
Doc No: SC22/WG21/N1877
J16/05-0137
of project JTC1.22.32

Address: LM Ericsson Oy Ab
Hirsalantie 1
Jorvas 02420

Date: 2002-05-02 to 2005-08-29 Phone: +358 40 507 8729 (mobile)

Reply to: Attila (Farkas) Fehér Email: attila f feher at ericsson com
wolof at freemail hu

Adding Alignment Support to the C++
Programming Language

1 Executive summary
Document status: proposal.

One-liner: Extending the standard language and library with alignment related features.

Problems targeted:

• Allow most efficient fixed capacity-dynamic size containers and optional elements
• Allow specially aligned variables/buffers for hardware related programming
• Allow building heterogeneous containers runtime
• Allow programming of discriminated unions

Related issues not addressed:

• Class-type “packing”
• Requesting specially aligned memory from memory allocators (new, malloc)

Proposed changes:

• New: alignment-specifier to declarations (type based and value based)
• New: alignof operator to retrieve alignment-value for a type (like sizeof for size)
• New: alignment arithmetic, the align_union operator (for discriminated unions)
• New: standard function for pointers for proper alignment runtime

2 The Problems
Dynamic memory allocation might need many CPU cycles and scale badly to multithreaded
environments. The alignment related new features make it unnecessary to dynamically allocate
memory only to make it well-aligned for a given type T or a list of types. Special alignment
requirements cannot be portably specified today. With the proposed features it will be possible to
create well-aligned buffers, which are able to hold a given type T (or even a list of types). Close-to-
hardware variables – specially aligned by the requirements of the used hardware – are also
(optionally) supported by allowing implementation defined alignment-values.

2.1 Fixed capacity, dynamic size containers
Without core-language support for alignment, the library solutions can only deliver partial and
partially efficient solutions – and do that at the cost of duplicating knowledge, which is already in
the compiler.

2.2 Support for special, aligned types
Programmers dealing with special alignment requirements today have to use non-standard
extensions to achieve their goal. The problem with non-standard extensions is that they force
programmers to revert to macro magic or duplication of code to make them portable (between

WG21/N1546 = J16/03-0129 page 2
Evolution WG Proposal

compilers). This kind of code shows up mostly in embedded and close-to-the-hardware code (like
drivers).

2.3 Discriminated unions
Need often arises to be able to store a list of types within a special “container”, only holding one
kind (type) of object at any given time. Only approximating solutions exist today (some requiring
heavy traits support) and they cannot avoid the unneeded dynamic memory allocation all the time.

2.4 Conclusion
The extensions I propose add support for generic programming, library building and systems
programming, since they enable performance without excess memory usage. They also remove
the embarrassment of not being able to make the most optimal code – with the least effort
necessary. These are 4 out of the 7 motivators for change. This proposal does not affect the
type system, name lookup or binary compatibility in any ways.

3 The Proposal

3.1 Basic Cases

3.1.1 Adding the alignment-specifier to the language
The alignment-specifier can be used in variable declarations just like a storage-class-specifier. It
can be used portably to specify the alignment requirement for the variable being declared.

The required alignment can be specified by a type or an integral constant, called alignment-value.
The former is called type-based while the latter is called value-based alignment-specifier:

alignment-specifier:
 type-based-alignment-specifier
 value-based-alignment-specifier

The alignment-specifier does not become part of the type (just like the storage-class-specifier).

// The alignment-specifier does not change the type: Listing 1)
template <typename T> tfunc(T const &t) { ... }

void func(int const &i):
void func(long const &i):

// ...

int align_by<long> aligned_var;

func(aligned_var); // Calls funct(int const &)
tfunc(aligned_var); // Instantiates tfunc<int>(int const &)

If the alignment-specifier would weaken the alignment requirement of the type, the program is ill-
formed and diagnostics are required. The alignment requirement relations of related fundamental
types have to be defined in the standard, just like as requirements for size relations are in the
current standard. Every possible alignment has to be stronger or equal to the alignment
requirements of the char types. This ensures that char (unsigned char) buffers can have any
alignment specifier.

// The following line will emit diagnostics and the program becomes ill formed Listing 2)
int align_by<char> aligned_var;

// The following line must be OK for any imaginable type T:
char align_by<T> aligned_buffer[sizeof T];

See additional requirements for type-based aligned variables in the subsection.

WG21/N1546 = J16/03-0129 page 3
Evolution WG Proposal

The alignment-specifier will cause the given variable to be aligned according to the specification.

// Make a buffer to store 50 variables of a type as an array: Listing 3)
unsigned char align_by<T> buffer[50*sizeof(T)];

// Make a type T in the first element:
T *firstT = new (buffer) T; // Safe, buffer is well-aligned for T

// Make a T in the 42th element of the array
T *raw = static_cast<T*>(buffer);
T *theAnswer = new (raw+42-1) T;

The alignment-specifier can be applied to any variable declaration including member variables of
class types. It cannot be used on declarations of function arguments or catch arguments.

// The following lines are OK Listing 4)
unsigned char align_by<T> buffer[50*sizeof(T)];

template <class T, std::size_t S> class vectorRudiment {
 char align_by<T> buffer_[S*sizeof(T)];
};

if (bool align_by<double>b(1)) { // Makes little sense, but allowed and will be aligned
 // ...
}

// The following lines are ill-formed
void func(int align_by<double> i); // aligment-specification in parameter-declaration
try {
 doSomething();
} catch (int align_by<double> &i) { // aligment-specification in exception-declaration
 // Handle exception
}

The alignment-specifier is optional in declarations of variables using the extern storage-class-
specifier. This gives the opportunity to hide this special requirement from the users of library code.

// Somewhere in a header file I use Listing 5)
extern char force[];

// Somewhere in a library implementation far far away...
class Force : DarkSide {
 Jedi *good; // etc.
};
char align_by<Force> force[sizeof(Force)];

The alignment-specifier does not become part of the type, but it is possible to create a class type
with aligned member variable(s).

// Wrong attempt: Listing 6)
typedef double align_by<0x10000> hwDoubleVector; // Error!
Void clear(hwDoubleVector &toClear, unsigned size);

// Using C++, why not make a class?
template class <std::size_t S> hwDoubleVector {
 double align_by<0x10000> vec_[S];
 // etc.
};

3.1.1.1 Alignment by type

The type-based-alignment-specifier takes the form of:
type-based-alignment-specifier:
 align_by<type-id>

The type used in a type-based-alignment-specifier has to be complete.

The variable will be well aligned for the given type-id. If the architecture does not require strict
alignment the type-based-alignment-specifier will use the usual optimal alignment of the given
type-id.

WG21/N1546 = J16/03-0129 page 4
Evolution WG Proposal

A variable declared this way must contain enough space to store at least one instance of the type
used in the alignment-specifier. Otherwise the program is ill-formed and diagnostics are required.1

// This will not compile Listing 7)
char align_by<T> buff[sizeof(T)/2];

// But this will
char align_by<alignof(T)> buff[sizeof(T)/2];

3.1.1.2 Alignment by alignment-value

The value-based-alignment-specifier2 takes the form of:
value-based-alignment-specifier:
 align_by<alignment-value>

alignment-value:
 constant-integral-expression-representable-by-std::size_t

The value can be one of an alignof(T) expression, 0, 1 or a value defined by the
implementation.

• The value of zero does not change the alignment.
• The alignment-value 1 represents the alignment requirements of the type char
• A value of the alignof(T) expression represents the alignment requirements of type T.
• The effect of any other value is implementation defined.3

// Aligning the buffer using a number: Listing 8)
template <std::size_t A, std::size_t S> class dyn_array_allocator {
 ...
 char align_by<A> buff_[S];
};

Using any other value renders the program ill-formed. Diagnostics is required.

// Aligning the buffer using a number not known by the implementation: Listing 9)
char align_by<11> buff_[S]; // Error! If 11 is not defined by the impl.

3.1.2 Getting the alignment-value
The alignof operator retrieves – during compile time - the alignment-value associated with a
type. It is a unary-expression and takes the following form:

unary-expression:
 alignof(type-id)

Its value is an integral constant-expression of type std::size_t. That value is 0, 1 or an
implementation defined value. It represents the required or – if there is none – the optimal
alignment for the given type.

// Saving alignment value of a type for later use whithout the type being known Listing 10)
const std::size_t anAlignment = alignof(int);

// somewhere, in a Galaxy far, far away, a buffer is created to hold the unknown type:
char align_by<anAlignmen> buff_[SomeConst];

// Or in the secret chambers of some template metaprogramming genius:
template <typename T> struct magic {
 enum { value = alignof(T) };
};

1 It makes no sense, so it is better caught at compile time. If it is necessary to make such a declaration, the
value-based alignment-specifier form can be used.
2 Value based alignment is added to support alignment-arithmetic and to enable special alignment for HW.
3 Implementations are encouraged to define this value based on number of bytes – if it makes sense on the
given platform.

WG21/N1546 = J16/03-0129 page 5
Evolution WG Proposal

3.1.3 Alignment arithmetic
The proposed align_union operator1 calculates the union of two alignments, given either as
alignment-values or types. The union of two alignments is the smallest alignment-value, which
satisfies the alignment requirements represented by both arguments. If such a number cannot be
represented using the type std::size_t, the program is ill-formed and diagnostics is required.

If both arguments of the operator are either compile-time constants or types, the value of the
operator-expression is also a compile-time constant.

align_union(TorA1,TorA2) -> alignment-value

Examples:

// Base for discriminated union for std::string and std::map Listing 11)
static const std::size_t aval = align_union(std::string, std::map);
static const std::size_t asize =
 sizeof(std::map)>sizeof(std::string)? sizeof(std::map):sizeof(std::string);

// And the buffer, which can hold both:
char align_by<aval> buff[asize];

3.1.4 Runtime pointer alignment
Aligning a pointer’s value means increasing it to the closest value that is well aligned for a given
type T or for a given alignment-value. I propose a function called std::align for this purpose to be
place in the memory standard header. The function does value-based alignment. Type based
alignment can be achieved by using the sizeof and alignof operators together for specifying
the align_val and the size arguments. It aligns a void pointer within a given buffer. It also
checks if the aligned pointer plus the given size will fit into the buffer.

void *std::align(std::size_t align_val,
 void *ptr, std::size_t &space,
 std::size_t size) throw();

Aligns ptr using value-based alignment based on align_val, to form an aligned size bytes
buffer.

Parameters:

• align_val alignment-value as described in 4.1.1.2 above (*)
• ptr the pointer to be aligned
• space the number of bytes left in the buffer (**)
• size the number of aligned bytes intended to be used after the pointer is aligned

(*) The value of zero and one means no alignment is done.

(**) Set on successful alignment.

The return value of the function is a null pointer if the aligned pointer itself or the size bytes of
buffer would not fit into the space bytes available to use at the address give in the ptr pointer.
Otherwise the aligned pointer is returned.

The adjustment increases the value of ptr – if needed – to make it address a memory area
properly or optimally aligned for the given type T, and returns that pointer value if it is valid.

Upon success (not returning NULL) the function updates the space argument, it is decreased by
the number of bytes used up when moving ptr.

1 The intended purpose is to support discriminated unions.

WG21/N1546 = J16/03-0129 page 6
Evolution WG Proposal

The function deliberately does not return a pointer to T, since there is no T there yet, until
constructed or initialized.

char *ptr; std::size_t space; Listing 12)
// Want to make 4 doubles there
void *alignedPtr = std::align(alignof(double),
 ptr, space,
 4*sizeof(double));
/* ptr == static_cast<char *>(alignedPtr)+size;
 std::size_t tmp = static_cast<char*>(ptr)-static_cast<char*>(orig_ptr);
 space == orig_space – (tmp + size); */
if (!alignedPtr) {
 // realocate, throw, abort, scream...
}
double *dblPtr = static_cast<double*>(alignedPtr); // Safe to do it
dblPtr[0] = 42.00; dblPtr[1] = 3.14; dblPtr[2] = 2.71; dblPtr[3] = 0.00;

// Then 10 of class type T
alignedPtr = std::align(alignof(T),
 ptr, spaceleft,
 10*sizeof(T));
if (!alignedPtr) {
 // realocate, throw, abort, scream...
}

The function does not check the validity of its arguments. Calling the function with invalid
arguments results in undefined behavior.1

4 Interactions and Implementability

4.1 Interactions
The proposed features have a loose connection to the rest of the language. Hence they do not
require any change in those, and they can be considered independently. However the power of
portable alignment features can best be used together with templates.

4.1.1 Effects on syntax of the language
The extensions affect two major syntactic elements of the language: variable declaration and
definition (decl-specifier) and expressions (unary-expression), by adding new elements.

4.1.2 Effects on the type system

4.1.2.1 Not part of the type

An alignment specifier may affect the “placement” of the variable it is applied to, but does not
change its size and does not create a new type.

In declarations of variables – which are not also definitions – the alignment-specifier can be
omitted, as long as it is present in the definition. See section 3.1.1 above for examples.

1 The pointer is invalid, if space is not really present or if the alignment value is invalid

WG21/N1546 = J16/03-0129 page 7
Evolution WG Proposal

4.1.2.2 Effects on class types

If an alignment-specifier is applied to a non-static member variable declaration in a class
declaration, this alignment specification becomes part of the class type. It may change the layout,
the size and the alignment requirements of the class type compared to one without that alignment
specifier.

class TouristClassSeat { Listing 13)
 Seat seat_;
 // ...
};
class FirstClassSeat { // sizeof FirstClassSeat >= sizeof TouristClassSeat
 Seat align_by<HumanBeing> seat_;
 // ...
};

If an alignment-specifier is applied to a static member variable declaration it does not change the
layout, size or the alignment requirements for the objects of such class. The alignment specifier
can be omitted from the declaration of the static member, as long as it is present in its definition.

class A { // In the header file Listing 14)
 static char buff[sizeof(double)*42]; // In the header no alignment-specification
};

// In the implementation file
char align_by<double> A::buff[sizeof(double)*42]; // Implementation

4.1.3 Strength of alignment relations need to be specified
Strength of alignment is to be defined similarly to how sizes of types are defined in C++. The type
char has the weakest alignment requirements of all, followed by short and so on.

4.2 Implementability
I feel that most of the core issues needed to implement of this proposal are present in some form in
all compilers. If compiler intermediate code contains still types and not only objects of no type
(addresses and sizes) the implementers need to add support for expressing different alignment
requirements.

Most of the change must come into parsing and code generation. For non-member variables the
code generator needs to generate code to align the variable properly according to the specifier. For
member variables the class types layout needs to be generated according to the specified
alignment requirements.

For the alignment operator compiler implementers need to uncover and document their internal
alignment values as well as change them to byte based, if this is possible.

5 Possible enhancements

5.1 Provide a unique type for the alignment value?
Should we introduce a new type for this value and the alignof(T) expression? It seems that
std::size_t is just about right for the task, but it leaves me with a bad feeling of coupling two
absolutely unrelated things; probably creating even more confusion about alignment. Introducing a
new, distinct fundamental type for this task seems to be a good idea (as it would allow
overloading), however there is no precedence of that.

