
Document Number: WG21/N2287=07-0147
Revision of: WG21/N2128=06-0198

Date: 2007-05-07
Reply to: Michael Spertus

mike_spertus@symantec.com

Transparent Programmer-Directed Garbage
Collection for C++

Hans-J. Boehm Michael Spertus

Abstract

A number of possible approaches to automatic memory management in C++
have been considered over the years. Here we propose the reconsideration of an
approach that relies on partially conservative garbage collection. Its principal ad-
vantage is that objects referenced by ordinary pointers may be garbage-collected.

Unlike other approaches, this makes it possible to garbage-collect objects al-
located and manipulated by most legacy libraries. This makes it much easier to
convert existing code to a garbage-collected environment. It also means that it can
be used, for example, to “repair” legacy code with deficient memory management.

The approach taken here is similar to that taken by Bjarne Stroustrup’s much
earlier proposal (N0932=96-0114). Based on prior discussion on the core reflector,
this version does insist that implementations make an attempt at garbage collection
if so requested by the application. However, since there is no real notion of space
usage in the standard, there is no way to make this a substantive requirement. An
implementation that “garbage collects” by deallocating all collectable memory at
process exit will remain conforming, though it is likely to be unsatisfactory for
some uses.

1 Introduction

A number of different mechanisms for adding automatic memory reclamation (garbage
collection) to C++ have been considered:

1. Smart-pointer-based approaches which recycle objects no longer referenced via
special library-defined replacement pointer types. Boost shared_ptrs (in TR1,
see N1450=03-0033) are the most widely used example. The underlying imple-
mentation is often based on reference counting, but it does not need to be.

2. The introduction of a new kind of primitive pointer type which must be used
to refer to garbage-collected (“managed”) memory. Uses of this type are more
restricted than C pointers. This is the approach taken by C++/CLI, which is
currently under consideration by ECMA TC39/TG5. This approach probably

1



provides the most freedom to the implementor of the underlying garbage collec-
tor, thus potentially providing the best GC performance, and possibly the best
interoperability with aggressive implementations of languages like C#.

3. Transparent GC, which allows objects referenced by ordinary pointers to be re-
claimed when they are no longer reachable.

We propose to support the third alternative, independently of the other two.

While manual memory management is a powerful feature of C++, this proposal pro-
vides a developer the choice of not using manual memory management without feel-
ing penalized by its presence in the language. This is supported by the principle that
C++ programmers should not be impacted by unused features. Likewise, programs
using explicit memory management should not be impacted in any way by the pres-
ence of the programmer-directed garbage collection feature we are proposing. Note
that “programmer-directed garbage collection” was referred to as “optional garbage
collection” in previous revisions of this proposal.

This proposal allows C++ to provide full support for the large class of applications that
do not have a specific need for manual memory management and could be more quickly
and reliably developed in a fully garbage collected environment. We believe this will
make C++ a simpler and more attractive option for the large number of developers and
development organizations that are not willing or able to use manual memory manage-
ment and do not develop applications requiring manual memory management without
negatively affecting current users of C++. Our intent is to support use of preexisting
C++ code with a garbage collector in as many cases as possible.

Transparent garbage collection has a long history of proven value in C++ as in many
other popular languages. The two authors of this proposal have extensive experi-
ence with the Boehm-Demers-Weiser garbage collector [4], and the Geodesic Systems
C/C++ garbage collector (commercialized in Geodesic’s Great Circle, Sun’s libgc li-
brary and VERITAS Application Saver), both of which have been successfully used in
this manner for at least ten years.

Although these garbage collectors have been used in a variety of ways, here we focus
on transparent garbage collection for all or most memory allocated by a program. This
is probably the most common existing usage model. And safe use of such garbage
collectors generally requires that all pointers in memory be examined by the garbage
collector. Hence the additional cost of collecting all allocated objects is often minimal
or negative.

Although this general approach has demonstrated its utility during this time, it would
be more robust, particularly in the context of C++, with some explicit support from the
language standard.1)

1)The particular attribute-based interface discussed here has not been implemented, but is based on expe-
rience with other approaches.

2



2 Benefits

Transparent collection creates support for a variety of useful C++ scenarios:

1. Transparent garbage collection provides C++ with support for fully garbage col-
lected applications on a par with other popular languages with respect to ease of
use, standard library support, performance, automatic collection of cycles, etc.
This would make C++ a simpler and more attractive for the large class of applica-
tions that do not require manual memory management, which are currently often
written in other languages solely due to their transparent support for automatic
memory management. Although smart pointers are known to work well in some
contexts, particularly if only a distinguished set of large objects are affected, and
if smart-pointer updates can be made infrequent, they are not suitable for the
myriad programmers who wish to dispense with manual memory management
entirely. This underscores the complementary value provided by the transparent
garbage collection approach.

2. Most existing code can be converted to garbage collection with no code changes,
such that the code no longer fails to deallocate “unreachable” memory. Because
the existing code’s deallocation calls are still executed, garbage collection is only
used to reclaim leaked memory, so collection cycles need only occur very infre-
quently, providing the safety of full garbage collection without the performance
cost of running frequent garbage collection cycles. This mode of operation is
often referred to as “litter collection” as described in [11].

3. Even if the programmer’s goal is to continue to use explicit memory dealloca-
tion, this approach strengthens the use of tools such as the use of tools such
as IBM/Rational Purify’s leak detector. Since these tools are based on conser-
vative garbage collectors, they suffer the same issues as transparently garbage-
collected applications, though the failure mode is often limited to spurious error
messages.2)

4. Unlike the smart-pointer based approaches, this approach to garbage collection
allows pointers to be manipulated as in traditional C and C++ code. There are
no correctness restrictions on, for example, the life-time of C++ references to
garbage-collected memory. There is no performance motivation to pass pointers
by reference. Thus it does not require the programmer to relearn some basic
C idioms. Since we do not reference count, we avoid difficult-to-debug cyclic
pointer chain issues that may occur with reference-counted smart pointers.

5. This approach will normally significantly outperform smart-pointer based tech-
niques for applications manipulating many small objects[7], particularly if the
application is multi-threaded.3) Transparent garbage collection allows garbage-

2)Although transparent garbage collectors have been used with C++ programs for many years, the lack of
a standard has precluded the use of such tools with programs using garbage collection as they do not have a
way to distinguish leaked memory from garbage collected memory.

3)The smart-pointer approach may perform better for programs making extensive use of virtual memory

3



collector implementations that perform well enough to be used in open source
Java and CLI implementations, though probably not quite as well as what can be
accomplished for C++/CLI.4)

6. Unlike the C++/CLI approach, transparent garbage collection allows easy “cut-
and-paste” reuse of existing source code and object libraries without the need
to modify their memory management or learn how to manipulate two types of
pointers.5) The same template code that was designed for manually managed
memory can almost always be applied to garbage-collected memory. The trans-
parent garbage collection approach also allows safe reuse of the large body of
C and C++ code that is not known to be fully type-safe as long as the Required
Changes below are verified. The tradeoff from the greater reuse and simplicity
is that transparent garbage collection is not quite as safe as for the C++/CLI be-
cause we require that programmers must recognize when they are hiding pointers
and use one of the Required Changes mechanisms in that infrequent case.

7. The approach will interact well with atomic pointer update primitives, once those
are added to the language. Smart-pointer-based approaches generally cannot ac-
commodate concurrent updates to a shared pointer, at least probably not without
significant additional cost. This is important for some high-performance lock-
free algorithms.

3 Required Changes

We believe we can provide robust support for transparent GC with minimal changes to
the existing language. More importantly, we believe that except for those few programs
requiring “advanced” garbage collection features, most programs will require no code
changes at all.6)

1. In obscure cases, the current language allows the program to effectively hide
“pointers” from the garbage collector, thus potentially inducing the collector to
recycle memory that is still in use. We propose rules similar to Stroustrup’s
original proposal (N0932) to clarify when this may happen.

2. We propose a set of attributes to allow the programmer to specify any assump-
tions about garbage collection made by the source file. In the absence of any such
specifications, it is implementation defined whether a garbage collector will be
used. We expect this to be controlled by a compiler flag.

due to the larger working set of full garbage collection. Paging-aware GC techniques such as [2] can mitigate
that.

4)In our eyes, the extent of the difference here is an open research problem, especially if we hypothesize
a C++compiler that communicates more type information than is done in current implementations.

5)Many people have expressed that even one type is hard enough!
6)Indeed, one of the more common uses of C++ garbage collection today is to protect pre-existing pro-

grams from memory leaks without any code changes or even recompilation (“litter collection”). Experience
has shown this to be safe and beneficial even for many multi-million line commercial programs.

4



3. We propose a small set of APIs and classes to access advanced but occasionally
necessary garbage collection features. We expect that these APIs will not be used
outside of specialized circumstances.

4 Reachability

We say that a pointer variable or member points to an object if it points to any address
inside the object, or just past the end of an array (to support common array scanning
idioms where the scanning variable points past the end of the array at loop termination).

The roots of the collection consist of

— Automatic or static variables

— Uncollectible memory allocated through new(nogc) or malloc_nogc

— Thread-local variables (if the C++ standard supports them)

— Any roots required by operating system APIs that can store away pointers, such
as SetWindowLong() on Windows.

It is likely that compilers may define extensions for specifying additional roots.

A heap-allocated object is reachable if it can be accessed through a chain of pointers
consisting of a root followed by heap-allocated objects.

As C++ is a type-unsafe language, in the absence of any additional annotation the
garbage collector may need to scan non-pointer types for potential pointers.

Due to the lack of language support and type information, traditional “conservative”
C++ garbage collection libraries only track relaxed reachability. This can preclude
the effective use of garbage collection in a number of important situations that could
otherwise benefit from garbage collection if type information was considered:

— Fully conservative garbage collection can result in unacceptable memory reten-
tion in large 32-bit applications. For example, in a program with a 2GB heap,
a uniformly randomly chosen 32-bit integer value would have a 50% chance
of being interpreted as a pointer and possibly unnecessarily preventing garbage
collection of an object that is no longer in use.7)

— Scanning of large objects with few or no pointers, such as a 500MB mpeg files,
can dramatically increase the time taken by garbage collection, to no effect (ex-
cept to increase the risk of excess data retention).

7)This is probably pessimistic, since the values of most integer variables are not uniformly distributed.
Note also that this problem should recede entirely in the 64-bit architectures that we expect will dominate by
the time the next C++ standard is adopted. However, we do not believe that the standard should rely either
on a 64-bit address space, or on 64-bit address spaces continuing forever to be sparsely occupied.

5



4.1 Strictness annotations

In order to make type information available to the garbage collector without breaking
type-unsafe programs, this proposal introduces a strictness qualifier for integral types.
Strict integral types are not scanned by the collector for pointers while relaxed integral
types (or arrays thereof) may contain pointers that need to be scanned by the garbage
collector. Objects of integral types that are not annotated are relaxed by default.

This proposal introduces the gc_strict and gc_relaxed keywords to annotate whether
given objects of integral type are strict or relaxed. In situations such as in the preceding
section, garbage collector space and time performance can be greatly improved by even
a few simple strictness annotations.

To indicate that a program is written in a type-safe manner that does not store pointers
in integral types or arrays of integral types, the entire program can be enclosed in
gc_strict { ... }. All declarations of integral types inside the brackets will be
strict-qualified.

gc_strict { // Entire source file is strict
...
main() { ... }
}

In practice, programmers will typically “set and forget” like this to apply their preferred
GC policy to their entire programs. However, to illustrate different features concisely
in the examples below, we will annotate on a per-line or per-declaration basis.

gc_strict and gc_relaxed may be applied directly to integral types.

int gc_relaxed ri; // ri is relaxed
gc_strict long f(gc_strict int); // f’s parameter and return types are strict

If a declaration is strictness-qualified, than all integral types within that declaration are
strictness-qualified

gc_strict class A {
A *next;
B b;
int data[1000000];

}

In this case, the garbage collector will not need to scan the data member of A objects
for pointers, although it will need to scan the next member and the b member. This
spares the implementor of A from knowing about whether the internals of B are type-
safe as the b member may be scanned conservatively if it was not declared in a strict
environment.

6



class mpeg {
gc_strict mpeg(size_t s) {
mpegData = new char[s]; // No need to scan mpegData for pointers

}
...
char *mpegData;

};

This provides an mpeg class that can be used anywhere without needless scanning the
video data for pointers.8)

typedef int gc_strict binop;

Because typedefs are syntactically equivalent to the original type, objects of type binop
do not contain pointers that are needed to deduce reachability.

union U {
int gc_strict b;
char *c;
float d;

}

This indicates that if an object of type U was initialized through the b or d members, it
will not contain a pointer needed to deduce reachability. In practice, there are cases in
which it is extremely difficult to take advantage of such an annotation, and we would
expect that most garbage collectors will not attempt to do so.

struct S { // Not strict
int a[100];

};
gc_strict S *s = new S;

The garbage collector will need to scan the object pointed to by s for pointers. Any-
thing else would require unacceptable knowledge of the internals of S. This illustrates
that although the allocated type of an object is used to deduce strictness, strictness is
associated with a type at the point of declaration, and not object creation.

Similarly,

gc_relaxed class B {
int bi; // Must be scanned for pointers

};

gc_strict class A : public B {
int ai; // Will not be scanned for pointers

8)In this case, the type char[s] is “declared” implicitly. It would also be equivalent to simply annotate
this entire class with gc_strict.

7



};

A a; // a.bi will be scanned for pointers

gc_relaxed {
A *ap = new A; // ap->ai will not be scanned for pointers
int i; // i will be scanned for pointers.

}

In this case, a.bi will be scanned for pointers even though A is strict because otherwise
the implementer of A would need to know about the internals of B. By the same token,
ap->ai is not scanned for pointers because the implementer of the new expression
would need to know about the internals of A. Instead, the collector uses the annotation
given by the implementor of A.

These examples makes the mental model clear: In any strictness-qualified region or
declaration, just look for all explicit occurrences of integral types and apply the strict-
ness qualifier to them.

In most cases (including the above examples), the programmer will dispense with fine-
grained annotations and simply apply a gc_strict annotation to the non-header por-
tions of her source file as long as she does not declare any types that hide pointers in
integral types.9)

5 Enabling garbage collection

The following declarations can be used at namespace scope to determine whether a pro-
gram enables the garbage collection facility. If so, the garbage collector may deallocate
memory that has become unreachable.

5.1 gc_forbidden

Translation units containing the declaration

gc_forbidden;

may not be used in garbage collected programs. Possible reasons to use this attribute
include:

— This code has strict real-time requirements that cannot tolerate collection laten-
cies.

9)Some care is needed in something like the implementation of memcpy(), which takes a primitive type
of unknown strictness as an argument. We believe such cases can be made rare, and the loss of layout
information is likely to be very temporary in any case.

8



— This code uses collectible objects that may have been unreachable since they
were allocated. For example, it may build bidirectional lists by x-oring pointers
to objects allocated elsewhere10).

— The programmer chooses not to garbage collect this program for any reason even
if it would be “safe” to do so. After all, this proposal does not force the use of
garbage collection when the programmer does not desire it.

5.2 gc_required

Garbage collection is enabled for a program if the declaration

gc_required;

appears at namespace scope in some translation unit of the program. This declara-
tion indicates that the program relies on the presence of a garbage collector to recycle
unreachable objects to avoid memory growth. This implies gc_safe.

A program that contains both gc_forbidden (possibly because that was the implementation-
defined default) and gc_required is erroneous, with a required diagnostic.

5.3 gc_safe

Translation units containing the declaration

gc_safe;

may be used in both garbage collected and non-garbage collected programs. In par-
ticular, they do not access collectible objects that were once unreachable. (We expect
this to be the default unless a compiler flag indicates otherwise.) All standard libraries
should be safe so they can be used in both garbage collected and manually managed
programs.

5.4 is_garbage_collected

This proposal provides for an API std::is_garbage_collected() returning a bool
indicating whether the current program is nominally garbage collected. It does not con-
vey any information about the quality of the garbage collection facility. In particular, a
true return value does not imply in principle that unreachable memory will be deallo-
cated prior to program termination.

10)Alternatively, see the new(nogc) operator for a way to use such lists in gc_safe code

9



5.5 gc_lock

Objects of the class std::gc_lock can be used to temporarily suppress garbage col-
lection during critical moments.

void latency_critical_function()
{
gc_lock gcl;
... // Will not be disturbed by garbage collection

}

As is typical with critical sections, holding gc_locks for too long can be problematic
and should therefore be used judiciously.

6 Manually managed memory

This proposal provides an API to allocate memory that is not garbage collected. This
memory is still scanned for pointers according to the strictness criteria in effect at
the point in the code where its memory is allocated. These can help prevent a single
use of an xor-linked list from disabling garbage collection for a whole application.
They can also be used in systems-level code to create additional roots for the garbage
collection.11)

Such memory can be allocated using one of the following mechanisms:

— A new(std::nogc) expression. This results in a call to a new builtin operator
new(size_t, std::_nogc), where std::nogc has type std::_nogc, which
is an empty class.

— A call to std::nogc_allocator<T>().allocate(). The standard allocator
std::nogc_allocator<T> behaves like std::allocator<T>, except that it
allocates uncollectable memory, even when garbage collection is called for.

— A call to the nogc_malloc function.

7 Destructors and object cleanup

When an object is recycled by the garbage collector, its destructor is not invoked (Of
course, explicit deletion always invokes destructors).

This proposal does not provide any “finalization” mechanism by which the garbage
collector can be directed to perform clean-up action. Because our proposal for adding
programmer-directed garbage collection to C++ is worthwhile with or without the pres-
ence of finalization mechanisms, we have split off our proposal for finalization into a

11)Further analysis of using manually managed memory in garbage collected programs is available in Ellis
and Detlefs work[9]

10



separate proposal (N2261). However, finalization, though complex, is of great value in
important circumstances (as described in N2261), and we believe these proposals have
great synergy.

Some classes, such as those that manage non-memory resources or simply those re-
quiring prompt reclamation, require explicit deletion. Garbage collection of an object
belonging to such a class generally reflects a program bug (e.g., a resource leak). Such
classes can be indicated by adding the specifier explicit to its destructor.

class Exp {
...
explicit ~Exp() { ... } // Releases a non-memory resource

}

Diagnostic tools can emit a diagnostic at runtime or (occasionally) compile-time if an
object containing a subobject of such a class is garbage collected.

8 STL allocators

In a garbage collected program, memory allocated by std::allocator is subject to
garbage collection. In addition, std::allocator::allocate may communicate the type of
its template argument to the garbage collector in an unspecified manner to make type
information easier to utilize.

Non-garbage collected containers can be allocated using std::nogc_allocator.

Due to the use of suballocation in STL containers, it can be useful to communicate to
the garbage collector which objects of an allocator-allocated array are in use.

There are at least four possible ways of doing this. We would like some guidance from
the committee on which to use.

1. Object zeroing. When an object is removed from a container or the container
is cleared, zero the object. This is simple to implement and effective in many
circumstances. Although clear() would not take constant time, it would not
increase the time-complexity of the program because it presumably already took
linear time to create the objects in the first place.

2. An API to be called whenever an object is constructed or destroyed within the
array. This is very expressive but may adds a function call to each container
insertion/removal.

3. A callback to be called during collection that iterates the live objects in the con-
tainer. This is efficient and expressive but the callback is subject to severe con-
straints similar to reentrancy as threads may be suspended and memory alloca-
tion proscribed. Although this has proven useful in existing implementations, it
may be very difficult to produce appropriate standards language.

11



4. Pre- and post-collection callbacks that indicate the live objects in the container
and acquire a lock that is not released until after the collection. Compared to the
previous option, this puts fewer constraints on the callback.

9 Implementation Impact

This proposal does not mandate a particular garbage collection algorithm. We believe
that it is possible to use any garbage collector that supports object pinning for at least
union members which cannot be easily tagged, for any pointers in stack frames cor-
responding to legacy code or gc_relaxed code, and for data structures not subject to
gc_strict. The cost of supporting such object pinning in copying collectors seems
to not be well understood. (Anecdotes from others suggest that the collector should
avoid moving objects if more than about 1% of objects would be pinned. We expect
this to be rare in most C++ applications if gc_strict is used for major data structures.
Experience with mostly copying collectors [1] appears consistent with this.) Of course
this is not an issue for non-moving collectors.

As many powerful garbage collection algorithms are inextricably linked with memory
allocation, allocations of garbage collected objects are not required to call ::new. For
gc_safe code, which may or may not have garbage collection enabled at run-time, the
compiler can insert a single comparison against a global to determine whether to call
::new, or it may be possible to eliminate these comparisons at link time.

Classes with custom allocators are not garbage collected (although their memory should
still be scanned for pointers, any gc_strict annotations remain in effect, and the un-
derlying pools may be garbage collected as a whole). Similarly, STL containers will
only be garbage collected if they use the default allocator.12)

In order to effectively use legacy C++ and C binary libraries in garbage collected pro-
grams, memory allocated by ::new or malloc should be scanned (conservatively) for
pointers. As many existing binary libraries benefit substantially from “litter collec-
tion,” an implementation is allowed to provide an option for having ::new or malloc
allocated garbage collected memory.

We expect that most implementations targeting potentially long-running applications
will, at least initially, use a non-moving partially conservative garbage collector.

This will often prevent the implementation from making guarantees about space usage
of garbage collected programs. (There are some exceptions. See [6] for details.) But
existing implementations make no such guarantees in the absence of garbage collection
either, and indeed malloc implementations may vary tremendously in their worst-case
fragmentation overhead, which rarely seems to be a design consideration.

In practice, experience with conservatively garbage-collected implementations has usu-
ally been positive, though sometimes with clearly measurable space overhead (although

12)Recent results suggest that custom allocators are of use only in limited contexts[3].

12



the collector is provided with much less pointer-location information than is possible
under this proposal). Published empirical studies include [8, 10]. Exceptions have gen-
erally involved excessive unnecessary memory retention in applications that use much
of the process address space for live data, a scenario that is unfortunately common now.
Even minimal use of the type information exposed by the gc_strict annotation can of-
ten rectify the problem (e.g., by avoiding scanning large character arrays of multimedia
data) and “litter collection” remains useful regardless of retention rate. We expect such
retention issues to recede entirely once 64-bit platforms dominate, as we expect by the
time the next C++ standard is adopted.

Most current implementations supporting conservative GC use unmodified compilers.
This may fail if optimizations “disguise” the last pointer to an object. Implementations
performing such transformations may need to extend the lifetimes of some pointer
variables, potentially slightly increasing register pressure. See [5]. This is expected
to have minimal performance impact, but may require compiler work. (JVM and CLI
implementations routinely ensure much stronger properties.)

10 Proposed Wording

Add the following keywords to Table 3 in 2.11 [lex.key]

gc_forbidden

gc_relaxed

gc_required

gc_safe

gc_strict

Modify paragraph 2 of 3.7.1 [basic.stc]

2 Static and automatic storage durations are associated with objects intro-
duced by declarations (3.1) and implicitly created by the implementation
(12.2). The dynamic storage duration is associated with objects created
with with operator new a new expression (5.3.4).

Replace section 3.7.5 [basic.stc.collect] with

3.7.5 Programmer-controlled garbage collection [basic.stc.collect]

1 C++ programs may optionally enable garbage collection to automatically
deallocate dynamic storage that is no longer reachable (3.7.5.1).

2 In a garbage collected program (3.7.5.2), any unreachable (3.7.5.1) col-
lectable storage (3.7.5.3) may be deallocated at any time after it has be-

13



come unreachable even if it becomes reachable again.13) [ Note: This ap-
plies regardless of whether the collectable storage was allocated with an
appropriate new expression, new[] expression operator new, operator new[],
or malloc. — end note ]

3 [ Note: For garbage collected programs, a high quality hosted implemen-
tation should attempt to maximize the amount of unreachable memory it
reclaims. — end note ]

4 The garbage collector does not invoke any destructors when it reclaims
memory. The programmer is responsible for ensuring that necessary de-
structors are explicitly called for all objects prior to reclamation of their
storage. This may be achieved by explicitly deleting objects to invoke their
destructors.

3.7.5.1 Reachability [basic.reachability]

5 Let P be a set of pointers. The blocks of storage reachable from P are those
that can be reached from P by a chain of traceable pointers (3.7.5.4).

6 The precise definition of reachability is built in several steps.

7 A pointer is said to point compatibly at a dynamic storage block if it either
points to an memory location contained in the storage block or one byte
past the end of an array (5.7) contained in the storage block.

8 [ Note: Low order bits in the pointer that make the pointer less aligned than
the storage block will not affect whether the block is pointed to. Therefore
“bitstealing” of low order bits is conforming. However, stealing high order
bits may result in undefined behavior by failing to respect reachability
(3.7.5.1). — end note ]

Let P be a set of pointers. The set of storage blocks reachable from P
is defined to be the set of storage blocks R that is minimal with respect to
the following property: R contains any storage block compatibly pointed
to by an element of P or by a traceable pointer (3.7.5.4) belonging to any
element of R.

[ Note: This should be understood as saying that the storage blocks
reachable from R are those that result from a chain of compatibly following
pointers to storage blocks and taking traceable pointers from those storage
blocks. — end note ]

13)An unreachable object may become reachable again if a gc_relaxed non-pointer type is subsequently
assigned a value that happens to be the same as the address of the object. More seriously, it can occur if the
program does not respect reachability (3.7.5.1).

14



The reachable objects of a running program consist of all objects con-
tained in storage blocks reachable from the roots. The roots are an imple-
mentation defined set of pointers containing at least all traceable point-
ers belonging to objects of static (3.7.1), thread-local (3.7.2), or auto-
matic (3.7.3) storage duration as well as all uncollectable objects of dy-
namic storage duration (3.7.5.4). Additional roots may be added with
std::gc_add_roots (18.5.3.7).

[ Note: The root set may contain pointers representing additional op-
erating environment-dependent locations where pointers may be stored.
For example, in windowing systems, there is often an API to store a data
pointer in a window to identify the instance data for that window. A high
quality implementation should strive to include pointers such as this in the
root set to avoid reclaiming such instance data while it might still be in
use. — end note ]

9 A running program respects reachability if it does not dereference a non-
void pointer to collectable storage (3.7.5.3) unless that storage has been
reachable (3.7.5.1) at all points in time since its allocation for which garbage
collection was not suppressed (18.5.3.3). The behavior of a program that
does not respect reachability is undefined.

[ Note: Compilers are not allowed to perform optimizations that can
cause programs that respect reachability to no longer respect reachability
as a result of that optimization unless the code is gc_prohibited. — end
note ]

[ Example: A compiler optimization that replaces two pointers with
one pointer and a pointer difference (as some compilers generate for strcmp)
is not allowed if there is a possibility that the eliminated pointer was the
only pointer to its object. — end example ]

3.7.5.2 Enabling Garbage Collection [basic.stc.collection.enable]

Whether the garbage collection facility is enabled in a given program
is determined by the use of the following statements:

10 If the statement

gc_required;

appears in a translation unit, any program containing code from the
translation unit is required to enable a garbage collector that conforms with
the specification of programmer-controlled garbage collection (3.7.5).

11 If the statement

gc_forbidden;

15



appears in a translation unit, any program containing code from the
translation unit is prohibited from enabling a garbage collector that con-
forms with the specification of programmer-controlled garbage collection.

12 If the statement

gc_safe;

appears in a translation unit, it is implementation-defined whether any
program containing code only from gc_safe translation units enables a
garbage collector that conforms with the specification of programmer-
controlled garbage collection. [ Note: It is intended that if all compilation
units of a program are gc_safe and none gc_required then garbage collec-
tion should remain disabled unless overridden by other implementation-
specific means. — end note ]

13 If a translation unit does not contain a gc_required, gc_prohibited, or
gc_safe declaration, it is regarded as gc_safe.

14 [ Note: Translation units that are gc_safe should make explicit calls to
delete in case garbage collection is not enabled but to not engage in any
techniques such as pointer hiding that would result in a garbage collec-
tor deallocating memory while it is still in use. Under normal use, en-
abling garbage collection will be a noop on programs consisting entirely
of gc_safe code. — end note ]

15 A program that contains both gc_required and gc_forbidden state-
ments is invalid with a diagnostic message to be emitted either during
compilation or at link time.

3.7.5.3 Collectable storage [basic.stc.collection.storage]

16 Dynamic storage is collectable if it is eligible to be reclaimed by the
garbage collector when it is no longer reachable (3.7.5.1). [ Note: The
rules for delete expressions (5.3.5) do not depend on whether the affected
objects are in collectable storage. — end note ]

Dynamic storage created in a garbage collection-enabled program is
collectable if it is allocated in one of the following ways:

— A non-placement new expression (5.3.4) that does not resolve to a
class-specific operator new.

— A non-placement new[] expression that does not resolve to a class-
specific operator new[].

— allocator::allocate() (20.6.1)

16



— A malloc, calloc, realloc expression.

[ Note: Memory is collectable if garbage collection is enabled and, un-
der the C++03 International Standard, it would have been allocated with
::operator new or ::operator new[] or malloc. — end note ]

Uncollectable storage may be allocated using one of the placement
new expressions new (std::nogc or new [](std::nogc or by direct
calls of the allocation functions operator new(size_t, std::nogc),
operator new[](size_t, std::nogc), malloc_nogc.

[ Note: If a placement or class-specific operator new is invoked, the
storage returned will be collectable or not based on the allocation function
invoked within user-defined operator new. — end note ]

3.7.5.4 Traceable pointers [basic.stc.traceable]

The traceable pointers belonging to an object are determined by ap-
plying the following rules in sequence.

1. If the type of the object is a gc_relaxed (3.9.4) integral type or
an array of gc_relaxed integral types (8.3.4), then there is a trace-
able pointer of type const volatile void *14) for every location
within the object of suitable size and alignment to contain a pointer.

2. If the object is a pointer to an object type (3.9), then it is itself a
traceable pointer.

3. If the object is a union, then it contains the traceable pointers asso-
ciated with the last object loaded into the union. If no object was
ever loaded in the union, then the object does not contain traceable
pointers.

4. If the object is of compound type, its traceable pointers consist of the
traceable pointers of all of its members.

5. If it is none of the above, then the object contains no traceable point-
ers.

[ Note: The proper standards language for specifying traceable pointers
arising from references is not yet determined. The intent is that to the ex-
tent that the reference is implemented via an implicit pointer, that there
will be an equivalent traceable pointer. — end note ]17 The traceable point-
ers of a storage block is the union of the traceable pointers of all objects
in the storage block.

14)const volatile void * is used because it can compatibly point to objects of all types.

17



18 [ Note: The garbage collector uses traceable pointers to identify unreach-
able objects (3.7.5.1). To conform with the requirement for programmer-
controlled garbage collection (3.7.5), it is only necessary for the imple-
mentation to identify a superset of all the traceable pointers in an object.
As an illustration of this, it is not necessary for the runtime to track which
type of object was last stored in a union. — end note ]

[ Note: For storage allocated by an allocator such as the default alloca-
tor, (20.6.1), the set of objects in that storage may vary over the lifetime of
the storage as objects are constructed or destroyed within the storage. The
set of traceable pointers within that storage will vary accordingly. — end
note ]

Add section 3.9.4[basic.type.strictness.qualifier]

3.9.4 Strictness qualifiers [basic.type.strictness.qualifier]
1 Each integral type has two strictness-qualified versions of its type: a strict-

qualified version and a relaxed-qualified version. All objects of integral
type are strictness qualified. The strictness of an integral type is specified
through the use of the strictness qualifiers gc_relaxed and gc_strict.
The strict-qualified and relaxed-qualified versions of an integral type are
distinct types; however, they shall have the same representation and align-
ment requirements (3.9).

2 The presence of a gc_strict specifier in a decl-specifier-seq declares
that all integral simple-type-specifiers included in the decl-specifier-seq
are strict-qualified. The presence of a gc_relaxed specifier in a decl-
specifier-seq declares that all integral simple-type-specifiers included in
the decl-specifier-seq are relaxed-qualified. [ Example: [ Example:

int gc_strict a; // The type of a is strict-qualified int

gc_relaxed int f(); // f returns a relaxed-qualified int

int g(int i) gc_relaxed {

int j = i * i;

return j;

} // i, j, and the return value of g are relax-qualified

gc_strict class A {

int i; // i is a strict-qualified int

}

— end example ] [ Example:

typedef int I;

gc_relaxed I i; // i is a gc_relaxed int

Because typedef names (7.1.3) are syntactically equivalent to their asso-
ciated types. — end example ]

3 In the case of nested strictness qualifiers, the innermost is applied

18



[ Example:

long f(gc_relaxed long l) gc_strict;

is equivalent to

gc_strict long f(gc_relaxed long l);

4 An integral type is not allowed to have both the gc_relaxed and gc_-
strict qualifiers. [ Example:

typedef gc_strict int StrictInt;

gc_strict StrictInt si; // OK
gc_relaxed StrictInt ri; // Error

5 An integral type with no strictness qualifiers is implicitly relaxed-qualified.

Insert a new section 4.4[conv.strictness] between 4.3[conv.func] and the section cur-
rently numbered 4.4[conv.qual].

4.4 Strictness conversions [conv.strictness]
1 An given type may be converted to another type if they differ only in their

use of strictness qualifiers (3.9.4). [ Example: All of the following conver-
sions are allowed because they only differ in their use of strictness quali-
fiers.

gc_strict int si = 1;

gc_relaxed int ri = si; // OK
int *rip = &ri; // OK
int **ripp = &rip; // OK
gc_strict int **sipp = ripp; //OK
void f(gc_relaxed long rl) { ... }

void (*fp)(gc_strict long) = f; // OK

[ Note: The programmer is responsible for ensuring that an assignment of
a relaxed-qualified integral type to a strict-qualified integral type respects
reachability (3.7.5.1).

void f(long s) gc_strict; // s is gc_strict
long gc_relaxed r = reinterpret_cast<long>(new int);

f(r); // OK because r will still be seen by collector
int *ip = reinterpret_cast<int *>(r);

— end note ]

Change paragraph 9–11 of 5.3.4 [expr.new]

9 A new-expression obtains storage for the object by calling an allocation
function (3.7.4.1). If the new-expression terminates by throwing an excep-
tion, it may release storage by calling a deallocation function (3.7.4.2).
If the allocated type is a non-array type, the allocation function’s name is
operator new and the deallocation function’s name is operator delete.

19



If the allocated type is an array type, the allocation function’s name is
operator new[] and the deallocation function’s name is operator delete[].
If garbage collection is enabled (3.7.5.2) and the new-placement syntax

is not used, then the name of the allocation function is implementation-
defined. Otherwise, the allocation function’s name is operator new if
the allocated type is a non-array type and operator new[] if the allo-
cated type is an array type. The deallocation function’s name is operator
delete if the allocated type is a non-array type. operator delete[] if
the allocated type is an array type. [ Note: an implementation shall pro-
vide default definitions for the global allocation functions (3.7.4, 18.5.1.1,18.5.1.2).
A C++ program can provide alternative definitions of some of these func-
tions (17.4.3.4) and/or class-specific versions (23.5). — end note ]

10 If the new-expression begins with a unary :: operator, the allocation func-
tion’s name is looked up in the global scope. Otherwise, if the allocated
type is a class type T or array thereof, the allocation function’s name is
looked up in the scope of T If this lookup fails to find the name, or if the
allocated type is not a class type, the allocation function’s name is looked
up in the global scope.

11 A If garbage collection is enabled and new-placement syntax is not used,
then the arguments passed to the allocation function is unspecified and
may vary from one allocation to the next. Otherwise, the new-expression
passes the amount of space requested to the allocation function as the first
argument of type std::size_t. That argument shall be no less than the
size of the object being created; it may be greater than the size of the ob-
ject being created only if the object is an array. For arrays of char and
unsigned char, the difference between the result of the new-expression
and the address returned by the allocation function shall be an integral mul-
tiple of the most stringent alignment requirement (3.9) of any object type
whose size is no greater than the size of the array being created. [ Note:
Because allocation functions are assumed to return pointers to storage that
is appropriately aligned for objects of any type, this constraint on array
allocation overhead permits the common idiom of allocating character ar-
rays into which objects of other types will later be placed. — end note ]

Change paragraph 14 of 5.3.4 [expr.new]

14 [ Note: If garbage collection is not enabled, unless an allocation function
is declared with an empty exception-specification (15.4), throw(), it indi-
cates failure to allocate storage by throwing a bad_alloc exception (clause
15, 18.5.2.1); it returns a non-null pointer otherwise. If the allocation func-
tion is declared with an empty exception-specification, throw(), it returns
null to indicate failure to allocate storage and a non-null pointer otherwise.

If garbage collection is enabled, an allocation function indicates failure
to allocate storage in the same way as the allocation function that would
be called if garbage collection were not enabled.15) — end note ] If the

15)In particular, how gc_safe code checks for allocation failure does not depend on whether garbage

20



allocation function returns null, initialization shall not be done, the deal-
location function shall not be called, and the value of the new-expression
shall be null.

Add paragraph 10 to 5.3.5 expr.delete

10 If the cast expression is an lvalue, it may be zeroed by the delete expres-
sion. [ Note: This can improve the efficiency of the garbage collector by
reducing the risk of “stale pointers.” — end note ]

Change the start of paragraph 1 of Chapter 7 [dcl.dcl]

1 Declarations specify how names are to be interpreted. Declarations have
the form

declaration-seq:
declaration
declaration-seq declaration

declaration:
block-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition

block-declaration:
simple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive
strictness-qualifier declaration-seqopt
static_assert-declaration

gc-declaration:
gc_safe;
gc_required;
gc_forbidden;

Change paragraph 6 of 7.1.2 [dcl.fct.spec]

6 The explicit specifier shall be used only in the declaration of a construc-
tor or a destructor within its class definition; see 12.3.1.

Change paragraph 1 of 7.1.5 [dcl.type]

collection is enabled.

21



1 The type-specifiers are
type-specifier:

simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
typename-specifier
cv-qualifier
strictness-qualifier

Change all occurrences of cv-qualifier-seq to cvs-qualifier-seq.

Change the definition of cvs-qualifier-seq in paragraph 4 of Chapter 8 [dcl.decl]

cvs-qualifier-seq:
cv-qualifier cvs-qualifier-seqopt
strictness-qualifier cvs-qualifier-seqopt

Add the following BNF to paragraph 4 of Chapter 8 [dcl.decl]

strictness-qualifier:
gc_relaxed

gc_strict

Change paragraph 5 of 8.4 [dcl.fct.def]

5 A cvs-qualifier-seq can be only contain cv-qualifiers if it is part of a non-
static member function declaration, non-static member function definition,
or pointer to member function only; see 9.3.2. It is The cv-qualifiers are
part of the function type.

change the definition of class-head in Chapter 9 [class]

class-head:
strictness-qualifieropt class-key identifieropt base-clauseopt
strictness-qualifieropt class-key nested-name-specifier identifier base-clauseopt
strictness-qualifieropt class-key nested-name-specifieropt simple-template-id base-clauseopt

Insert a new paragraph 8 in 12.4 [class.dtor] between the existing paragraphs 7 and 8

8 A destructor can be declared explicit. This has no semantic effect.
[ Note: Marking a destructor as explicit may be done for for classes
that manage non-memory resources and may therefore need to be explic-
itly deleted. Diagnostic tools may emit a diagnostic if an object containing
a subobject with an explicit destructor is garbage collected. — end note ]

22



Change table 10 in 13.3.3.1.1

Table 10: conversions

Conversion Category Rank Subclause
No conversions required Identity
Lvalue-to-rvalue conversion 4.1
Array-to-pointer conversion Lvalue Transformation Exact Match 4.2
Function-to-pointer conversion 4.3
Strictness conversion 4.4
Qualification conversions Qualification Adjustment 4.5
Integral promotions 4.6
Floating point promotion

Promotion Promotion
4.7

Integral conversions 4.8
Floating point conversions 4.9
Floating-integral conversions 4.10
Pointer conversions

Conversion Conversion
4.11

Pointer to member conversions 4.12
Boolean conversions 4.13

Change paragraph 2 of 17.4.3.4 [replacement.functions]

2 A C++ program may provide the definition for any of eight twelve dy-
namic memory allocation function signatures declared in header <new>
(3.7.4, clause 18):

— operator new(std::size_t)
— operator new(std::size_t, const std::nothrow_t&)
— operator new[](std::size_t)
— operator new[](std::size_t, const std::nothrow_t&)
— operator new(std::size_t, const std::nogc&)
— operator new(std::size_t, const std::nogc&, const std::nothrow_t&)
— operator new[](std::size_t, const std::nogc&)
— operator new[](std::size_t, const std::nogc&, const std::nothrow_t&)

— operator delete(void*)
— operator delete(void*, const std::nothrow_t&)
— operator delete[](void*)
— operator delete[](void*, const std::nothrow_t&)

Change paragraph 2 of 18.5.2.2 [new.handler]

2 Required behavior: A new_handler shall perform one of the following:
— make more storage available for allocation, possibly by invoking the

garbage collector, and then return;

23



— throw an exception of type bad_alloc or a class derived from bad_-
alloc;

— call either abort() or exit();

Add a section 18.5.3 [support.gc]

18.5.3 Garbage collection [support.gc]
18.5.3.1 is_garbage_collected [is.garbage.collected]

bool is_garbage_collected();

1 Returns: true if the garbage collection facility is enabled in this
program (3.7.5.2). Otherwise returns false.

18.5.3.2 gc_collect [gc.collect]

bool gc_collect();

1
Effect on original feature: If the garbage collection facility is enabled in
this program (3.7.5.2), then provides a hint to the garbage collector that
the garbage collector may run at this time.

2 If garbage collection has been suppressed by suppress_garbage_collection(false)
(18.5.3.3), then this function has no effect.

3 Returns: true is any memory was reclaimed by the garbage collector.
Otherwise returns false.

18.5.3.3 suppress_garbage_collection [sup-
press.garbage.collection]

This function can be used to prevent garbage collection from occur-
ring during critical intervals. At the end of the critical interval, permit_-
garbage_collection (18.5.3.4) should be called to reenable the garbage
collection facility.

void suppress_garbage_collection(bool implicit_only = false);

Effect on original feature:1 If the garbage collection facility in this pro-
gram is enabled (3.7.5.2), then no garbage collection can take place until a
matching call to permit_garbage_collection() (18.5.3.4) is called.
If the garbage collection facility is not enabled for this program, then
suppress_garbage_collection() has no effect.

24



2 If the implicit_only parameter is true, then calls to gc_collect()
(18.5.3.2) may invoke the garbage collector.

3 After multiple calls to suppress_garbage_collection, garbage col-
lection remains suppressed until matching number of calls to permit_-
garbage_collection have been made.

4 [ Note: If garbage collection were only implicitly invoked by attempts
to grow the memory arena, suppressing garbage collection could result
in unnecessary growth of the arena. Implementations should consider
triggering collection at additional points in time for programs that use
suppress_garbage_collection(). — end note ]

18.5.3.4 permit_garbage_collection [permit.garbage.collection]

void permit_garbage_collection();

1
Effect on original feature: Clears the suppression of garbage collection
due to suppress_garbage_collection (18.5.3.3).

18.5.3.5 Class gc_lock [garbage.collection.lock]

namespace std {

class gc_lock {

gc_lock(bool implicit_only = false) throw();

~gc_lock() throw();

};

}

1 gc_lock may be used to prevent garbage collection during critical peri-
ods where low latency is required or to ensure that the program respects
reachability (3.7.5.1) during type-unsafe manipulations.

gc_lock(bool implicit_only = false) throw();

2 Effects: Invokes suppress_garbage_collection(implicit_only)
(18.5.3.3).

~gc_lock() throw();

3 Effects: Invokes permit_garbage_collection() (18.5.3.4).

18.5.3.6 Class nogc [nogc]

namespace std {

class nogc {};

}

25



1 Allows uncollectable storage (3.7.5.3) to be allocated by placement new
expressions of the form new(std::nogc). [ Example:

new(std::nogc) int[100]; // Allocate an uncollectable int array

gc_add_roots [gc.add.roots]

1 Notifies the garbage collector of user-defined roots (3.7.5.1).

template<class T>

void gc_add_roots(T *beg, T *end);

2 Effects: Adds all traceable pointers in objects in the specified range
to the set of root pointers.

Add to paragraph 3 of 20.6.1.1 [allocator.members]

Remark: May pass type information to the garbage collector in an
unspecified manner.

Insert 20.6.2 [nogc.allocator] between 20.6.1 and the current 20.6.2

20.6.2 Class nogc_allocator [nogc.allocator]

namespace std {

template <class T> class nogc_allocator;

// specialize for void:
template <> class allocator<void> {

public:

typedef void* pointer;

typedef const void* const_pointer;

// reference-to-void members are impossible.
typedef void value_type;

template <class U> struct rebind { typedef allocator<U> other; };

};

template <class T> class nogc_allocator {

public:

typedef size_t size_type;

typedef ptrdiff_t difference_type;

typedef T* pointer;

typedef const T* const_pointer;

typedef T& reference;

typedef const T& const_reference;

typedef T value_type;

template <class U> struct rebind { typedef allocator<U> other; };

nogc_allocator() throw();

26



nogc_allocator(const nogc_allocator&) throw();

template <class U> nogc_allocator(const allocator<U>&) throw();

~allocator() throw();

pointer address(reference x ) const;

const_pointer address(const_reference x ) const;

pointer allocate(

size_type, allocator<void>::const_pointer hint = 0);

void deallocate(pointer p , size_type n );

size_type max_size() const throw();

void construct(pointer p, const T& val);

void destroy(pointer p);

};

}

1 Allocator that behaves identically to the default allocator (20.6.1) except
that storage allocated by nogc_allocator::allocate() is uncollectable
(3.7.5.3) and therefore not subject to garbage collection even for garbage
collected programs (3.7.5.2).

Change the start of 20.6.8 [c.malloc]

20.6.8 C Library [c.malloc]
1 Header <cstdlib> (Table 47):

Table 47: Header <cstdlib> synopsis
Type Name(s)

Functions: calloc malloc
free realloc
nogc_calloc nogc_malloc

2 The contents are the same as the Standard C library header <stdlib.h>,
with the following changes:

3 The functions calloc(), malloc(), and realloc() do not attempt to
allocate storage by calling ::operator new() (18.5). Memory allocated
by realloc is collectable if it is called with a pointer to collectable mem-
ory and uncollectable if it is called with a pointer to uncollectable memory.

4 The functions nogc_calloc, nogc_malloc allocate uncollectable mem-
ory (3.7.5.3) that is not subject to garbage collection even in garbage col-
lected programs.

References

[1] J. F. Bartlett. Compacting garbage collection with ambiguous roots. Lisp Pointers,
pages 3–12, April-June 1988.

27



[2] E. Berger, M. Hertz, and Y. Feng. Garbage collection without pag-
ing. In SIGPLAN 2005 Conference on Programming Language Design and
Implementation, June 2005.

[3] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsidering custom mem-
ory allocation. In Conference on Object-Oriented Programming Systems and
Languages (OOPSLA), pages 1–12, November 2002.

[4] H.-J. Boehm. A garbage collector for C and C++.
http://www.hpl.hp.com/personal/Hans_Boehm/gc/.

[5] H.-J. Boehm. Simple garbage-collector-safety. In SIGPLAN ’96 Conference on
Programming Language Design and Implementation, pages 89–98, June 1996.

[6] H.-J. Boehm. Bounding space usage of conservative garbage collectors. In
Proceeedings of the Twenty-Ninth Annual ACM Symposium on Principles of
Programming Languages, pages 93–100, 2002.

[7] H.-J. Boehm. The space cost of lazy reference counting. In Proceeedings of the
31st Annual ACM Symposium on Principles of Programming Languages, pages
210–219, 2004.

[8] D. Detlefs, A. Dosser, and B. Zorn. Memory allocation costs in large C and C++
programs. Software Practice and Experience, 24(6):527–547, 1994.

[9] J. R. Ellis and D. L. Detlefs. Safe, efficient garbage collection for C++. Technical
Report CSL-93-4, Xerox Palo Alto Research Center, September 1993.

[10] M. Hirzel and A. Diwan. On the type accuracy of garbage collection. In
Proceedings of the International Symposium on Memory Management 2000,
pages 1–11, October 2000.

[11] M. Spertus, C. Fiterman, and G. Rodriguez-Rivera. Litter collection. http:
//www.spertus.com/mike/litcol.pdf.

28


