to C++, when a similar feature is being considered by both WG21

and WG14, there has historically been an effort to make them as similar as
possible. For example, the atomics and alignas proposals were harmonized

between the two committees.

Harmonizing the two languages will make it more likely that they will share a
common runtime library and that C code that calls C++ code will work

correctly, and vice-versa. If the C standard adds a syntax similar to
cilk_spawn, then it is likely that certain vendors will make that feature

available in C++, just as some vendors have made restrict and variable-length

arrays available in C++. One danger is that users will become dependent on
these extensions and there will be pressure to adopt the C language approach
in a future standard in addition to whatever C++ library has been adopted in

the intervening years. Meanwhile, we will have lost an opportunity to influence
the C language fork-join design so that it is, for example, usable in the

presence of destructors, exceptions, and function objects.

8 Conclusion

My goal in proposing the fork-join language constructs in N3409 was to add
parallelism to C++ in such a way that it would be accessible to a wide range of

programmers. Those constructs were designed to have a simple syntax and
nearly intuitive semantics so as to make the task of parallelizing code as easy
as possible. They are also fully implemented in the Intel® and GNU compilers

and an effort is well under way to implement them in Clang.

A simple library interface that works similar to the cilk_spawn construct in

N3409 seems possible, at first. A parallel region is delimited by constructing a
task_group object, a member function of task_group is used to invoke

functions asynchronously (fork), and the destructor of task_group ensures that

all asynchronous calls complete (join) before control can leave the parallel
block. The interface appears simple and the use of RAII seems to ensure
strictness.

N3557: Considering a Fork-Join Parallelism Library 18 of 19 | P a g e

Unfortunately, we must give up the RAII mechanism to avoid the possibility of
an exception being thrown from the task_group destructor. Strictness is

further compromised by the fact that the task_group is visible to called

functions, especially lambda captures. Even with the signature trait proposed

in N3466, issues remain with passing argument, returning values, and
resolving overloads and function template calls.

These issues with the library approach can be described as the final gap

between a good idea and a standardizable feature. As existing libraries like
TBB and PPL have shown, a large percentage of real parallelization jobs do not
run into these issues. A lot of code, for example, simply pretends that

exceptions don’t exist and ignores the issues involved with handling
exceptions. In the standard, however, we cannot ignore the remaining

percentage. We avoid making code ill-formed or undefined if a reasonable
person would expect it to work (remember the rush to add exception
guarantees to the STL in 1998?). When we distort interfaces or semantics in

order to handle important, albeit rare, cases, we create dark corners that make
a feature hard to use, and cause people to avoid it for all but the most

advanced uses.

Engineers trying to write parallel software should be able to
focus their attention on distributing work efficiently in parallel
and avoiding races, not on circumventing dark corners of the
language or library.

As we discover issues, both major and minor, that complicate a library
interface, we should be asking ourselves whether a library approach should

even be considered for fork-join parallelism. Few would argue that local
variables, branching constructs, and exceptions should be rendered purely
with library interfaces. These features are language primitives because they

involve fundamental language properties such as object lifetime, control flow,
and scope. Fork-join parallelism can be looked at the same way – it interacts
with the same primitive concepts and has semantics that extend beyond

specific call sites. Although there is no single criterion that distinguishes a
potential language feature from a potential library feature, the breadth of the

issues described in this paper should make one consider whether a fork-join
library could ever be truly integrated into C++.

Experts in parallel programming know that it’s hard, especially in the absence

of a regular and composable parallel language. Cilk has made significant gains
in making parallelism accessible by providing a truly simple syntax,

enforceable strictness, and encapsulation of non-determinacy. It integrates
fully with the existing language. Powerful tools exist for measuring parallelism
and deterministically detecting races within a Cilk Plus program. The core

syntax and concepts have been implemented for over 15 years. No existing or
proposed parallelism library can claim all of that.

N3557: Considering a Fork-Join Parallelism Library 19 of 19 | P a g e

As stated in the introduction, this paper has not, and cannot, prove that a
library-based parallelism proposal as good as cilk_spawn is impossible. With

some cleverness, some of the obstacles can be overcome and with 2-3 of the
language proposals described in Section 6, perhaps it is possible to come close

enough. Yet, except for parallel_invoke, no general fork-join library facility

has been proposed and, with the exception of std::signature, none of the

small-to-medium language proposals in Section 6 have been specified or

formally proposed. The features in N2409, by way of contrast, are fully
specified and implemented, and could quickly be rendered as formal wording.
Holding out for a better library interface is a highly speculative activity, one

that could leave us with no parallelism solution in the standard at all.

One final note: I do not pretend to be neutral on this issue. Although I remain

open to a truly effective library solution, parallel programming is hard and I do
not want to compromise the proven benefits of Cilk in the service of an
ostensible principle that library solutions are preferable to language solutions.

9 References

MIT The Cilk Project Home Page

cilkplus.org The Intel® Cilk™ Plus home page

N3409 Strict Fork-Join Parallelism, Pablo Halpern, 2012-09-24

N3466 More Perfect Forwarding, Mike Spertus, 2012-11-03 (See also revised
paper N3579)

N3579 A type trait for signatures, Mike Spertus, 2013-03-15 (A revision of
N3466)

N3429 A C++ Library Solution To Parallelism, A. Laksberg, H. Sutter,
A. Robison, S. Mithani, 2012-09-21

N3406 A proposal to add a utility class to represent optional objects (Revision 2),
F. Cacciola and A. Krzemieński, 2012-09-20

Cilk Plus GCC How to Download, Build, and Install Cilkplus GCC on Linux

Cilk Plus/LLVM Github page for Cilk Plus in Clang/LLVM

http://supertech.csail.mit.edu/cilk/
http://cilkplus.org/
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3409.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3466.html
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3579.html
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3579.html
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3429.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3406.html
http://cilkplus.org/build-gcc-cilkplus
http://cilkplus.github.com/

