
decltype for the C++0x Standard Library

Authors: Douglas Gregor, Indiana University
Jaakko Järvi, Texas A&M University

Document number: N2194=07-0054
Date: 2007-03-08
Project: Programming Language C++, Library Working Group
Reply-to: Douglas Gregor <doug.gregor@gmail.com>

Introduction

This document describes specific changes to the C++0x working paper that make use of decltype [2]
within the Standard Library. The changes are very minor, because the library facilities that benefit from
decltype where incorporated after decltype had already been designed. In particular the result_-
of hook—which is the only aspect of the Standard Library that this document changes—was designed with
forward-compatibility in mind [1]. result_of currently says that implementations are permitted to get
the return type of a particular function call by any means possible, so long as they get the answer right; if
they cannot do so, result_of specifies a protocol that the implementation should follow to extract the
return type from library- and user-provided information. With decltype, every implementation can get
the answer right, so we need only eliminate the weasel-wording result_of currently uses. We note that
a C++0x result_of meets the requirements of a TR1 result_of.

Proposed Wording

Modify 20.5.4 “Function object return types” [func.ret] as follows:
namespace std {

template <class FunctionCallTypes> // F(T1, T2, ..., TN)
class result_of {
public :

// types
typedef see below type;

};
} // namespace std

1 Given an rvalue fn of type Fn and values t1, t2, ..., tN of types T1, T2, ..., TN, respec-
tively, the type member is the result type of the expression f(t1, t2, ...,tN). The values ti are
lvalues when the corresponding type Ti is a reference type, and rvalues otherwise.

2 The implementation may determine the type member via any means that produces the exact type of the
expression f(t1, t2, ..., tN) for the given types. [Note: The intent is that implementations are permitted to
use special compiler hooks – end note]

3 If Fn is not a function object defined by the standard library, and if either the implementation cannot deter-
mine the type of the expression fn(t1, t2, ..., tN) or the expression is ill-formed, the implementation shall use
the following process to determine the type member:

1

mailto:doug.gregor@gmail.com

1. If Fn is a function pointer or function reference type, type shall be the return type of the function type.

2. If Fn is a member function pointer type, type shall be the return type of the member function type.

3. If Fn is a possibly cv-qualified class type with a member type result type, type shall be typename
F::result type.

4. If Fn is a possibly cv-qualified class type with no member named result type or if typename Fn::result -
type is not a type:

(a) If N=0 (no arguments), type shall be void.

(b) If N>0, type shall be typename Fn::template result<Fn(T1, T2,..., TN)>::type.

5. Otherwise, the program is ill-formed.

References

[1] Douglas Gregor. A uniform method for computing function object return types (revision 1). Tech-
nical Report N1454=03-0037, ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Pro-
gramming Language C++, 2003. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2003/n1454.html.

[2] Jaakko Järvi, Bjarne Stroustrup, and Gabriel Dos Reis. Decltype (revision 6): Proposed wording. Tech-
nical Report N2115=06-0185, ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Pro-
gramming Language C++, November 2006. http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2006/n2115.pdf.

2

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1454.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1454.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2115.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2115.pdf

