
Specifying C++ concepts

N1886=05-0146

Gabriel Dos Reis
Department of Computer Science

Texas A&M University
College Station, TX-77843

gdr@cs.tamu.edu

Bjarne Stroustrup
Department of Computer Science

Texas A&M University
College Station, TX-77843

and AT&T Labs — Research

bs@cs.tamu.edu

Abstract

C++ templates are key to the design of current successful
mainstream libraries and systems. They are the basis of pro-
gramming techniques in diverse areas ranging from conven-
tional general-purpose programming to embedded systems
and safety-critical software. Current work on improving tem-
plates focus on the notion of concept (a type system for tem-
plates), which promises significantly improved error diag-
nostics and increased expressive power. In this paper, we
use a formalism to analyze the problem of how to express
concepts in a practical way. In doing so, we expose a few
weakness of the current specification of the C++ standard li-
brary and suggest a far more precise and complete specifi-
cation. Relying on the formalism for C++, we present a sys-
tematic way of translating our proposed concept definitions,
based on use-patterns rather than function signatures, into
constraint sets that can serve as a convenient basis for con-
cept checking in a compiler.

1 Introduction

ISO Standard C++ [ISO03, Str00] directly supports generic
programming through the notion of template. Templates are
essential in C++ for capturing commonalities in abstractions
while retaining optimal performance. Those properties are
key to the success and the wide acceptance of the Standard
Template Library [SL94]. Templates have also been used to
reduce abstraction penalties and code bloat in embedded sys-
tems to an extent that is impractical in conventional object-
oriented systems [Str04]. There are two key reasons for that.
First, template instantiations combine information available
in both definition and instantiation contexts. Second, a C++
templates is typically implicitly instantiated if and only if it
is used in a way that is essential to the program semantics;
that automatically minimizing the footprint of an applica-
tion. This contrasts to systems that require the programmer
to explicitly manage instantiation, such as Ada [TDBP00] and

System F [Gir72, Rey74].

This work is part of an effort to design a type system for C++
types and values that can be used for template arguments, as
currently successfully used and by the programmers that suc-
cessfully use them [SDR05]. This paper describes our formal-
ism only as it is needed to discuss a specific problem: How to
express concept definitions in a way that is sufficiently sim-
ple and flexible to be used, yet precise enough to be imple-
mentable in current C++ compilers [DRS05]. Our notation
for concept definition is based on "use patterns" and our aim
is to translate those usage patterns into a set of operation sig-
natures suitable for type checking.

While the present paper centers the discussion of concepts
around C++ templates, the fundamental ideas generalize to
a type system that supports parametric polymorphism, some
form of local type inference and an extension of the notion
of dependent name. Our contributions also include a de-
velopment of a formal framework to specify concepts, clar-
ifications of the C++ standard iterator library requirements,
and better and clearer formulations of iterators concepts not
found in previous works

The remaining of the paper is structured as follows. We first
examine the fundamental problem with templates (§1.1) and
the requirements of its solutions (§1.2). Then present a solu-
tion based on concepts (§2) expressed using “use patterns”
and apply it to simplified examples (§3). Finally, we apply
our concepts to a known hard problem of significant practi-
cal importance: the specification of the lowest levels of the
C++ standard library iterator, exposing some weakness (§4).
We survey recent related works in §5 and conclude in §6.

1.1 The problem

The near-optimal performance offered by ISO C++ templates
comes at the price of a very weak separation between tem-
plate definitions and their uses. In the current definition of
C++, a complete template definition is itself the only expres-
sion of a template’s assumptions about its parameters. How-
ever, it is clearly desirable to check a template definition in-
dependently of its uses, and to check the uses independently
of the definition. To do that, we must find a way to concisely
specify the assumptions separately from the code in the tem-
plate definition. In short, we need a type system for template
parameters. The holy grail of concept design for C++ is a
system that allows for perfect separate checking of template
definitions and uses without loss of expressive power or per-

1

formance; that is, if concept checking succeeds for a template
definition and for a use of it, then the resulting instantiation
will type-check and all information will be used to generate
optimal code. Please note that separate checking without op-
timal code generation is trivial: just use some form of abstract
classes, as is often done explicitly in C++ and is the basis of
the “generic” language facilities of Java and C#.

A template is a recipe from which a C++ translator generates
declarations. Conceptually, the parameters of such recipe are
specified in two ways: template-parameters (explicitly men-
tioned in the template declaration) and dependent names in-
ferred from the definition of the template (based on the fact
that their meanings depend on template parameters). The
notion of dependent name is a departure from the general
principle in C++ that a name can be used only if a corre-
sponding declaration is visible. That device is a language
feature designed to keep the number of explicit parameters
manageable. At an instantiation point, dependent names are
resolved by considering both the definition and instantiation
contexts.

We will examine the definition for the function template
fill() from the standard library, some uses of fill, and
some related standard library functions. This will expose
most of the problems with checking templates and provide
a context for our solution. Here is a definition of fill:

template<typename FwdIter, typename T>
void fill(FwdIter first, FwdIter last, const T& t)
{

for (; first != last; ++first)
*first = t;

}

In this definition, FwdIter and T are type template-
parameters and the symbols !=, ++, * and = are dependent
names. A call fill(p, q, v) will assign v to each element of
the sequence defined by the interval [p,q).

The ISO C++ rules for successful instantiation of that tem-
plate require that the values ι and τ for the type parameters
FwdIter and T must fulfill the following assumptions:

1. instances of ι must be copy-initializable, so that they can
be used as function arguments in calls to fill();

2. two such instances must be equality comparable in
the sense that the expression first != second must be
valid and its value convertible to the ISO C++ boolean
type bool;

3. an expression of type ι must support the pre-
incrementation operation;

4. the expression *first = t must be valid (which implies
that every sub-expression must also be valid).

For example, the following program fragment

vector<double> v(42);
fill(&v[0], &v[0] + v.size(), 7);

constitutes a valid use of fill() and the corresponding in-
stantiation is type correct. This is because the (deduced)
template-arguments are double* and int respectively, and all
the enumerated constraints are satisfied. However, the func-

tion call in the fragment

int i = 0;
int j = 39;
fill(i, j, 43);

passes type checking, but produces errors during instantia-
tion: the deduced type for the first template-argument, int,
does not support the dereference operation. To diagnose that
error, we need both the argument types (here, the built-in
type int) and the body of the template definition (not just
its declaration). This is the kind of error that we want imme-
diately caught and reported at the point of call.

Finally consider, this fragment:

struct X {
X(int);
operator double();
// ...

};

vector<int> v(42);
fill(&v[0], &v[0] + v.size(), X(25));

It is valid, and there are perfectly reasonable programs that
are logically equivalent. The expression X(42) can be con-
verted to a double which can be converted to the int required
by the fill() that takes pointers to ints as its iterators.

It follows that our type system must include a way to state
assumptions on combinations of template-parameters. Such
combinations often involve implicit user-defined and built-in
conversions. Here is our current best bet for a convenient and
compatible syntax:

template<Forward_iterator Fwd, class T>
where Assignable<Fwd::value_type,T>

void fill(Fwd first, Fwd last, const T& t);

Forward_iterator and Assignable are concepts, e.g. predi-
cates on types (and, where needed, values). The checking of
the use of fill proceeds as follows:

1. deduce values ι and τ for the type parameters Fwd and T
from a call fill(p, q, v);

2. concept check: Forward_iterator<ι> and
Assignable<ι::value_type, τ>;

3. if the concept check succeeds, then type check the call

Our problem now becomes how to provide a way to define
such predicates. Everybody’s first idea for that is to specify
a concept as a set of operations with signatures. Looking at
that, we found that it was feasible only for small examples
or given incredible amounts of time and patience [SDR03a,
SDR03b]. Producing the complete list of operations — com-
plete with conversions and overloads — is distinctly non-
trivial for real-world examples. In fact, one should distin-
guish between the internal and external forms of a language.
The internal language is usually biased toward implemen-
tations whereas the external language is directed towards
programmers for use in source program. In this context, to
be successful, the external form must be simple and flexi-
ble enough to cope with millions of lines of existing code in
the hands of hundred of thousands of programmers. On the
other hand, the internal form must be precise and straightfor-

2

ward enough for use in compilers (including being retrofitted
into existing compilers). Our solution is to generate sets of
“primitive operations” with signatures from a notationally
simpler and more abstract language, from what we call "use
patterns".

1.1.1 Iterator concepts

Throughout this paper, we draw examples from the theory
of iterators [SL94, Aus98, Str00, ISO03]. We emphasize that
the iterator classification is just one example (albeit impor-
tant one for programming in C++ using the standard library).
Other sources of inspiration include the theory of mathemat-
ical structures in computer algebra [JS92].

The C++ standard library contains a classification of itera-
tors, which are divided into five major categories: input itera-
tors, output iterators, forward iterators, bidirectional iterators and
random access iterators. See [Str00, Chapter 19] and [ISO03,
Clause 24] for detailed exposition. We base our discussion on
a particularly simple, yet difficult example from that classifi-
cation. However, to follow the discussion here, the reader
needs only a few key observations: An input iterator is a
data-source abstraction and an output iterator is a data-sink
abstraction. Either provides the notion of advance of compu-
tation. A forward iterator supports the notion of multi-pass
algorithms (in particular, it is copy-able) and an input itera-
tor does not. A forward iterator that is mutable fulfills both
input and output iterator assumptions. Iterators are perva-
sive in performance-critical code and optimal performance is
expected. This implies that we can’t impose significant over-
heads, such as a function call per operation, on iterators.

1.2 Generic programming and concepts

Many forms of increased support of generic programming
in C++ have been proposed since the initial template de-
sign [Str88]. In particular, constraints based on variations
of inheritance have been proposed but not adopted as they
tend to focus on only part of the problem and to rely on
non-scalable mechanisms [Str94, §15.4]. The design, imple-
mentation, and use of the Standard Template Library have
contributed significantly to the appreciation of templates and
generic programming techniques. Most recent proposals fo-
cus on the notion of concept, which can roughly be summa-
rized as a type system for template arguments. The design
space of concepts for C++0x is explored in [SDR03a, SDR03b,
Str03]. Currently, two main approaches to the design of con-
cepts [SGG+05, SDR05] are being debated in the C++ com-
munity and standards committee.

To be useful in real-world C++, simple concepts should be
simple and easy to express [SDR05]. A system that poses
both major conceptual challenges and significant notational
burdens to programmers will not succeed in mainstream pro-
gramming — however elegant it may be from a theoreti-
cal perspective. Unfortunately, the ISO C++ rules governing
C++ expressions have evolved over more than three decades
and are hard to simply and accurately express in a conven-
tional system. In particular, the notion of convertible is far
more used than the notion of same type. Expressing con-
cepts purely at the type level seems to lead to either under-
specification or over-specification. See [SDR03a, SDR03b,
Str03] for further discussion. Consequently, we express re-

quired properties of template parameter as usage patterns
— whereby archetype C++ expressions are used to denote
the relations/equations that template arguments must sat-
isfy. Specifying requirements as use patterns has a long story
in C++ programming [Str94] and are used in the ISO stan-
dard. However, such usage has been informal and conven-
tional, we promote it to a formally defined and automated
mechanism supported by language constructs. From use pat-
terns, we derive sets of primitive, easy to use in checking,
constraints that template arguments must fulfill. Note that
this difficult step is already done by C++ compilers as part
of template instantiations. Our proposed mechanism relies
on the programmer explicitly specifying requirements in the
form of concept instead of just relying on template defini-
tions. Importantly, these types are available at template use
sites to be used for template argument checking and over-
loading.

To explain the generation of type constraints from concept
definition and uses, we use a formalism that contains the ISO
C++ type system appropriately [DRS05].

2 A concept system

The basic idea behind the concept system presented in
[SDR05] is that of providing for typed abstract syntax tree
language. A concept definition is a set of abstract syntax tree
equations with type assumptions. Concepts serves two pur-
poses:

1. in template definitions, they act as typing judgment
rules. If an abstract syntax tree depends on template pa-
rameters and cannot not be resolved by the surrounding
typing environment, then it must appear in the guard-
ing concept bodies. Such dependent abstract syntax
trees are implicit parameters of the concepts and will be
resolved by concept checking at use sites.

2. in template uses, they act as set of predicates that the
template-arguments must satisfy. Concept checking re-
solves implicit parameters at instantiation points.

Thus, if the set of concepts for a template definition speci-
fiers too few operations, its compilation fails concept check-
ing: The template is under-constrained. Conversely, if the
set of concepts for a template definition specifies more oper-
ations than needed, some otherwise legitimate uses fail con-
cept checking: The template is over-constrained. By “oth-
erwise legitimate” here, we mean that type checking would
have succeeded in the absence of concept checking.

2.1 Concept definition

A concept definition is a triple 〈P,G,B〉 where:

• P is a list of explicit concept-parameters, whose syntac-
tic constructs are same as those of template parameters.

• G, if present, is the guard of the concept body provided
by the where-clause. It is a logical formula, usually ex-
pressing additional assumptions on combinations of the
parameters P.

• B is the body of the concept. It is a sequence of sim-
ple declarations and expression-statements that enun-
ciate syntax and type equations between the concept-

3

parameters.

The concrete syntax is

concept ConceptName<P> where G { B };

If no constraints involve a combination of template argu-
ments, we can omit the where-clause. If all constraints are
expressed as parameter types or in a where-clause, B can be
empty. For example, the notion of Assignable is one of the
recurring concepts of the C++ standard library, and also re-
lated to the fill function template introduced in §1.1. Here
is a definition that will be discussed in §3.2.2.

concept Assignable<typename T, typename U = T> {
Var<T> a;
Var<const U> b;
a = b;

};

A concept is a predicate. If concept checking fails, it eval-
uates to false; if concept checking succeeds, it evaluates to
true. Therefore concepts can be combined with the logical
operators and (&&), or (||), not (!). As a short cut, concepts
usable as unary predicates can also be used as the type of
template-parameter. For example:

concept C<typename X>
where C1<X> && C2<X>

{ };

is equivalent to

concept C<C1 X>
where C2<X>

{ };

which again is equivalent to

concept C<C1&&C2 X>
{ };

A type parameter introduced with the keyword typename (or
its equivalent in this context class) is unconstrained. That is
any type can be used as an argument.

2.2 From concepts to constraints sets

The concept definition 〈P,G,B〉 is further processed and
turned into a quadruple 〈Pexp,Pimp,G,C〉 for the purpose of
concept checking. The components are determined as fol-
lows:

1. A set of explicit parameter declarations Pexp as P in the
definition, where properties implied by each nominated
concept are assumed to hold for the corresponding pa-
rameter.

2. A list of implicit symbols Pimp. This is the list of depen-
dent names.

3. A guard G, as in the definition. This predicate is as-
sumed to be true during the definition of the concept
body and checking of template definition.

4. A sequence of constraint equations C derived from the
body B of the concept definition. This is constructed
by inferring constraints that the explicit parameters and
the dependent names must satisfy in order to make the

expression-statements and declarations in B well typed,
according to C++ normal rules.

The generation of the constraint set is governed by the con-
straint rules of Figure 2, which is a fragment of the formalism
developed in the companion paper [DRS05]. We will give a
first illustration for the simple case of Assignable. More elab-
orated examples will be discussed later (see §3.1).

The formalism developed in [DRS05] uses the framework of
local type inference [PT98], which is itself a formalization of
type checking and type inference folklore. Local type infer-
ence has been part of C++ template since its design [Str88].
The idea had been previously used, in some limited form,
in the design and implementation of function overloading
[Str89]. Basically, the idea consists in two parts. On one hand,
some expressions can have their types locally synthesized,
considering only types from adjacent nodes in the abstract
syntax tree. This process does not involve global informa-
tion like unification variables. The synthesis is done to yield
the most faithful information as possible. On the other hand,
type information from function call argument list is propa-
gated and check against parameter types during the process
of overload resolution.

The constraint rules yield the following assumption set for
Assignable:

Γ
type
⊢ T ∈ O (1)

Γ
type
⊢ const U ∈ O (2)

Assign ∈ ξ (3)

Γ
exp
⊢ Assign 1 (τ1,τ2) → τ τ1,τ2 ∈ O ∪R, τ ∈ T (4)

Γ
exp
⊢ a ∈ T % a′ ∈ τ1 (5)

Γ
exp
⊢ b ∈ const U % b′ ∈ τ2 (6)

The first constraint says that T is assumed an object type; this
is generated from rule [Var-cstr]. Similarly, the second con-
straint says that const U is assumed an object type (which
also implies that U is an object type). In fact, here the assump-
tion is even stronger: it is assumed that both T and U are com-
plete, non-abstract object types. The third constraint comes
from the fact that the assignment operator is referenced, but
no declaration is in scope and its operands’ meaning depends
on the concept-parameter. Consequently, it is assumed an im-
plicit parameter to the concept Assignable. The fourth con-
straint synthesizes the type (τ1,τ2) → τ for Assign with fresh
constraints type variables τ1, τ2 and τ. Finally, the fifth and
sixth constraints state that the object variables a and b are as-
sumed to implicitly convert to τ1 and τ2 respectively.

2.3 Concept checking

When checking for the satisfiability of predicates at the tem-
plate use site with typing environment Γ, the program trans-
lator recursively applies the following steps:

1. Substitute the concept-arguments for the concept pa-
rameters P in the environment Γ, the concept guard G
and body B.

2. If the guard evaluates to false, then concept check fails.

4

3. Look up the dependent names (elements of ξ) in the en-
vironment Γ. If lookup fails for a name, then concept
check fails.

4. The result of name lookup for dependent names add ad-
ditional equations for constraints variables introduced
for symbols in function calls. Solve those equations
through overload resolution. If overload resolution
fails, then concept check fails.

When concept check succeeds, it should produce:

1. a new typing environment Γ′;

2. a substitution mapping ξ to actual declarations;

3. and set of rewrite rules necessary for implicit conversion
as required in function calls.

That triple is then used to produce instantiations from tem-
plate. Only after concept checking succeeds, is type checking
carried on. A nontrivial step here is to ensure that, if the def-
inition of the template is concept-correct then the substitu-
tions and rewrites resulting from concept and type checking
of its uses will be well-formed in the new typing environ-
ment.

Theorem 1 (Soundness) If a template definition concept checks
and if its uses both concept check and type check then its instantia-
tions for those uses also type check.

A template type parameter introduced with the keyword
typename (or its equivalent in this context class) is uncon-
strained. That is any type can be used as an argument. Code
involving such parameters cannot be concept checked. This
“loophole” leaves existing code using templates valid, with
its meaning unchecked. This compatibility feature is essen-
tial for the adoption of concepts into the C++ standard.

2.3.1 Explicit check request

Programmers can ask for explicit checking of conformance of
a type with respect to a concept. The syntax for that is one of

assert ConceptName<argument-list>;
assert ConceptName<argument-list> with {

declaration sequence
};

The first syntax is primarily used for checking whether a
combination of given types and values fulfills the assump-
tions of a concept. If concept checking fails with those ar-
guments, then the program containing that explicit concept
check request is considered in error. If concept check suc-
ceeds, then the translation of the program is carried on.

For example the assertion

assert Assignable<vector<int> >;

passes concept check and yields the following values for the
constraints variables

Assign = vector<int>::operator=, τ1 = vector<int>&,

τ2 = const vector<int>&, τ = vector<int>&.

The second syntax for explicit assert is used for cases where
it is necessary to “rewrite” syntax. For example, the pointer
type int* does not have members so it is necessary to map
the abstract requirement of member syntax to something ap-
propriate when checking for random access iterator proper-
ties:

assert Random_access<int*> with {
int*::value_type = int;

};

2.3.2 Implicit check request

Implicit checking of concepts typically happens in situations
where an implicit instantiation for a function template is re-
quested and its declaration is guarded by concepts. If concept
checking fails then the function is disregarded; this failure
is considered an error only if no declaration of the function
can match the use. This is very similar to the way implicit
instantiation of function template works in C++. The differ-
ence here is that we have added an additional step for con-
cept check, before overload resolution proceeds.

2.4 Associated types and values

An associated type or value is the value of a constraint vari-
able, or an implicit parameter. It is associated to a concept,
but it is not an explicit parameter. Associated types and val-
ues are essential in composing independently developed con-
cepts. They help bridge the gap between different concepts.
For example, the nested type value_type of an iterator is an
associated type. For mathematical concepts like group, ring
or field, the units of the respective structures are associated
values. Uses of associated types are presented in §4, where
standard iterator concepts are discussed.

2.5 Typing rules with concepts

Template definitions are generally represented by compilers
in their most abstract form, rarely with type annotations (be-
cause they are generally not known). However, to check such
definitions, we clearly need typing rules. We have retained
C++ rules that are most general as possible, to be applica-
ble in concept definitions, and in checking of template defini-
tions. They are listed in Figure 1. Those are the rules relevant
to the situations discussed in this paper. A more complete set
is to be found in the companion paper [DRS05].

The symbol Γ is used to denote scopes or type environments.

Judgments for declaration kind are written as Γ
decl
⊢ , whereas

judgments for expression types are stated with Γ
exp
⊢ . If a dec-

laration introduces a name with object type (resp. reference
type), then it is a variable (resp. reference) declaration. Sim-
ilarly, if a declaration introduces a name with function type,
then it is a function declaration.

Expressions are typed in two modes: (i) synthesis mode,
where types are inferred from local information only; and (ii)
checking mode, where a target type is given and an expres-
sion is checked for implicit convertibility to that type. Liter-
als have synthesized types as dictated by ISO C++ rules. An
expression that has synthesized type τ can be implicitly con-
verted to an expression of type const (τ). A use of a variable

5

[Var-decl]
x : (Γ,τ) τ ∈ O

Γ
decl
⊢ x ∈Varτ

[Ref-decl]
x : (Γ,τ) τ ∈ R

Γ
decl
⊢ x ∈ Re f τ

[Call-decl]
f : (Γ,τ) τ ∈ F

Γ
decl
⊢ f ∈Callτ

[Lit]
Γ ⊢ l literal

Γ
exp
⊢ l 1 τl

[Const]
Γ

exp
⊢ e 1 τ

Γ
exp
⊢ e % e′ ∈ const (τ)

[Var-use]
Γ

decl
⊢ x ∈Varτ

Γ
exp
⊢ x 1 τ∩ lvalue

[Ref-use]
Γ

decl
⊢ x ∈ Re f τ

Γ
exp
⊢ x 1 τ̌∩ lvalue

[Call-use]
Γ

decl
⊢ f ∈Call(π1,...,πn)→τ xi ∈ αi % yi ∈ πi

Γ
exp
⊢ f (x1, · · · ,xn) f (y1, · · · ,yn) 1 τ

[Var-subs]
Γ

decl
⊢ x ∈Varτ x ∈ fv (e) Γ

decl
⊢ y ∈ Re f τ

Γ ⊢ e = [y/x]e

[Ref-subs]
Γ

decl
⊢ x ∈ Re f τ x ∈ fv(e) Γ

decl
⊢ y ∈Varτ̌

Γ ⊢ e = [y/x]e

Figure 1: Typing rules

of type τ as an expression has synthesized type τ∩ lvalue. If a
function f has parameter-type list (π1, . . . ,πn) and is called
with argument list such that each argument is (implicitly)
convertible to the corresponding parameter type, then the
call is well-formed, and its synthesized type is the return type
of f . Although we mention only function, it should be clear
that overloaded operators are functions therefore subject to
the rules; and built-in operators are nothing but functions
with built-in implementations, therefore the rules we men-
tion covers all operators. Finally, a reference of type τ can
be substituted for a variable of type τ̌ (the referenced type)
in any expression where the variable appears free. And vice
versa.

[Var-cstr]
Γ ⊢ x ∈Varτ

Γ ⊢ τ ∈ O
[Ref-cstr]

Γ ⊢ x ∈ Re f τ
Γ ⊢ τ ∈ R

[Call-cstr]
Γ ⊢ f (x1, . . . ,xn)

Γ ⊢ f 1 (τ1, . . . ,τn) → τ
and Γ ⊢ xi % τi

with τi ∈ P , τ ∈ T fresh

Figure 2: Constraints rules

For concept checking purposes, the typing rules are read
“backward” to generate constraints, based on the premise
that they are well-formed, leading to the rules in Figure 2.
A variable declaration implies that its type is an object type.
A reference declaration requires that its type be a reference
type, thus implying that the referred type is either a function
type or an object type. In the synthesis mode, the number of
arguments presented to a call, determine the minimum num-
ber of parameters required (the actual call may have more,
if its declarations permits and it has sufficient default argu-
ments). The type variables are fresh. The arguments are re-
quired to be convertible to the synthesized type. Note that

the types of the arguments are not used to synthesize the type
of the call.

3 fill and associates revisited

Having set a formal framework for discussing concept def-
inition and template checking; we now turn to the example
considered in the introduction.

3.1 An iterator concept for fill

Before digging deep into technical difficulties of precise and
concise concept definitions, let us illustrate generation of con-
straint set from Mutable_fwd. This is a “first attempt” that
will only serve fill, but it will get us started and provide
a basis for refinements. The concept definition must express
assumptions needed to separately check the definition of the
template fill().

concept Mutable_fwd<typename Iter, typename T> {
Var<Iter> p; // placeholder for variable of type Iter.
Var<const T> v; // placeholder for variable of type

// const T.

Iter q = p; // an Iter must be copy-able

bool b = (p != q); // must support ‘‘!=’’ operation,
// and the resulting expression must
// be convertible to ‘‘bool’’

++p; // must support pre-increment,
// no requirements on the result type

p++; // must support post-increment,
// no requirements on the result type

*p = v; // must be able to assign v to *p,
// and assign a ‘‘const T’’ to the
// result of that dereference;
// no requirements on the result type

};

The requirements are expressed as ordinary — if somewhat
stylized — C++. Mutable_fwd is the name of a concept. It
is a binary predicate that expects types as arguments, corre-
sponding to the type parameters Iter and T. The declaration
Var<Iter> p introduces a variable placeholder of type Iter
named p without requiring initialization; we couldn’t just
write Iter p because that would imply default initialization
— and we need not require that Iter supports default ini-
tialization. The declaration of q state that it must be possible
to copy-initialize a variable of type Iter. In another words,
Iter must be copy-constructible. The declaration of b states
that != comparison is required and the resulting expression
must be implicitly convertible to bool. We also require pre-
increment and post-increment, but imposes no requirements
on the type of the resulting expression (except that it must
be a valid C++ type). The last line is interesting because it
states a requirement involving both parameter types: It must
be possible to dereference an expression of type Iter and to
assign a const T to the result.

Please note that the requirements are not stated as declara-
tions of member and non-member functions. Exactly how
those operations will be provided by a template argument

6

type is immaterial. Only their existence for well-formed pro-
grams is essential. Importantly, the programmer need not
explicitly specify built-in or user-defined conversions or re-
solve overloads; see [SDR05]. Note also that requiring the
existence of such operators, such as ++ and *, makes them
implicit parameters to the concept Mutable_fwd, in addition to
its explicit parameters Iter and T.

Following steps similar to those of §2.2, the definition of
Mutable_fwd is turned into the constraint set:

ξ = {CopyInitialize,Neq,PreInc,PostInc,Dere f ,Assign} (7)

Γ
type
⊢ Iter ∈ O (8)

Γ
type
⊢ const T ∈ O (9)

Γ
exp
⊢ CopyInitialize 1 (τ1) → Iter (10)

Γ
exp
⊢ p ∈ Iter∩ lvalue % τ1 (11)

Γ
exp
⊢ Neq 1 (τ2,τ3) → τ4 (12)

Γ
exp
⊢ p ∈ Iter∩ lvalue % p′ ∈ τ2 (13)

Γ
exp
⊢ q ∈ Iter∩ lvalue % q′ ∈ τ3 (14)

Γ
exp
⊢ CopyIntialize 1 (τ5) → bool (15)

Γ
exp
⊢ Neq

(

p′,q′
)

∈ τ4 % τ5 (16)

Γ
exp
⊢ PreInc 1 (τ6) → τ7 (17)

Γ
exp
⊢ p ∈ Iter∩ lvalue % p′′ ∈ τ6 (18)

Γ
exp
⊢ PostInc 1 (τ8) → τ9 (19)

Γ
exp
⊢ p ∈ Iter∩ lvalue % p′′′ ∈ τ8 (20)

Γ
exp
⊢ Dere f 1 (τ10) → τ11 (21)

Γ
exp
⊢ p ∈ Iter∩ lvalue % p(iv) ∈ τ10 (22)

Γ
exp
⊢ Assign 1 (τ12,τ13) → τ14 (23)

Γ
exp
⊢ Dere f

(

p(iv)
)

∈ τ10 % τ12 (24)

v ∈ const T % v′ ∈ τ13 (25)

where τ1, . . . , τ14 are constraints type variables.

During checking of a template definition guarded by the con-
cept Mutable_fwd, the compiler makes sure all syntax trees it
creates respect the above listed type assumptions. We can use
this to check the definition of fill:

template<typename Iter, typename T>
where Mutable_fwd<Iter, T>

void fill(Iter first, Iter last, const T& v)
{

for (; first != last; ++first)
*first = v;

}

As expected, this definition concept checks. The reasons are:

1. an Iter is copy-able as per constraints (10) and (11),
therefore it can serve as a function parameter — in other
words, the declarations for first and last are well-
formed.

2. The declaration for v is well-formed, because we can as-
sign from a value of type T — constraints (23) and (25) —
therefore it cannot be void, which is all needed in order
to form const T&.

3. since two Iter are comparable and the result is implic-
itly convertible to a bool — according to the C++ stan-
dard, constraints (12) and (16) —, it is valid to write the
expression first != last in the second part of the for-
loop header.

4. Pre-increment is part of the assumptions, (17) and (18).

5. Since a reference of type const T& is indistinguishable
from a variable of type const T in expression context —
C++ rules [Var-subs] and [Ref-subs] —, it follows that
it is legitimate to use the reference v in the assignment
expression *first = v as per constraints (21), (22), (24)
and (25).

It can be argued that this long justification is unnecessary
since we have abstracted the expressions so that the con-
cept Mutable_fwd exactly gives us the code we want to write.
It is nevertheless instructive stage to go through those triv-
ialities before everything gets obscured by the technicali-
ties. In particular, it worths noting implicit conversion, copy-
initialization and substitution of reference to variables.

Using the concept Mutable_fwd (only and not also the defini-
tion of fill), we can check uses of fill. For example:

vector<double> v(42);
fill(&v[0], &v[0] + v.size(), 7);

First, the compiler deduces the template-arguments double*
for Iter and int for T. Then it goes on checking for the satis-
fiability of the predicate Mutable_fwd<double*, int> which
succeeds with the following solution for the constraint set:

Iter = double*, CopyIntialize = built-in copy constructor,

τ1 = double*, Neq = built-in operator!=,

τ2 = τ3 = double*, τ4 = bool,

PreInc = built-in pre-increment, τ6 = τ7 = double*&,

PostInc = built-in pre-increment, τ8 = double*&,

τ9 = double*, Dere f = built-in dereference

τ10 = double*, τ11 = double&,

Assign = built-in assignment, τ12 = double&,

τ13 = double&.

3.2 The Assignable and Movable puzzle

The notion of iterator expressed as Mutable_fwd is a simpli-
fied version of the notion of forward iterator used by the C++
standard library. Unfortunately, it is oversimplified so that
we can’t use it for other algorithms where the C++ standard
requires a forward iterator. Consider another (slightly sim-
plified version) of the standard function copy:

template<typename Iter>
where Mutable_fwd<Iter, Iter::value_type>

7

void copy(Iter first, Iter last, Iter out)
{

for (; first != last; ++first, ++out)
*out = *first;

}

The value_type is Iter’s associated type, the type of the
element that the iterator refers to. However, this fails to
concept-check because we did not include the assumption
that we should be able to read from an iterator that meets
the Mutable_fwd properties. We can compensate by adding
a read operation:

concept Mutable_fwd<class Iter, typename T> {
Var<Iter> p; // placeholder for variable of type Iter.
Var<const T> v;
Var<T> v2;
typename Iter::value_type; // there must exist a nested

// type named ‘‘value_type’’.

// ... as before ...

*p = v; // we can write to *p
v2 = *p; // we can read from *p

};

With this version of Mutable_fwd, we slightly over-
constrained fill (because fill never reads from elements
of its sequence) but that is probably acceptable as the C++
standard library does the same. Unfortunately, we also over-
constrained copy in a way that is unacceptable. Consider:

auto_ptr<Resource> v[10];
auto_ptr<Resource> w[10];
// ...
copy(v, v + 10, w);

An auto_ptr holds a pointer to a value and implements own-
ership semantics for that value. That is, instead of making a
duplicate auto_ptr, assignment makes the target of the as-
signment the owner and invalidates the source. To do that
invalidation, auto_ptr assignment writes to its source. Look-
ing at Mutable_fwd we see that this won’t work. Mutable_fwd
requires only read access to the source of an assignment (v
is const). That may be reasonable, but that it is not what
the standard requires and not what is needed to cope with
auto_ptr. We can try to fix that by requiring write access to
the source of an assign:

concept Mutable_fwd<typename Iter, typename T> {
Var<Iter> p; // placeholder for variable of type Iter.
Var<T> v; // note, no ‘‘const’’ here.
Var<T> v2;
// ... as before ...
*p = v; // we can write plain ‘‘T’’ to *p
v2 = *p; // we can read from *p

};

Unfortunately, this is even worse: With that definition of
Mutable_fwd, every type T that defines only an assignment
taking a const T& now fail concept checking as an element
accessed through a Mutable_fwd — and that is most types.
Fundamentally, what we see here is that it is hard to pre-
cisely specify concepts so that we get both perfect separate
checking of template arguments and the flexibility we are
used to given the semi-formal specification of the standard it-

erators, containers and algorithms. Rather than patching, we
will start by making the fundamental distinction between de-
structive assignments and non-destructive assignments and
then build upon those.

3.2.1 Unary iterator predicates

To match the C++ standard library requirements, we need a
unary predicate to define a forward iterator. We do that by
making the second template-parameter, the value type, im-
plicit:

concept Forward_iterator<typename Iter> {
Var<Iter> p; // placeholder for variable of type Iter.
typename Iter::value_type // must have an associated

// member type value_type.

Iter q = p; // an Iter must be copy-able

bool b = (p != q); // must support ‘‘==’’ and ‘‘!=’’
b = (p == q); // operations, and the resulting

// expressions must be convertible
// to ‘‘bool’’.

++p; // must support pre- and
p++; // post-increment operations

// no assumption on the result type
};

Here we have eliminated any requirements on the element
type beyond the fact that it must exist and we can refer to
it as value_type. That solves our problem deciding what
kind of access we need to the value_type by leaving that
to the where-clause. In general, the use of associated types,
such as value_type simplify the expression of generic pro-
grams [GJL+03].

3.2.2 Assignable

We can define what we mean for a type U to be assignable to a
value of type T:

concept Assignable<class T, class U = T> {
Var<T> a;
Var<const U> b;
a = b; // non-destructive assignment

};

The assignment operator just reads its right hand side with-
out modifying it — it can’t modify because it takes a const
operand. Note that since a T can always be implicitly con-
verted to a const T&, this assignment will also accept non-
const operands. Usually, we also need the semantics invari-
ant that, after assignment, the values a and b are equivalent
(in some sense). That is what the C++ standard library re-
quires. However, even though concepts could be designed to
express semantics notions we haven’t (yet) specified a syn-
tax to express semantics for our concepts. Furthermore the
C++ standard makes the assumptions that the strict type of
the resulting expressions is T&. We do not need that extra as-
sumption, so we don’t include it in Assignable.

To contrast and complement, we define destructive assign-
ment (often called “a move”) like this:

8

concept Movable<class T, class U = T> {
Var<T> a;
Var<U> b;
a = b; // potentially-destructive assignment

};

Given the concepts Forward_iterator, Assignable and
Movable, we can declare the templates fill and copy as

template<Forward_iterator Iter, class T>
where Assignable<Iter::value_type, T>

void fill(Iter first, Iter last, const T& t);

template<Forward_iterator class Iter>
where Assignable<Iter::value_type>

|| Movable<Iter::value_type>
Out copy(Iter first, Iter last, Iter out);

With these declarations, both the definitions of fill and copy
will concept check. Their uses will succeed in all valid cases
and a fill with an auto_ptr as its third argument will fail.
In other words, we have a system that allows us to specify
key C++ standard library components.

4 Standard iterator concepts

In this section, we define concepts for the most difficult part
of the C++ standard library iterator hierarchy as concepts:
input iterator, output iterator, and forward iterator. The stan-
dard says: “Forward iterators satisfy all the requirements of
the input and output iterators and can be used wherever ei-
ther kind is specified”. The first half of that statement is not
actually true, but it is close enough for the second half to
hold in all reasonable cases given experienced standard li-
brary implementers with common sense. However, a type
system cannot work for reasonable cases only, and compil-
ers (enforcing a type system) are not noted for their common
sense.

As part of a complete solution, we need to formally define

1. how you move the iterator (++, +, ==, etc.)

2. whether you can write to the iterator (*p=x)

3. whether you can read from an iterator (x=*p)

4. whether the assignment (or copy initialization) used is
destructive (the auto_ptr mess)

5. whether you can use a multi-pass algorithm (visiting an
element twice; you can’t for an input iterator or an out-
put iterator)

The standard, and countless successful applications, reduce
that to the simple programmers’ rules of thumb:

1. you can read from an input iterator

2. you can write to an output iterator

3. a forward iterator is an input iterator and an output it-
erator

4. the rest is detail that you can look up if you need to

Users who have written successful — and type safe — appli-
cations based on this (over) simplification of the rules would

take very badly to an “improved” system that required them
to understand significantly different rules and to express that
understanding in added code, just to do the same work.
In other words, just parameterizing an iterator concept by
all sources of variability would not do the job. Users can-
not be asked to explicitly select their iterators from a set of
more than a dozen iterator categories. The ideal solution
would be one where what the programmers thought was true
(but isn’t) is, and where all reasonable code compiles. This
is almost possible, but only almost. In particular, we can-
not avoid where-clauses to express requirements on combi-
nations of template parameters.

We will not explain the problems of the current iterator re-
quirements in detail. That would be tedious and pointless as
many of the weaknesses are well understood in the C++ im-
plementor and language lawyer community, are being cor-
rected, and don’t actually affect applications builders. They
include:

1. the lack of distinction between destructive and non-
destructive assignments

2. a failure to consistently require iterators to be copy con-
structible

3. a failure to point out that a forward iterator to a const
value type isn’t an output iterator

4. problems with composability of requirements: specify-
ing that *p=v must work for an output iterator p and that
and v=*q must work for an input iterator q, but failing to
note that this does not imply that *p=*q must work even
when p and q have the same value types; the reason
is that both *p=v and v=*q may require a user-defined
conversion so that *p=*q could require two user-defined
conversions, and that’s disallowed by the C++ rules for
implicit conversion.

Some of these problems were first discovered as part of our
effort to find a practical and formal specification of the stan-
dard library facilities.

First we define a few supporting concepts. Some deal with
basic access issues:

concept Copy_constructible<typename T> {
Var<T> a;
T b = a; // copy construction
T c(a); // direct copy construction

};

concept Assignable<typename T, typename U = T> {
Var<T> a;
Var<const U> b;
a = b; // copy (non-destructive read)

};

concept Movable<typename T, typename U = T> {
Var<T> a;
Var<U> b;
a = b; // potentially-destructive read

};

concept Equality_comparable<typename T, typename U = T> {
Var<T> a;
Var<U> b;
bool eq = (a == b);

9

bool neq = (a!=b);
};

concept Arrow<typename T> {
// built-in

};

Arrow<class T> is a built-in predicate expressing a curious
requirement that if (*p).m is legal then p->m is legal. Note
that Arrow<P> is true for all C++ built-in pointer types and
for all standards conforming user-defined ("smart") pointer
types.

The notion of a Trivial_iterator specifies what is common
for all iterators (not much):

concept Trivial_iterator<Copy_constructible Iter> {
typename Iter::value_type;

Var<Iter> p;
Iter& q = ++p; // usable as
const Iter& q2 = p++; // converts to

};

Initializing a const reference means "converts to" and initial-
izing a non-const reference means "usable as" (according to
the C++ standard). Note that this use of references ensures
that inheritance is taken into account. We don’t feel an ur-
gent need invent new notation for that.

We can now define an input iterator as a trivial iterator that
we can increment, compare, assign to, use -> on, and read
from:

concept Input_iterator<Trivial_iterator Iter>
where Equality_comparable<Iter>

&& Assignable<Iter>
&& Arrow<Iter> {

Integer difference_type; // the type of distance between
// two input iterators

Var<Iter> p;
const Iter::value_type& v = *p; // converts to
const Iter::value_type& v2 = *p++; // converts to

};

This is much more succinct than the "input iterator require-
ments" in the C++ standard (section 24.1.1), more precise, and
also more correct. For example, the standard forgot part of
the Copy_constructible requirement, but fortunately, none
of the implementations did or this example (from the stan-
dard) wouldn’t have compiled:

template<class InputIterator, class OutputIterator>
OutputIterator copy(InputIterator first, InputIterator last,

OutputIterator out);

We discovered this when defining the concepts.

Note that the Input_iterator concept does not say what type
is returned by *. In particular, it does not say that the result
type of *p is p’s value_type; it could be a proxy type that im-
plicitly converted to value_type. Eliminating the possibility
of a proxy here would not only over-constrain the problem,
it would also break real optimized code. One of the beauties

of using use patterns compared to signatures is that we don’t
have to be explicit about possible intermediate types.

We do not assume that the result of dereferencing an input
iterator is an lvalue; thus, we do not require (or allow) de-
structive reads from an input iterator. For example, auto_ptr
is not an acceptable value type for an input iterator. If we
want to read an auto_ptr from an input iterator, we need to
say so in some where-clause.

The difference_type is the type used to express the num-
ber of elements between two iterators. It is defined using the
concept Integer to require it to be a signed integer type.

For output iterator, we had to explicitly cope with the possi-
bility of destructive assignment, so first we define concepts
to express that:

concept Output_assign<Trivial_iterator Out, typename T> {
Var<Out> p;
Var<const T> v;
*p = v;
*p++ = v;

};

concept Output_move<Trivial_iterator Out, typename T> {
Var<Out> p;
Var<T> v;
*p = v;
*p++ = v;

};

Given those we can define Output_iterator as a
Trivial_iterator that you can write to:

concept Output_iterator<Trivial_iterator Out>
where Output_assign<Out,Out::value_type>

|| Output_move<Out,Out::value_type>
{ };

This does not in itself solve all problems with using output
iterators. Our analysis shows that most problems with spec-
ifying iterators and the iterator hierarchy relates to specify-
ing exactly when and how you can write to an output iter-
ator. Furthermore, most of the troublesome variations and
alternatives directly reflect algorithms and relationship be-
tween the value written and the iterator. Such issues are best
dealt with in the algorithms’ where-clauses. This definition
of Output_iterator simply takes care of the minimal case
where an algorithm simply assigns a value to an output it-
erator.

Note the an output iterator isn’t Equality_comparable or
Assignable. That’s not our interpretation but a requirement
that the standard imposes for good reasons. Output iterators
are an oddity, but a useful oddity that directly reflects the na-
ture of output.

To help writing where-clauses for output iterators, we pro-
vide a helper concept reflecting the most common use involv-
ing another type, copying from another iterator:

concept Output_from_input<Output_iterator Out,
Input_iterator In> {

10

Var<Out> p;
Var<In> q;
*p = *q;
*p++ = *q++;

};

The standard explicitly defines a forward iterator as some-
thing that has meets all the requirements of an input itera-
tor and an output iterator. In addition, it adds requirements
needed to support multi-pass algorithms:

concept Forward_iterator<Input_iterator Iter>
where Output_iterator<Iter> {

Iter p; // default constructible
Iter::value_type& t = *p; // usable as
Iter::value_type& t2 = *p++; // usable as

};

So, how do this specification of the standard library re-
quirements fare vis a vis our Assignable-and-movable puz-
zle (§3.2). For simple assignments(*p=v) an output iterator
simply works for both ordinary and destructive assignments.
The real (not simplified) copy copies from a sequence defined
by a pair of input iterator to a sequence defined by an output
iterators. To define that, we need to deal with the relationship
between the value types of the two iterator types:

concept Move_from_input<Output_iterator Out,
Input_iterator In>

where Output_from_input<Out, In> {
Var<In> q;
In::value_type& v = *q;

};

template<Input_iterator In, Output_iterator Out>
where Output_from_input<Out, In>

|| Move_from_input<Out, In>
Out copy(In first, In last, Out out);

The Move_from_input differs from Output_from_input only
in requiring that the input iterator really refer to a value that
you could possible modify.

The implementation for copy remains the same as ever. The
code for copy remains as good as ever. All we have done is
to get perfect separate checking and some new opportunities
for overloading.

We value the iterator requirements as a pretty extreme real-
world challenge to any system aimed at specifying require-
ments for types.

5 Related work

Jeremy Siek et al. [SGG+05] proposed a different concept
system in which the use of every function template (whose
definition is guarded by concept) needs to be preceded by
declarations explictly stating that a given collection of types
and value model a specific concept. A concept definition it-
self consists in sequence operations with so-called pseudo-
signatures. When concept checking template definitions, the
pseudo-signatures act like the exact type of the operations.
When concept checking a template use, wrapper “forward-
ing” functions are implicitly generated to implement conver-

sions between the exact type of the declarations are found
in the use context and the signature of the operations are as-
sumed by the concept definition, where they differ. That con-
stitutes a huge departure from C++ semantics, which implies
that part of programs are led to believe that some functions
exist when, in fact, they do not. Such inconsistencies are un-
acceptable for C++, which has a bias toward system program-
ming.

A similar, but slightly more abstract notation of "abstract sig-
natures" was presented and analyzed in [Str03] and [SDR05].
We rejected it (in favor of the use pattern notation) as being
more verbose and because it would introduce a whole new
declaration syntax with associated special semantics into an
already crowded syntactic universe.

There is a close relationship between concepts, as described
here, and constraints classes and [Str]. This allows us to test
concepts by transcribing them into constraints classes and ex-
plicitly insert them into code.

In his PhD thesis [Jon94], Mark Jones introduced the no-
tion of qualified types as a general framework to approach
constrained type systems as studied by Stefan Kaes [Kae88],
Philip Wadler and Stephen Blott [WB89] that form the basis of
Haskell’s type classes. Jones’ framework is general enough to
account for Haskell’s type classes, sub-typing and extensible
records. It was later generalized to constructor classes and
type classes with functional dependencies. However, Jones’
system strives at describing systems where constraints are ex-
pressed purely at the type level. As we have seen, that is
not accurate enough for C++ templates. Furthermore, Jones’
framework seems to be more appropriate for type systems
with overriding or specialization semantics than with general
overloading and type scheme as found in C++. Finally, while
Jones’ qualified types are formally type with predicates, the
predicates cannot be directly used in formula involving logi-
cal connectors as in the concept system presented in this pa-
per.

It has been claimed that concepts as envisioned for C++0x are
just actually Haskell’s type classes. In fact, “overloading” in
Haskell is very limited if compared to C++’s notion of over-
loading. Overloading in Haskell is expressible in C++ as a
combination of overriding and template specialization. The
problems type classes address and their scope are much more
limited than that of C++ concept. A more detailed account in
provided in Appendix B of [SDR05]. We mention that the
concept system presented in this paper does not require dec-
laration before use of a particular combination of template-
arguments, in contrary to type classes in Haskell and Siek’s
system.

6 Conclusion and future work

In this paper, we have defined a framework for specifying
a concept system for checking C++ templates. This system,
unlike conventional signature-based or object-oriented style
type system, is powerful enough to express simply, concisely
and accurately the C++ standard library notions and require-
ments. This formulation of concepts enables perfect check-
ing of template definitions and uses in isolation without ad-
verse effects on the performance of generated code. In the
process, we uncovered several weaknesses in the current in-

11

formal formulation of the standard library requirements. The
work reported in this paper focuses on the static semantics of
concepts, but concepts also have dynamic semantics compo-
nents that will be subject of future work. We have a complete
typed abstract syntax tree representation for C++, including
concepts, that will become a testbed for further work. In
addition, various concept mechanisms are being actively ex-
plored within the ISO C++ standards committee.

7 References

[Aus98] Matthew H. Austern. Generic Programming and the
STL. Addison-Wesley, October 1998.

[DRS05] Gabriel Dos Reis and Bjarne Stroustrup. A For-
malism for C++. Technical Report D1885=05-0145,
ISO/IEC SC22/JTC1/WG21, July 2005.

[Gir72] Jean-Yves Girard. Interprétation fonctionnelle et
élimination des coupures de l’arithmétique d’ordre

supérieur. Thèse d’État, Université Paris VII, 1972.

[GJL+03] Ronald Garcia, Jaakko Järvi, Andrew Lumsdaine,
Jeremy Siek, and Jeremiah Willcock. A Compara-
tive Study of Language Support for Generic Pro-
gramming. In Proceedings of the 18th ACM SIG-
PLAN Conference on Object-Oriented Programming,
Systems, Languages and Applications, pages 115–
134. ACM Press, 2003.

[ISO03] International Organization for Standards. Interna-
tional Standard ISO/IEC 14882. Programming Lan-
guages — C++, 2nd edition, 2003.

[Jon94] Mark P. Jones. Qualified Types: Theory and Practice.
Cambridge University Press, 1994.

[JS92] Richard D. Jenks and Robert S. Sutor. AXIOM:
The Scientific Computation System. Springer-Verlag,
1992.

[Kae88] Stefan Kaes. Parametric Overloading in Poly-
morphic Programming Languages. In Proceedings
of the 2nd European Symposium on Programming,
volume 300 of Lecture Notes In Computer Science;,
pages 131–144. Springer-Verlag, 1988.

[PT98] Benjamin C. Pierce and David N. Turner. Lo-
cal Type Inference. In Symposium on Principles of
Programming Languages, pages 252–265, San Diego
CA, USA, 1998. ACM.

[Rey74] John Reynolds. Towards a theory of type struc-
ture. In Proceeding of Colloque sur la Programmation,
volume 19 of Lecture Notes in Computer Science,
pages 408–425, New York, 1974. Springer-Verlag.

[SDR03a] Bjarne Stroustrup and Gabriel Dos Reis. Con-
cepts — Design choices for template argument
checking. Technical Report N1522, ISO/IEC
SC22/JTC1/WG21, September 2003.

[SDR03b] Bjarne Stroustrup and Gabriel Dos Reis. Concepts
— syntax and composition. Technical Report
N1536, ISO/IEC SC22/JTC1/WG21, September
2003.

[SDR05] Bjarne Stroustrup and Gabriel Dos Reis. A Con-
cept Design (rev.1). Technical Report N1782=05-
0042, ISO/IEC SC22/JTC1/WG21, April 2005.

[SGG+05] Jeremy Siek, Douglas Gregor, Ronald Garcia,
Jeremiah Willcock, Jaakko Järvi, and Andrew
Lumsdaine. Concept for C++0x. Technical Report
N1758=05-0018, ISO/IEC SC22/JTC1/WG21,
January 2005.

[SL94] Alexander Stepanov and Meng Lee. The Standard
Template Library. Technical Report N0482=94-
0095, ISO/IEC SC22/JTC1/WG21, May 1994.

[Str] Bjarne Stroustrup. Technical FAQ: Why can’t
I define constraints for my template parame-
ters? http://www.research.att.com/~bs/bs_
faq2.html#constraints.

[Str88] Bjarne Stroustrup. Parameterized Types for C++.
In Proceeding of USENIX C++ Conference, Denver,
CO., October 1988.

[Str89] Bjarne Stroustrup. The Evolution of C++: 1985–
1989. USENIX Computer Systems, 2(3), 1989.

[Str94] Bjarne Stroustrup. The Design and Evolution of
C++. Addison-Wesley, 1994.

[Str00] Bjarne Stroustrup. The C++ Programming Lan-
guage. Addison-Wesley, special edition, 2000.

[Str03] Bjarne Stroustrup. Concept checking — A more
abstract complement to type checking. Techni-
cal Report N1510, ISO/IEC SC22/JTC1/WG21,
September 2003.

[Str04] Bjarne Stroustrup. Abstraction and the C++
model. In Proceeding of ICESS’04, December 2004.

[TDBP00] S. Tucker Taft, Robert A. Duff, Randall L.
Brukardt, and Erhard Ploederer, editors. Consoli-
dated Ada Reference Manual, volume 2219 of Lecture
Notes in Computer Science. Springer, 2000.

[WB89] Philip Wadler and Stephen Blott. How to make
ad-hoc polymorphism less ad hoc. In Proceedings
of the 16th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 60–76,
Austin, Texas, USA, 1989.

12

