
1

 Document no: N3465=12-0155

 Date: 2012-10-29

 Revises: N2882=09-0072

 Project: Programming Language C++

 Reply to: Joaquín Mª López Muñoz

 joaquin@tid.es

Adding heterogeneous comparison lookup to

associative containers for TR2 (Rev 2)

C+11 has extended the applicability of binary search algorithms so that they accept keys

and comparison operators of types other than those used for sorting the ranges being

searched, provided that some compatibility conditions are met
1
. For instance, this

extension allows us to write the following:

struct name_entry

{

 std::string family_name;

 std::string given_name;

};

bool operator<(const name_entry& x, const name_entry& y)

{

 // lexicographical order on (family_name, given_name)

 if(x.family_name<y.family_name) return true;

 if(y.family_name<x.family_name) return false;

 return x.given_name<y.given_name;

}

struct comp_family_name

{

 bool operator()(const name_entry& x, const std::string& y) const

 {

 return x.family_name<y;

 }

 bool operator()(const std::string& x, const name_entry& y) const

 {

 return x<y.family_name;

 }

};

int main()

{

 std::vector<name_entry> names;

 ... // populate names;

 std::sort(names.begin(),names.end());

 // look for all Smiths

 std::equal_range(

 names.begin(),names.end(),

 std::string("Smith"),comp_family_name());

}

Conceptually, the extension consists in replacing the original formulation based on strict

weak orderings with one relying on the notion of sequence partitioning, as first

proposed by David Abrahams
2
. Unfortunately, this extension process has not been

carried out for the lookup operations of associative containers, which are still

1
 “Binary search requirements overly strict”, LWG issue 270, C++ Standard Library Defect Report List,

http://www.open-std.org/Jtc1/sc22/wg21/docs/lwg-defects.html#270
2
 David Abrahams, “Binary Search with Heterogeneous Comparison”, J16-01/0027 = WG21 N1313,

2001.

Adding heterogeneous comparison lookup to associative containers (Rev 2) N3465=12-0155

2

formulated in terms of strict weak orderings and thus do not allow for heterogeneous

comparison. So, if in the example above we had used a set rather than a vector we could

not do this:

int main()

{

 std::set<name_entry> names;

 ... // populate names;

 // this does not compile

 names.equal_range(std::string("Smith"),comp_family_name());

}

and would have to resort to

int main()

{

 std::set<name_entry> names;

 ... // populate names;

 // look for all Smiths

 std::equal_range(

 names.begin(),names.end(),

 std::string("Smith"),comp_family_name());

}

which, since set iterators are bidirectional, has linear complexity, when set lookup

operations are logarithmic. We propose to replace the current equal_range operations

of associative containers

pair<iterator,iterator> equal_range(const key_type& x);

pair<const_iterator,const_iterator> equal_range(const key_type& x) const;

with the following ones based on sequence partitioning concepts:

template<typename T>

 pair<iterator, iterator> equal_range(const T& x);

template<typename T, typename Compare>

 pair<iterator, iterator> equal_range(const T& x, Compare comp);

template<typename T>

 pair<const_iterator, const_iterator> equal_range(const T& x) const;

template<typename T, typename Compare>

 pair<const_iterator, const_iterator>

 equal_range(const T& x, Compare comp) const;

and similarly for the other lookup operations (find, count, lower_bound and

upper_bound).

Implementation

At least for realizations of associative containers based on red-black trees, implementing

the proposed extension is entirely trivial. For instance, starting from a canonical

implementation of lower_bound

iterator lower_bound(const key_type& x)

{

 Node* top = root();

 Node* y = header();

 while(top){

 if(!comp(top->value, x)){ // comp is the internal comparison object

 y = top;

 top = top->left;

 }

Adding heterogeneous comparison lookup to associative containers (Rev 2) N3465=12-0155

3

 else top = top->right;

 }

 return iterator(y);

}

we can easily derive the partitioning-based extension:

template<typename T, typename Compare>

iterator lower_bound(const T& x, Compare comp)

{

 Node* top = root();

 Node* y = header();

 while(top){

 if(!comp(top->value, x)){ // comp is provided by the user

 y = top;

 top = top->left;

 }

 else top = top->right;

 }

 return iterator(y);

}

Note that the code remains exactly the same, except that we substitute the user-provided

comp for the internal comparison object used before. This nice property, for which we

provide a formal justification in an annex to this paper, holds for the rest of lookup

operations as well.

Existing practice

Some of the components of the Boost MultiIndex library
3
 provide lookup facilities with

heterogeneous comparison in a manner similar to that described here. The author has

received some reports pointing to this functionality as reason alone to use

Boost.MultiIndex in place of standard associative containers, leaving aside the more

prominent multi-indexing capabilities offered by the library.

Proposed resolution

1. Change 23.2.4 [associative.reqmts] paragraph 8 from:

[…] k denotes a value of X::key_type and c denotes a value of type

X::key_compare.[…]

to:

[…] k denotes a value of X::key_type and c denotes a value of type

X::key_compare; kl is a value such that a is partitioned (25.4) with

respect to c(r, kl), with r the key value of e and e in a; kcl is a value

and cl a copy constructible value such that that a is partitioned with

respect to cl(r, kcl); ku is a value such that a is partitioned with

respect to !c(ku, r); kcu is a value and cu a copy constructible value

such that that a is partitioned with respect to !cu(kcu, r); ke is a value

3
 Joaquín Mª López Muñoz, Boost Multi-index Containers Library, http://www.boost.org/libs/multi_index

Adding heterogeneous comparison lookup to associative containers (Rev 2) N3465=12-0155

4

such that a is partitioned with respect to c(r, ke) and !c(ke, r), with

c(r, ke) implying !c(ke, r); kce is a value and ce a copy

constructible value such that that a is partitioned with respect to ce(r,

kce) and !ce(kce, r), with ce(r, kce) implying !ce(kce, r).[…]

2. Replace the following entries from Table 102 of section 23.2.4

[associative.reqmts]:

Expression Return type Assertion/note

pre- / post-condition

Complexity

a.find(k) iterator;

const_-

iterator for

constant a.

returns an iterator pointing to

an element with the key

equivalent to k, or a.end() if

such an element is not found

logarithmic

a.count(k) size_type returns the number of elements

with key equivalent to k

log(size()) + count(k)

a.lower_-

bound(k)
iterator;
const_-

iterator for

constant a.

returns an iterator pointing to

the first element with key not

less than k, or a.end() if such

an element is not found.

logarithmic

a.upper_-

bound(k)
iterator;
const_-

iterator for

constant a.

returns an iterator pointing to

the first element with key

greater than k, or a.end() if

such an element is not found.

logarithmic

a.equal_-

range(k)
pair<iterator,

iterator>;
pair<const_-

iterator,

const_-

iterator> for

constant a.

equivalent to make_-
pair(a.lower_bound(k),

a.upper_bound(k)).

logarithmic

with:

Expression Return type Assertion/note

pre- / post-condition

Complexity

a.find(ke) iterator;

const_-

iterator for

constant a.

returns an iterator pointing to an

element with key r such that

!c(r, ke) && !c(ke, r), or

a.end() if such an element is

not found

logarithmic

a.find(kce, ce) Iterator;

const_-

iterator for

constant a.

returns an iterator pointing to an

element with key r such that

!ce(r, kce) && !ce(kce, r),

or a.end() if such an element is

not found

logarithmic

a.count(ke) size_type returns the number of elements

with key r such that
!c(r, ke) && !c(ke, r)

log(size()) +

count(ke)

a.count(kce, ce) size_type returns the number of elements

with key r such that
!ce(r, kce) && !ce(kce, r)

log(size()) +

count(kce, ce)

a.lower_-

bound(kl)
iterator;
const_-

iterator for

constant a.

returns an iterator pointing to

the first element with key r such

that !c(r, kl), or a.end() if

such an element is not found.

logarithmic

a.lower_-

bound(kcl, cl)
iterator;
const_-

returns an iterator pointing to

the first element with key r such

logarithmic

Adding heterogeneous comparison lookup to associative containers (Rev 2) N3465=12-0155

5

iterator for

constant a.

that !cl(r, kcl), or a.end() if

such an element is not found.
a.upper_-

bound(ku)
iterator;
const_-

iterator for

constant a.

returns an iterator pointing to

the first element with key r such

that c(ku, r), or a.end() if

such an element is not found.

logarithmic

a.upper_-

bound(kcu, cu)
iterator;
const_-

iterator for

constant a.

returns an iterator pointing to

the first element with key r such

that cu(kcu, r), or a.end() if

such an element is not found.

logarithmic

a.equal_-

range(ke)
pair<iterato

r,

iterator>;
pair<const_-

iterator,

const_-

iterator> for

constant a.

equivalent to make_pair(
a.lower_bound(ke),

a.upper_bound(ke)).

logarithmic

a.equal_-

range(kce, ce)
pair<iterato

r,

iterator>;
pair<const_-

iterator,

const_-

iterator> for

constant a.

equivalent to make_pair(
a.lower_bound(kce, ce),

a.upper_bound(kce, ce)).

logarithmic

3. In 23.4.4.1 [map.overview], 23.4.5.1 [multimap.overwiew], 23.4.6.1

[set.overwiew] and 23.4.7.1 [multiset.overwiew], replace:

iterator find(const key_type& x);

const_iterator find(const key_type& x) const;

size_type count(const key_type& x) const;

iterator lower_bound(const key_type& x);

const_iterator lower_bound(const key_type& x) const;

iterator upper_bound(const key_type& x);

const_iterator upper_bound(const key_type& x) const;

pair<iterator,iterator>

 equal_range(const key_type& x);

pair<const_iterator,const_iterator>

 equal_range(const key_type& x) const;

with:

template<typename T>

 iterator find(const T& x);

template<typename T, typename Compare>

 iterator find(const T& x, Compare comp);

template<typename T>

 const_iterator find(const T& x) const;

template<typename T, typename Compare>

 const_iterator find(const T& x, Compare comp) const;

template<typename T>

 size_type count(const T& x) const;

template<typename T, typename Compare>

 size_type count(const T& x, Compare comp) const;

template<typename T>

 iterator lower_bound(const T& x);

template<typename T, typename Compare>

 iterator lower_bound(const T& x, Compare comp);

template<typename T>

 const_iterator lower_bound(const T& x) const;

template<typename T, typename Compare>

 const_iterator lower_bound(const T& x, Compare comp) const;

Adding heterogeneous comparison lookup to associative containers (Rev 2) N3465=12-0155

6

template<typename T>

 iterator upper_bound(const T& x);

template<typename T, typename Compare>

 iterator upper_bound(const T& x, Compare comp);

template<typename T>

 const_iterator upper_bound(const T& x) const;

template<typename T, typename Compare>

 const_iterator upper_bound(const T& x, Compare comp) const;

template<typename T>

 pair<iterator, iterator> equal_range(const T& x);

template<typename T, typename Compare>

 pair<iterator, iterator> equal_range(const T& x, Compare comp);

template<typename T>

 pair<const_iterator, const_iterator> equal_range(const T& x) const;

template<typename T, typename Compare>

 pair<const_iterator, const_iterator>

 equal_range(const T& x, Compare comp) const;

Impact on existing code

There are pathological situations where this extension can break valid code or result in

modified behavior; for instance, if c is an associative container, key_type is its key

type and x a value of a type other than key_type that is implicitly convertible to const

key_type&, the expression

c.find(x);

is currently equivalent to

c.find(static_cast<const key_type&>(x));

whereas under this proposal the conversion to const key_type& would not take place.

Additional considerations

Extending erase. It seems natural to apply this extension to another member function

where comparison is used:

size_type erase(const key_type& x);

There are some difficulties here, though; extending this member function would clash

with the homonym

iterator erase(const_iterator position);

provoking potential backwards compatibility problems (e.g. if erase(x) is invoked

where x is a value of a type implicitly convertible to const_iterator, the extended

key-based erase member function template would take precedence over the iterator-

based erase). This issue is akin to that described in the section “Impact on existing

code”, though probably a little less pathological. It can be argued that the problematic

situations are unlikely to happen in real code and they could in any case be alleviated by

carefully crafting the requires section of the extended erase.

Monomorphism of std::less. In the extension of <algorithm> functions used as a

reference for this paper, those functions relying on operator <, such as

Adding heterogeneous comparison lookup to associative containers (Rev 2) N3465=12-0155

7

template<typename Iter, typename T>

 Iter lower_bound(Iter first, Iter last, const T& value);

are typically more powerful than their equivalent member functions under the current

proposal:

template<class T>

 iterator lower_bound(const T& x);

due to the fact that < is inherently polymorphic, while in the case of associative

containers an internal comparison object is used whose type key_compare is usually the

monomorphic std::less<key_type>. Although this is probably beyond the scope of

the proposal, it would be interesting to investigate the possibility that associative

containers used a polymorphic type rather than std::less for their default comparison

type, for instance:

struct polymorphic_less{

 template <typename T, typename Q>

 bool operator()(const T& x, const Q& y) const{ return x<y; }

};

Unordered associative containers. Although not considered in this paper, an analog

extension of lookup facilities can be applied to unordered associative containers as well.

Whereas for associative containers external keys are compatible with a range if they

properly partition it, in the case of unordered associative containers the compatibility

criterion is: elements of the range deemed equivalent (and only those) are equal to the

key (in the context of the equality predicate used) and have the same associated hash

value.

Acknowledgements

José Daniel García has kindly reviewed this version of the paper. Beman Dawes and

Kevin Sopp reviewed former versions.

Annex

As we have seen before, usual lookup algorithms on a sorted range are formally

equivalent to the extended algorithms needed to accommodate partitioning-based

semantics: it only takes to utilize the user-provided heterogeneous comparison object in

place of the internal comparison predicate used to sort the range. To prove this fact we

need the following

Proposition. Let T be an arbitrary set with an associated strict weak order <T and L, U

subsets of T such that

. , ,

, , ,

,

UbbaUaTba

LbabLaTba

UL

T

T

∈→<∈∈∀

∈→<∈∈∀

∅=∩

We create the set Q by augmenting T with an additional element x, and define the binary

relationship <Q on Q as follows:

Adding heterogeneous comparison lookup to associative containers (Rev 2) N3465=12-0155

8

false,:

,:

,:

,:

=<

∈=<

∈=<

<=<

xx

Uaax

Laxa

baba

Q

Q

Q

TQ

for all a,b ∈ T. Under these conditions, <Q is a strict weak order on Q. (Proof trivial.)

Returning to our original scenario, let [first,last) be a range of values of a type T

sorted by some strict weak ordering, x a value of a type other than T and comp a

heterogeneous comparison object such that [first,last) is partitioned (in the C++0x

sense) both with respect to comp(·,x) and !comp(x,·), with comp(e,x) implying

!comp(x,e). Now, we can regard [first,last) as a range of elements of the set Q =

{e in [first,last)} ∪ {x} which is sorted with respect to an extended strict weak

order defined on Q in the manner shown in the proposition above (with L = {e in

[first,last) : comp(e,x)}, U = {e in [first,last) : comp(x,e)}). So, any lookup

algorithm operating on [first,last) with input values of type T is formally a valid

algorithm when input values are taken from Q and the proper strict weak order, with

which comp is compatible, is observed.

