
ISO/IEC WDTR 18037

- 1 -

WG14 N948

ISO/IEC WDTR 18037.1

Programming languages , their env ironments and s ystem software interfaces —
Extensions for the programming language C to suppo rt embedded p rocessors

Version for SC22 Registration Ballot

Contents

1 GENERAL ..5

1.1 Scope... 5

1.2 References .. 5

2 FIXED POINT ARITHMETIC..5

2.1 Overview and principles of the fixed point datatype.. 5
2.1.1 The datatypes.. 5
2.1.2 Overflow and Rounding... 7
2.1.3 Type conversion, usual arithmetic conversions .. 8
2.1.4 Operations involving fixed point types... 9
2.1.5 Type-generic functions .. 11
2.1.6 Fixed point constants... 12
2.1.7 List of open issues... 12

2.2 Detailed changes to ISO/IEC 9899:1999 .. 12

3 BASIC I/O HARDWARE ADDRESSING < IOHW.H HEADER>.............................13

3.1 Overview and principles .. 13
3.1.1 The abstract model.. 14
3.1.2 I/O register characteristics... 15
3.1.3 The most basic I/O operations .. 15
3.1.4 The access_spec_macros... 16

3.2 The IOHW interface... 17
3.2.1 Function like macros for single register access .. 17
3.2.2 Function like macros for register buffer access... 17

ISO/IEC WDTR 18037

- 2 -

3.2.3 Function like macros for access_spec initialisation... 18
3.2.4 Function for access_spec copying .. 19

4 MULTIPLE ADDRESS SPACES SUPPORT ... 20

4.1 Overview and principles .. 20
4.1.1 Named address space support. .. 20
4.1.2 Processor-architecture-based multiple address space support .. 20
4.1.3 Application-defined multiple address space support... 20

4.2 Impact on the C language usage. ... 21
4.2.1 Variable declaration... 21
4.2.2 Pointer declaration... 21
4.1.4 Pointer usage .. 21
4.1.5 Portability between implementations... 21

ANNEX A... 22

A.1Fixed point ... 22
A.1.1 The fixed point datatypes .. 22
A.1.2 Overflow and Rounding... 25
A.1.3 Type conversions, usual arithmetic conversions... 25
A.1.4 Operations involving fixed point types... 26
A.1.5 Type-generic functions .. 27
A.1.6 Fixed point constants .. 27

ANNEX B... 28

B.1General .. 28
B.1.1 Recommended steps .. 28
B.1.2 Compiler considerations.. 28

B.2Overview of I/O hardware connection options... 29
B.2.1 Multi-addressing and I/O register endian .. 29
B.2.2 Address Interleave... 30
B.2.3 I/O connection overview: ... 30
B.2.4 Generic buffer index .. 31

B.3Access_specs for different I/O addressing methods... 31

B.4Atomic operation.. 33

B.5Read-modify-write operations in multi-addressing cases.. 33

B.6I/O initialisation .. 33

ANNEX C... 35

C.1Generic access_spec descriptor ... 35

ISO/IEC WDTR 18037

- 3 -

C.1.1 Background ... 35

C.2Syntax specification... 35

C.3Examples of access_spec descriptors .. 37

C.4Parsing... 39

C.5Comments on syntax notation ... 40

ANNEX D ...41

D.1Migration path for iohw.h implementations.. 41

D.2iohw.h implementation example based on C macros.. 41
D.2.1 The iohw.h header... 41
D.2.2 The users I/O register definitions .. 43
D.2.3 The driver function... 44

ANNEX E..46

E.1Embedded systems extended memory support .. 46
E.1.1 Modifiers for named address spaces .. 46
E.1.2 User-defined device drivers... 47

ANNEX F..50

F.1 Circular buffers .. 50

F.2 Complex data types... 51

ISO/IEC WDTR 18037

- 4 -

INTRODUCTION

In the fast growing market of embedded systems there is an increasing need to write application
programs in a high-level language such as C. Basically there are two reasons for this trend:
programs for embedded systems get more complex (and hence are difficult to maintain in assembly
language) and the different types of embedded systems processors have a decreasing lifespan
(which implies more frequent re-adapting of the applications to the new instruction set). The code
re-usability achieved by C-level programming is considered to be a major step forward in addressing
these issues.

Various technical areas have been identified where functionality offered by processors (such as
DSPs) that are used in embedded systems cannot easily be exploited by applications written in C.
Examples are fixed-point operations, usage of different memory spaces, low level I/O operations
and others. The current proposal addresses only a few of these technical areas.

Embedded processors are often used to analyse analogue signals and process these signals by
applying filtering algorithms to the data received. Typical applications can be found in all wireless
devices. The common datatype used in filtering algorithms is the fixed point datatype, and in order
to achieve the necessary speed, the embedded processors are often equipped with special
hardware support that datatype. The C language (as defined in ISO/IEC 9899:1999) does not
provide support the fixed point arithmetic operations, currently leaving programmers with no option
but to hand-craft most of their algorithms in assembler. This Technical Report specifies a fixed point
datatype for C, definable in a range of precision and saturation options. In this manner, fixed point
data is supported as easily as integer and floating point data throughout the compiler, including the
critical optimisers leading to highly efficient code.

Typical for the mentioned filtering algorithms is the usage of polynomials whereby data from one
source (inputvalues) is multiplied by coefficients coming from another source (memory). Ensuring
the simultaneous flow of data and coefficient data to the multiplier/accumulator of processors
designed for FIR filtering, for example, is critical to their operation. In order to allow the programmer
to declare the memory space from which a specific data object must be fetched. This Technical
Report specifies basic support for multiple address spaces. As a result, optimising compilers can
utilise the ability of processors that support multiple address spaces, for instance, to read data from
two separate memories in a single cycle to maximise execution speed.

 [Editor's note: Are all above paragraphs necessa ry?]

As the C language has matured over the years, various extensions for accessing basic I/O
hardware (iohw) registers have been added to address deficiencies in the language. Today almost
all C compilers for free-standing environments and embedded systems support some method of
direct access to iohw registers from the C source level. However, these extensions have not been
consistent across dialects.
This Technical Report provides an approach to codifying common practice and providing a single
uniform syntax for basic iohw register addressing.

ISO/IEC WDTR 18037

- 5 -

Information techno logy — Programming langu ages, their
environments and system software interfaces — Extensions for
the programming langu age C to suppo rt embedded processors

1 General

1.1 Scope

This Technical Report specifies a series of extensions of the programming language C, specified by
the international standard ISO/IEC 9899:1999.

Each clause in this Technical Report deals with a specific topic. The first subclause of each clause
contains a technical description of the features of the topic. It provides an overview but does not
contain all the fine details. The second subclause of each clause contains the editorial changes to
the standard, necessary to fully specify the topic in the standard, and thereby provides a complete
definition. If necessary, additional explanation and/or rationale is given in an Annex.

1.2 References
The following standards contain provisions which, through reference in this text, constitute
provisions of Technical Report. For dated references, subsequent amendments to, or revisions of,
any of these publications do not apply. However, parties to agreements based on this Technical
Report are encouraged to investigate the possibility of applying the most recent editions of the
normative documents indicated below. For undated references, the latest edition of the normative
document referred applies. Members of IEC and ISO maintain registers of current valid
International Standards.

ISO/IEC 9899:1999, Information technology – Programming languages, their environments and
system software interfaces – Programming Language C.

2 Fixed po int arithmetic

[EDITORS Note: need to check which po rtions o f 2.1 shou ld go into 2.2 or A.2.1]

2.1 Overview and p rinciples of the fixed po int datatype

2.1.1 The datatypes
Fixed point datavalues are either integer datavalues, fractional datavalues (with value between -1.0
and +1.0), or datavalues with an integral part and a fractional part. As the position of the radix point
is known implicitly, operations on the values of these datatypes can be implemented with (almost)

ISO/IEC WDTR 18037

- 6 -

the same efficiency as operations on integral values. Typical usage of fixed point datavalues and
operations can be found in applications that convert analogue values to digital representations and
subsequently apply some filtering algorithm. For more information of fixed point datatypes, see
clause A.1 in the Annex of this Technical Report.

For the purpose of this Technical Report, two new datatypes are added to the C language: the
fract datatype and the accum datatype. The fract datatype has no integral part, hence
values of the fract datatype are between -1.0 and +1.0. The value of an accum datavalue
depends on the number of integral bits in the datatype. Note that the fract datatype corresponds
with the type-A datatype, as described in the Annex, while the accum datatype corresponds to the
type-B datatype, mentioned in the Annex.

The fixed point datatypes are designated with the corresponding new keywords and type-specifiers
fract and accum. These type-specifiers can be used in combination with the existing type-
specifiers short, long, signed and unsigned to designate the allowed fixed point types,
yielding

short fract short accum
fract accum
long fract long accum

and their signed and unsigned variations.

The following interpretations and/or restrictions apply:
[Editors no te: do all restrictions app ly? Specifi cally: required suppo rt for uns igned
fixed po int, and required the nu mber of different fi xed po int types]
1. If neither of the signed or unsigned keywords is used, a signed fixed point datatype is

implied.
2. It is implementation defined whether unsigned fixed point datatypes are supported.
3. If unsigned fixed point datatypes are supported, an unsigned fixed point datatype has one bit

more precision (one additional fractional bit) than its corresponding signed fixed point datatype.
4. The number of integral bits and fractional bits in a fixed point datatype is implementation

defined. However, the minimum number of bits in each for each fract type (signed or
unsigned) is as follows:

short fract: 8 bits
fract 16 bits
long fract 32 bits

Each accum type has exactly the same number of fractional bits as its corresponding fract
type, plus a minimum of 4 integral bits. [Editors no te: it is proposed to change this
sentence to: Each accum type has at least the same number of fractional bits as its
corresponding fract type, plus a minimum of 4 integral bits. See discuss ion in A.1.1] The
number of integral bits in the accum types must not decrease in the sequence short accum,
accum, long accum.

5. A conforming implementation shall support at least two different signed fract fixed point
datatypes, and one signed accum fixed point datatype.

ISO/IEC WDTR 18037

- 7 -

6. The concept container is used to identify the address and the size (expressed in bytes) of a fixed
point datavalue. A container is composed of a contiguous sequence of one or more bytes,
holding a fixed point datavalue. Some requirements:
- the size of the container in bits is a multiple of the number of bits per byte for the machine,

and the address of the container is a regular byte address;
- the number of databits (fractional bits and integral bits) in a fixed point datavalue is not

greater than the number of bits in its container;
- the (machine) address of a fixed point datavalue is the (machine) address of (exactly) one of

the bytes that form the container;
- if the size of the container in bits is greater than the number of bits needed for the fixed point

datavalue, the remaining bits (called paddingbits) cannot be used for other purposes;
- if there are paddingbits involved, it is still required that the (machine) address of (one of the

bytes of) the container fully identifies the (machine) address of the fixed point datavalue; in
other words: the alignment of the fixed point datavalue within the container is implicitly
known (from its fixed point datatype designation);

- at programming level (i.e., in the programming language) all fixed point datatypes with the
same valuespace (the same number of databits, same signedness, same position of the
radix point) are the same; there is no distinction between these datatypes with respect to
different alignment/padding strategies.

2.1.2 Overflow and Round ing

Conversion of a real arithmetic value to a fixed-point type may overflow and/or may require
rounding. When the source value does not fit within the range of the fixed point type, the conversion
overflows. Two different behaviors are defined for overflow:

- Saturation: The source value is replaced by the closest available fixed point value. (For
unsigned fixed point types, this will be either zero or the maximal positive value of the fixed point
type. For signed fixed point types it will be the maximal negative or maximal positive value of
the fixed-point type.)

- Modular wrap-around: For unsigned fixed point types, the source value is replaced by a value
within the range of the fixed-point type that is congruent (in the mathematical sense) to the
source value modulo 2^N, where N is the number of integral bits in the fixed point type. (For
example, for unsigned fract types, N equals 0, and the source value is replaced by a value
between 0 and 1 that is congruent to the source value modulo 1.) For signed fixed point types,
the source value is replaced by a value within the fixed point range that is congruent to the
source value modulo 2^(N+1), where N again is the number of integral bits in the fixed point
type. (In either case, the effect is to discard all bits above the most significant bit of the fixed-
point format.)

Overflow behavior is controlled in two ways:

- Either of the type qualifiers sat and modwrap (but not both) can be added to a fixed point type
to control overflow behavior (e.g., sat fract and modwrap long accum).

ISO/IEC WDTR 18037

- 8 -

- In the absence of an explicit sat or modwrap qualifier, overflow behavior is controlled by the
FX_OVERFLOW pragma. The FX_OVERFLOW pragma follows the same scoping rules as
existing STDC pragmas (see clause 6.10.6 of the C standard), and has the following syntax:

#pragma STDC FX_OVERFLOW overflow-switch
where overflow-switch is one of SAT, MODWRAP, or DEFAULT. When the state of the
FX_OVERFLOW pragma is DEFAULT, fixed point overflow has undefined behavior. The default
state of the FX_OVERFLOW pragma is DEFAULT.

If (after any overflow handling) the source value cannot be represented exactly by the fixed point
type, the source value is rounded to either the closest fixed point value greater than the source
value (rounded up) or to the closest fixed-point value less than the source value (rounded down).
Whether rounding is up or down is implementation-defined and may differ for different values and
different situations.
[Editors no te: shou ld this be con trollable via a pragma?]

2.1.3 Type conversion, usual arithmetic conversions

All conversions between a fixed point type and another arithmetic type (which can be another fixed
point type) are defined. Overflow and rounding are handled according to the usual rules for the
destination type. Conversions from a fixed point to an integer type round toward zero. The
rounding of conversions from a fixed point type to a floating-point type is unspecified.

For determining the usual arithmetic conversions, each fixed point datatype has a fixed point
conversion rank. The following types are listed in order of increasing rank:

short fract, fract, long fract, short accum, accum, long accum.
Each unsigned fixed point datatype has the same rank as its corresponding signed fixed point
datatype.

Discussion: the above specified conversion rank favors value over precision, and has as strong
point its simplicity. An alternative scheme, whereby both the value and the precision are taken into
account is the following lattice (the '>' symbol indicates increasing rank):

short fract > fract > long fract
short accum > accum > long accum
short fract > short accum
fract > accum
long fract > long accum

If, with this scheme, the usual arithmetic conversion rule is applied on two fixed point types, the
resulting type is the type with a rank as least as high as the rank of each of the two types according
to the above rules. The resulting type may be different from both the operand types: the resulting
type for a long fract and short accum type is long accum.

In addition to the standard usual arithmetic conversions (see 6.3.1.8), after the conversion rule for
conversion to float, and before the integer promotion rules, the following rules should be inserted:

Otherwise, if one operand has fixed point type and the other operand has integer type, then
no conversions are needed.

ISO/IEC WDTR 18037

- 9 -

Otherwise, if both operands have signed fixed point types, or if both operands have
unsigned fixed point types, then the operand with the lesser fixed point conversion rank is
converted to the type of the operand with the greater rank.

Otherwise, if one operand has signed fixed point type and the other operand has unsigned
fixed point type, the both operands are converted to the signed type corresponding to the
operand type with greatest fixed point conversion rank.

If the type of either of the operands has the sat qualifier, the resulting type shall have the
sat qualifier; if the type of either of the operands has the modwrap qualifier, the resulting
type shall have the modwrap qualifier. [Note: for precision of specification sake, this last
requirement might have to be merged into the previous two]

It is recommended that a conforming compilation system provide an option to produce a diagnostic
message whenever the usual arithmetic conversions cause a fixed point operand to be converted to
floating point.

2.1.4 Operations involving fixed po int types

2.1.4.1 Unary operators

2.1.4.1.1 Prefix and p ostfix increment and d ecrement operators

The prefix and postfix ++ and -- operators have their usual meaning of adding or subtracting the
integer value 1 to or from the operand and returning the value before or after the addition or
subtraction as the result.

2.1.4.1.2 Address and ind irection o perators

[Editors no te: new text] If the type of the operand of the unary & has a fixed point type, the
address of the (smallest) container holding the fixed point value is returned.

It is a constraint violation to apply the unary * operator (the indirect operator) to an operand having
fixed point datatype. [Editors no te: is this needed? Clause 6.5.3.2 already has : The
operand o f the una ry * operator shall have po inter type]

2.1.4.1.3 Unary arithmetic operators

The unary arithmetic operators plus (+) and negation (-) are defined for fixed point operands, with
the result type being the same as that of the operand. The negation operation is equivalent to
subtracting the operand from the integer value zero.

2.1.4.1.4 The sizeof operator

New text: When applied to an operand that has fixed point type, the sizeof operator returns the
size in bytes of the smallest container holding the operand.

ISO/IEC WDTR 18037

- 10 -

2.1.4.2 Binary operators

2.1.4.2.1 Binary arithmetic operators

The binary arithmetic operators +, -, *, and / are supported for fixed point datatypes, with their
usual arithmetic meaning, as follows:

- If the type of one operand is a fixed point type, and the type of the other operand is an integer
type, the result type is the type of the fixed point operand. The integer operand is not first
converted to fixed point before the operation is performed.

- Otherwise, the usual arithmetic conversions apply, and the type of the result is the common type
to which both operands are converted. If both operands are fixed point, the result type includes
any sat or modwrap qualifier from either operand. (For example, if the operands of an
addition have types long accum and sat fract, the result type is sat long accum.)
It is a constraint error if one fixed point operand to have a sat qualifier and the other a
modwrap qualifier.

If the result type of an arithmetic operation is a fixed point type, the operation is performed exact
(according to its mathematical definition), and then overflow handling and rounding is performed for
the result type as explained in the earlier section on Overflow and Rounding. However, if the
mathematical result of the * operator is exactly 1, the closest smaller value representable by the
fixed point result type may be returned as the result, even if the result type can represent the
value 1 exactly. Correspondingly, if the mathematical result of the * operator is exactly -1, the
closest larger value representable by the fixed point result type may be returned as the result, even
if the result type can represent the value -1 exactly. The circumstances in which a 1 or -1 result
might be replaced in this manner are implementation-defined.

2.1.4.2.2 Bitwise shift operators

Shifts of fixed point values using the standard << and >> operators (including the resulting overflow
and rounding behavior) are defined to be equivalent to multiplication or division by a power of two.
The right operand is converted to type int and must be nonnegative and less than the total number
of (nonpadding) bits of the fixed point operand (the left operand). The result type is the same as
that of the fixed point operand. An exact result is calculated and then converted to the result type in
the same way as the other fixed point arithmetic operators.

2.1.4.2.3 Relational operators, equali ty operators

The standard relational operators (<, <=, >=, and >) and equality operators (==, and !=) accept
fixed point operands. The usual arithmetic conversions are applied before the comparison is made.
Fixed point and integer values are compared directly; the integer operand is not converted to fixed
point before the comparison is made.

2.1.4.3 Ass ignment operators

The standard assignment operators +=, -=, *=, and /= are defined in the usual way when either
operand is fixed point. Note, in particular, that, given the declarations

ISO/IEC WDTR 18037

- 11 -

 sat fract a;
 modwrap fract b;

the expression "a += b" violates a constraint because "a + b" does.

The standard assignment operators <<= and >>= are defined in the usual way when the left
operand is fixed point.

2.1.5 Type-generic functions

In this clause, a number of type-generic functions working on fixed point values are defined. Note
that (most of) the functions defined here are truly type-generic functions, and therefore take the
approach for type-generic functions, as defined in clause 7.22 from the C standard, one step further.
For a discussion, see the rationale in A.1.5.

Editors Note: What is the relation with the text in 7.22 of the C standard? Is the list of
type-generic func tions spec ifi ed there also app licable to fixed po int types? The re
might be so me func tions o f interest: fma, frexp.

2.1.5.1 The roundfx function

The roundfx function rounds the value of a fixed point argument to a specified number of
fractional bits. The function takes two arguments:

roundfx (<fixed-value> , <num-fract-bits>)

The roundfx function is type-generic on the first argument: the result type is the type of the first
argument, which must be fixed point. The value of the second argument is (converted to?) type
int and must be nonnegative and less than the number of fractional bits in the fixed point type.
The fixed point value is rounded to the specified number of fractional bits, and this rounded value is
returned as the result. The rounding applied is to-nearest, with unspecified rounding direction in the
halfway case. Fractional bits beyond the rounding point are set to zero in the result.

2.1.5.2 The countls function

The countls function is a type-generic function with a single fixed point argument. The result type
of the function is int; the return value is defined as follows:
- if the value of the fixed point argument a is non-zero, the return value is the largest integer k for

which the expression a<<k does not overflow;
- if the value of the fixed point argument is zero, an integer value is returned that is at least as

large as N-1, where N is the total number of (nonpadding) bits of the fixed point type of the
argument.

2.1.5.3 The bits function

ISO/IEC WDTR 18037

- 12 -

*** MORE WORK NEEDED IN THIS SECTION.

The bits function is a type-generic function with a single fixed point argument. The bits
function returns an integer value equal to the fixed point value of the argument multiplied by 2^F,
where F is the number of fractional bits in the fixed point type. The result type is a signed integer
type big enough to hold all valid result values for the given fixed point argument type. For example,
if fract is 16 bits, then after the declaration

fract a = 0.5;

the value of bits(a) is 0.5 * 2^15 = 0x4000.

2.1.5.4 The fpabs function

The fpabs function is a type-generic function with a single fixed point operand. The result type is
the same as the type of the argument, and the return value is the absolute value of the operand.
Overflow is possible and is handled as specified in the section on Overflow and Rounding .

2.1.6 Fixed po int constants

See discussion text in Annex.

2.1.7 List of open issues

- contents of the <stdfix.h> header file
- fixed point types and default argument promotions
- conversion specifiers for scanf and printf format strings.

2.2 Detailed changes to ISO/IEC 9899:1999

ISO/IEC WDTR 18037

- 13 -

3 Basic I/O hardware address ing

3.1 Rationale
Ideally it should be possible to compile C or C++ source code which operates directly on iohw
registers with different compiler implementations for different platforms and get the same logical
behaviour at runtime. As a simple portability goal the driver source code for a given I/O hardware
should be portable to all processor architectures where the hardware itself can be connected.

3.1.1 Basic Standardisation Objectives

A standardisation method for basic I/O hardware addressing must be able to fulfil three
requirements at the same time:

• A standardised interface must not prevent compilers from producing machine code that has no
additional overhead compared to code produced by existing proprietary solutions. This
requirement is essential in order to get widespread acceptance from the market place.

• The I/O driver source code modules should be completely portable to any processor system
without any modifications to the driver source code being required [i.e. the syntax should
promote I/O driver source code portability across different execution environments.]

• A standardised interface should provide an “encapsulation” of the underlying access
mechanisms to allow different access methods, different processor architectures, and different
bus systems to be used with the same I/O driver source code [i.e. the standardisation method
should separate the characteristics of the I/O register itself form the characteristics of the
underlying execution environment (processor architecture, bus system, addresses, alignment,
endian, etc.].

3.2 Basic I/O-Hardware address ing h eader <iohw.h>

The purpose of the I/O hardware (iohw) access functions defined in a new header file <iohw.h> is to
promote portability of iohw driver source code across different execution environments.

3.2.1 Overview and p rinciples
The iohw access functions create a simple and platform independent interface between I/O driver
source code and the underlying access methods used when addressing the I/O registers in a given
platform.

The primary purpose of the interface is to separate characteristics which are portable and specific
for a given I/O register, for instance the register bit width, from characteristics which are related to a
specific execution environment, for instance the I/O register address, the processor bus type and

ISO/IEC WDTR 18037

- 14 -

endian, device1 bus size and endian, address interleave, the compiler access method etc. Use of
this separation principle enables I/O driver source code itself to be portable to all platforms where
the I/O registers can be connected.

In the driver source code, an I/O register must always be referred with a symbolic name. The
symbolic name must refer to a complete definition of the access method used with the given
register. A standardised I/O syntax approach creates a conceptually simple model for I/O registers:

 symbolic name for I/O register <-> complete definition of the access method

When porting the I/O driver source code to a new platform, only the definition of the access method
(definition of the symbolic name) needs to be updated.

3.2.2 The abstract model

The standardisation of basic I/O hardware addressing is based on a three layer abstract model:

The users portable source code
The users I/O register definitions
The vendors iohw implementation

The top layer contains the I/O driver code written by the compiler user. The source code in this layer
is fully portable to any platform where the I/O hardware can be connected. This code must only
access I/O hardware registers via the standardised function like macros described in this section.
Each I/O register must be identified using a symbolic name

The bottom layer is the compiler vendor's implementation of the iohw header. It provides prototypes
for the functions defined in this section and specifies the various different access methods
supported by the given processor and platform architecture (access methods refers to the various
ways of connecting and addressing I/O registers or I/O devices in the given processor architecture).
Annex B contains some general considerations which should be addressed when a compiler vendor
implements the iohw functionality.

The middle layer contains the users specification of the symbolic I/O register names used by the
source code in the top layer. This layer associates the symbolic names with access-specifications
for the I/O register in the given platform. The syntax notation and access-specification parameters
used in this layer are specific to the platform architecture and are defined by the compiler vendor
and the iohw header. The user must update these I/O register access-specifications when the I/O
driver source code is ported to a different platform.

Annex C proposes a generic syntax for I/O register specifications. Using a general syntax on this
layer may extend portability to include users I/O register specification, so it can be used with
different compiler implementations for the same platform.

1 In this document, the term device is used to mean either a discrete I/O chip og an I/O function block in a single chip
processor. The data bus width has significance to the access method used for the I/O device

ISO/IEC WDTR 18037

- 15 -

3.2.2.1 The modu le set

A typical I/O driver operates with a minimum of three modules, one for each of the abstract layers.

Example:
It is convenient to locate all I/O register access specifications in a separate header file
(called iohw_ta.h in the following).

I/O driver module The I/O driver C source code. Portable across compilers and
platforms. Includes IOHW.H and IOHW_TA.H

IOHW_TA.H Specifies symbolic I/O register names and the corresponding
access methods. Specific for the given execution environment. It
may furthermore be specific for the given IOHW.H specification.
Implemented and maintained by the programmer.

IOHW.H Defines I/O functions and access methods
Typically specific for a given compiler.
Implemented by the compiler vendor.

Example:

 #include <iohw.h>
 #include <iohw_ta.h> // my I/O register definitions for target

 unsigned char mybuf[10];
 //..
 iowr(MYPORT1, 0x8); // write single register
 for (int i = 0; i < 10; i++)
 mybuf[i] = iordbuf(MYPORT2, i); // read register array

The programmer only sees the characteristics of the I/O register itself. The underlying platform, bus
architecture, and compiler implementation do not matter during driver programming. The underlying
system hardware may later be changed without modifications to the I/O driver source code being
necessary.

3.2.3 I/O register characteristics

The principle behind the iohw.h interface is that all I/O register characteristics should be visible to
the driver source code, while all platform specific characteristics are encapsulated by the header
files and the underlying iohw.h implementation.

I/O registers often behave differently from the traditional memory model. They may be “read-only”,
“write-only” or “read-modify-write”, often read and write operations are only allowed once for each
event, etc.
All such I/O register specific characteristic should be visible at the I/O driver code level and should
not be hidden by the iohw.h interface implementation.

3.2.4 The most basic I/O operations

ISO/IEC WDTR 18037

- 16 -

The most basic operations on I/O register hardware are READ and WRITE.
Bit set, bit-clear and bit-invert of individual bits in an I/O hardware register are also commonly used
operations. Many processors have special machine instructions for doing these.
For the convenience of the programmers, and in order to promote good compiler optimisation for bit
operations, the basic logical operations OR, AND and XOR are defined by the iohw.h interface in
addition to READ and WRITE.

All other arithmetic and logical operations used by the driver source code can be build on top of
these few basic I/O operations.

3.2.5 The access_s pec_macros

The access_specifications defined in the header <iohw.h> are used only as parameters in the
functions for defining I/O register access.

The access_spec parameter represents or references a complete description of how the iohw
register should be addressed in the given hardware platform. It is an abstract entity with a well-
defined behaviour2.

The specification method and the implementation of access_specifications are processor and
platform specific.

In general an access_spec definition will specify at least the following characteristics:

• Register size (mapping to a C data type).
• Access limitations (read-only, write-only)
• Bus address for register

Other access characteristics typically specified via the access_spec:

• Processor bus (if more than one).
• Access method (if more than one).
• I/O register endian (if register width is larger than the device bus width)
• Interleave factor for I/O register buffers (if bus width for the device is smaller)
• User supplied access driver functions.

The definition of an I/O register object may or may not require a memory instantiation, depending on
how a compiler vendor has chosen to implement access_specifications. For maximum
performance, this could be a simple definition based on compiler specific address range and type
qualifiers, in which case no instantiation of an access_spec object would be needed in data
memory.

Further details and implementation considerations are discussed in annex B, C and D.

2 This use of an abstract type is similar to the philosophy behind the well-known FILE type. Some general properties for
FILE and streams are defined in the standard, but the standard deliberately avoids telling how the underlying file system
should be implemented.

ISO/IEC WDTR 18037

- 17 -

3.3 The <iohw.h> interface

The header <iohw.h> declare several function like macros which together creates a data type
independent interface for basic I/O hardware addressing.

3.3.1 Function like macros for sing le register access

Synop sis

#include <iohw.h>

iord(access_spec)
iowr(access_spec, value)
ioor(access_spec, value)
ioand(access_spec, value)
ioxor(access_spec, value)

Description
These names maps a iohw register operation to an underlying (platform specific) implementation
which provide access to the I/O register identified by access_spec, and perform the basic operation
READ, WRITE, OR, AND or XOR as identified by the function name on this register.

The data type (the I/O register size) for value parameters and the value returned by iord is defined
by the access_spec definition for the given register. The macro like functions iowr, ioor, ioand
and ioxor do not return a value.

3.3.2 Function like macros for register buffer access

Synop sis

#include <iohw.h>

iordbuf(access_spec, index)
iowrbuf(access_spec, index, value)
ioorbuf(access_spec, index, value)
ioandbuf(access_spec, index, value)
ioxorbuf(access_spec, index, value)

Description
These names maps a iohw register buffer operation to an underlying (platform specific)
implementation which provide access to the I/O register buffer identified by access_spec, and
perform the basic operation READ, WRITE, OR, AND or XOR as identified by the function name on
this register.

ISO/IEC WDTR 18037

- 18 -

The data type (the I/O register size) for value parameters and the value returned by iordbu f is
defined by the access_spec definition for the given register. The functions iowrbuf, ioorbuf,
ioandbu f and ioxorbuf do not return a value.

The index parameter is offset in the register buffer (or register array) starting from the I/O location
specified by access_spec, where element 0 is the first element located at the address defined by
access_spec, and element n+1 is located at a higher address than element n.

It should be noted that the index parameter is the offset in the I/O hardware buffer, not the
processor address offset. Conversion from a logical index to a physical address require that
interleave calculations are performed by the underlying implementation. This is discussed further in
B.2.4

3.3.3 Function like macros for access_s pec initialisation

Synop sis

#include <iohw.h>

io_at_init(access_spec)
io_at_release(access_spec)

Description
The io_at_init function maps to an underlying (platform specific) implementation which provide any
access_specification initialisation before performing any other operation on the I/O register (or set of
I/O registers) identified by access_spec. This macro should be placed in the driver source code so
it is invoked at least once before any other operations on the related registers are performed. This
function does not return a value.

The io_at_release function maps to an underlying (platform specific) implementation which
releases any resources obtained by a previous call to io_at_init for the same access_specification.
This call should be placed in the driver source code so it is invoked once after all operations on the
related registers have been completed. This function does not return a value.

Example:
In an implementation for a hosted environment, the call to io_at_init is used to identify the
point in an execution sequence where the underlying access method should obtain, or have
obtained, a handle from the operating system. This handle obtained is used in all following
access operations on the I/O register. The call to io_at_exit identifies the point in an
execution sequence where the handle can return to the operating system.

If a set of memory mapped I/O registers is specified to use based addressing (defined in
C.3), the underlying implementation would dynamically obtain the base address for the I/O
range from the operating system when io_at_init is invoked (i.e. the base pointer is
initialised). During all the following I/O access operations the I/O register address is
calculated as (base-address + I/O register offset). The underlying implementation later
release the memory range when io_at_exit is invoked.

ISO/IEC WDTR 18037

- 19 -

If no access_specification initialisation is required by a given <iohw.h> header implementation, the
io_at_init and io_at_release definitions may be empty.

3.3.4 Function for access_s pec copying

Synop sis

#include <iohw.h>
io_at_cpy(access_spec dest, access_spec src)

Description
This function maps to an underlying (platform specific) implementation which copies the dynamic
part of the source access_spec to the destination access_spec. The two parameters must have
the same access_specification type. The macro do not return a value.

If access_specification copying is not supported by a given <iohw.h> header implementation, or a
given access specification does not contain any dynamic elements, the io_at_cpy function may be
empty.

A typical use for io_at_cpy is when a set of driver functions for a given I/O device type are used
with multiple hardware instances of the same device. It often provides a faster alternative than
passing the access_spec as a function parameter.

Example

#include <iohw.h>
#include <iohw_ta.h> // MYCHIP_CFG and MYCHIP_DATA are defined
 // relative to a dynamic MYCHIP_BASE

// Portable driver function
uint8_t my_chip_driver(void)
{
 iowr(MYCHIP_CFG, 0x33);
 return iord(MYCHIP_DATA);
}

// Users driver application
uint8_t d1,d2;
// Read from our 2 I/O chips
io_at_cpy(MYCHIP_BASE, CHIP1); // Select chip 1
d1 = my_chip_driver();
io_at_cpy(MYCHIP_BASE, CHIP2); // Select chip 2
d2 = my_chip_driver();

ISO/IEC WDTR 18037

- 20 -

4 Multiple address spaces suppo rt

4.1 Overview and p rinciples

4.1.1 Named address s pace suppo rt.
Multiple address spaces require address space modifiers in C declarations, to associate a variable
with a specific address space. There are two variations: named address spaces support which
targets inherent (processor-architecture-based) multiple address spaces in the target computer, and
user-defined named address spaces, which support user-defined application or system address
spaces.

Address space type qualifiers that refer to inherent address spaces are implementation-defined.
Address space type qualifiers that refer to user-defined address spaces are also user-defined.
Embedded system applications need to be able to refer to the separate memory spaces of the
application space with specific directives.

4.1.2 Process or-architecture-based multiple address s pace suppo rt
Processor-architecture-based multiple address space support is defined by the compiler
implementation. The architecture-based multiple address space support reflects the natural
address spaces of the processor, including but not limited to:

• ROM
• RAM spaces
• Input/Output space
• Segmented ROM
• Segmented RAM

Support for these (disjoint) memory spaces are supported directly in the instruction set of the
processor.

4.1.3 Application-defined multiple address s pace suppo rt
Support will be provided for user-defined declaration of additional memory address spaces, dictated
by application code. Application-defined multiple address spaces require user-supplied access
code. The compiler is responsible for

• Allocating variables, according to the needs of the application, in "normal" address space,
and in space accessed by the user-defined memory device drivers.

• Making calls to device drivers, when accessing variables supported by user-defined device
drivers.

• Automating the process of casting and accessing the data, between calls to access data and
the application.

ISO/IEC WDTR 18037

- 21 -

4.2 Impact on the C langu age usage.

4.2.1 Variable declaration

[Editors no te: to be added : syn tax]
Variables declared with a memory space modifier are allocated in that memory space. Variable
usage remains unaltered. A variable may be re-allocated to a different memory space by changing
the memory space modifier. No further changes to application source code should be necessary.

4.2.2 Pointer declaration
Pointer support for multiple address spaces requires additional constraints on pointer declarations
(ISO/IEC 9899:1999 section 6.7.5.1 Pointer declarators). Compiler support is required for pointers
that are located in any of the available address spaces, and pointers that can be declared as
pointing to a specific address space. The following additional declarations are supported:

mem_space char * ptr; // Pointer located by the compiler to char in
 // mem_space
char * mem_space ptr; // Pointer located in mem_space pointing to
 // char anywhere in memory space
mem_space1 char * mem_space2 ptr; // pointer located in mem_space2,
 // pointing to char in mem_space1.

4.1.4 Pointer usage
Conventional pointers remain unchanged. All of the memory spaces are accessible with an
unmodified pointer. Memory space modified pointers restrict access to the object to the named
space, or restrict the pointer’s location to a specific memory space.

Pointers to a specific address space are restricted to referencing that address space. General
unmodified pointers may access any address space. General pointers may point to a variable
declared within a specific address space.

4.1.5 Portabili ty between implementations
Standard C library support (ISO/IEC 9899:1999 section 7 Libraries) remains unchanged using
unmodified pointers. A library call made with a modified pointer has an implied cast, between a
pointer with a memory space modifier and an unmodified pointer.

Application portability is not compromised. It is required that applications map variable usage to
specific memory spaces at either compile or link time. Code we then port between different target
platforms.

ISO/IEC WDTR 18037

- 22 -

Annex A

Additi onal information and Rationale

A.1 Fixed po int

A.1.1 The fixed po int datatypes

The set of representable floating-point values (which is a subset of the real values) is characterised
by a sign, a precision and the position of the radix point. For those values that are commonly
denoted as floating point values, the characterising parameters are defined within a format (such as
the IEEE formats or the VAX floating point formats), usually supported by hardware instructions, that
defines the size of the container, the size (and position within the container) of the exponent, and
the size (and position within the container) of the sign. The remaining part of the container then
contains the mantissa. [The formats discussed in this section are assumed to be binary floating
point formats, with sizes expressed in bits. A generalisation to other radixes (like radix-10) is
possible, but not done here.] The value of the exponent then defines the position of the radix point.
Common hardware support for floating point operations implements a limited number of floating
point formats, usually characterised by the size of the container (32-bits, 64-bits etc); within the
container the number of bits allocated for the exponent (and thus for the mantissa) is fixed. For
programming languages this leads to a small number of distinct floating point datatypes (for C these
are float, double, and long double), each with its own set of representable values.

For fixed point types, the story is slightly more complicated: a fixed point value is characterised by
its precision (the number of databits in the fixed point value) and an optional signbit, while the
position of the radix point is defined implicitly (i.e., outside the format representation): it is not
possible to deduct the position of the radix point within a fixed point datavalue (and hence the value
of that fixed point datavalue!) by simply looking at the representation of that datavalue. It is however
clear that, for proper interpretation of the values, the hardware (or software) implementing the
operations on the fixed point values should know where the radix point is positioned. From a
theoretical point of view this leads (for each number of databits in a fixed point datatype) to an
infinite number of different fixed point datatypes (the radix point can be located anywhere before, in
or after the bits comprising the value).
There is no (known) hardware available that can implement all possible fixed point datatypes, and,
unfortunately, each hardware manufacturer has made its own selection, depending on the field of
application of the processor implementing the fixed point datatype. Unless a complete dynamic or a
parameterised typesystem is used (not part of the current C standard, hence not proposed here), for
programming language support of fixed point datatypes a number of choices need to be made to
limit the number of allowable (and/or supported or to be supported) fixed point datatypes. In order
to give some guidance for those choices, some aspects of fixed point datavalues and their uses are
investigated here.

ISO/IEC WDTR 18037

- 23 -

For the sake of this discussion, a fixed point datavalue is assumed to consist of a number of
databits and a signbit. On some systems, the signbit can be used as an extra databit, thereby
creating an unsigned fixed point datatype with a larger (positive) maximum value.
Note that the size of (the number of bits used for) a fixed point datavalue does not necessarily equal
the size of the container in which the fixed point datavalue is contained (or through which the fixed
point datavalue is addressed): there may be gaps here!

As stated before, it is necessary, when using a fixed point datavalue, to know the place of the radix
point. There are several possibilities.
The radix point is located immediately to the right of the rightmost (least significant) bit of the
databits. This is a form of the ordinary integer datatype, and does not (for this discussion) form part
of the fixed point datatypes.
- The radix point is located further to the right of the rightmost (least significant) bit of the databits.

This is a form of an integer datatype (for large, but not very precise integer values) that is
normally not supported by (fixed point) hardware. In this document, these fixed point datatypes
will not be taken into account.

- The radix point is located to the left of (but not adjacent to) the leftmost (most significant) bit of
the databits. It is not clear whether this category should be taken into account: when the radix
point is only a few bits away, it could be more 'natural' to use a datatype with more bits; in any
case this datatype can easily (??) be simulated by using appropriate normalise (shift left/right)
operations. There is no known fixed point hardware that supports this datatype.

- The radix point is located immediately to the left of the leftmost (most significant) bit of the
databits. This datatype has values (for signed datatypes) in the interval (-1,+1), or (for unsigned
datatypes) in the interval [0,1). This is a very common, hardware supported, fixed point
datatype. In the rest of this section, this fixed point datatype will be called the type-A fixed point
datatype. Note that for each number of databits, there are one (signed) or two (signed and
unsigned) possible type-A fixed point datatypes.

- The radix point is located somewhere between the leftmost and the rightmost bit of the databits.
The datavalues for this fixed point datatype (type-B fixed point datatypes) have an integral part
and a fractional part. Some of these fixed point datatypes are regularly supported by hardware.
For each number of databits N, there are (N-1) (signed) or (2*N-1) (signed and unsigned)
possible type-B fixed point datatypes.

Apart from the position of the radix point, there are three more aspects that influence the amount of
possible fixed point datatypes: the presence of a signbit, the number of databits comprising the fixed
point datavalues and the size of the container in which the fixed point datavalues are stored.
In the embedded processor world, support for unsigned fixed point datatypes is rare; normally only
signed fixed point datatypes are supported. However, to disallow signed fixed point arithmetic from
programming languages (in general, and from C in particular) based on this observation, seems
overly restrictive.

There are two further design criteria that should be considered when defining the nature of the fixed
point datatypes:
- it should be possible to generate optimal fixed point code for various processors, supporting

different sized fixed point datatypes (examples could include an 8-bit fixed point datatype, but
also a 6-bit fixed point datatype in an 8-bit container, or a 12-bit fixed point datatype in a 16-bit
container);

- it should be possible to write fixed point algorithms that are independent of the actual fixed point
hardware support. This implies that a programmer (or a running program) should have access

ISO/IEC WDTR 18037

- 24 -

to all parameters that define the behaviour of the underlying hardware (in other words: even if
these parameters are implementation defined).

With the above observations in mind, the following recommendations are made.
1. Introduce signed and unsigned fixed point datatypes, and use the existing signed and

unsigned keywords (in the 'normal' C-fashion) to distinguish these types. Omission of either
keyword implies a signed fixed point datatype.

2. Introduce a new keyword and type-specifier fract (similar to the existing keyword int), and
define the following three standard signed fixed point types (corresponding to the type-A fixed
point datatypes, as described above): short fract, fract and long fract. The
supported (or required) underlying fixed point datatypes are mapped on the above in an
implementation-defined manner, but in a non-decreasing order with respect to the number of
databits in the corresponding fixed point datavalue. Note that there is not necessarily a
correspondence between a fixed point datatype designator and the type of its container: when
an 18-bit and a 30-bit fixed point datatype are supported, the 18-bit will probably have the
short fract type and the 30-bit type will probably have the fract type, while the
containers of these types will be the same.

3. Introduce a new keyword and type-specifier accum, and define the following three standard
signed fixed point types (corresponding to the type-B fixed point datatypes, as described above):
short accum, accum and long accum, with similar representation requirements as for the
fract type.

4. If more fixed point datatypes are needed, (or if there is a need to better distinguish certain fixed
point datatypes), an approach similar to the <stdint.h> approach could be taken, whereby
fract_leN_t could designate a (type-A) fixed point datatype with at least N databits, while
fract_leM_leN_t could designate a (type-B) fixed point datatype with at least M integral
bits and N fractional bits. Note that the introduction of these generalised fixed point datatypes is
currently not included in the main text of this Technical Report.

5. In order for the programmer to be able to write portable algorithms using fixed point datatypes,
information on (and/or control over) the nature and precision of the underlying fixed point
datatypes should be provided. The normal C-way of doing this is by defining macro names (like
SHORT_FRACT_FRAC_BITS etc.) that should be defined in an implementation defined
manner.

The C standard , with its defined keywords, allows two additional sizes for fixed point datatypes
(e.g., char fract and long long fract). The specified three sizes were considered to be
enough for the current systems, the long long variant might, for the time being, be added by an
implementation in an implementation-defined manner.

Discussion on issue identified in 2.1.1 point 4:
A type for accumulating sums canno t always be fixed at the same number of f ractional bits
as the associated fractional type.

Many SIMD architectures do not support fixed-point types that ave the same number of
fractional bits as a fractional type, plus some integer bits. To manufacture accumulator
types that are not supported by the hardware would add overhead and often require a loss of
parallelism. Also, often there is no way to detect a carry out of a packed data type, so even
the simple implementation of providing one SIMD word of fractions plus one SIMD word of
integer bits is not always available.

ISO/IEC WDTR 18037

- 25 -

In addition, manufacturing accumulator types of artificial widths is usually unnecessary since
there are already accumulator types supported by the hardware. This means that the
language needs to be flexible enough to allow the existing hardware-supported data types to
be used rather than imposing a strict model that hampers performance.

For example, Radiax pairs 16-bit objects into a 32-bit SIMD word. The accumulator type
provided for arithmetic on these objects is 40 bits wide per object, composed of 32 fractional
bits and 8 integer bits. There is no other accumulator type supported. An artificial
requirement that exactly 16 fractional bits be available would severely impact performance,
and would have the surprising effect that addition would become much slower than
multiplication.

In the VIS architecture, the supported hardware types that can be used as accumulation
types sometimes have more fractional bits than the underlying fractional types, and
sometimes fewer, but never the same number. Also, there is no direct path between SIMD
registers (which overload the floating point registers) and the integer registers, so
constructing an artificial type involves not only a loss of parallelism but also extra loads and
stores to move data between the SIMD registers and the integer registers.

The proposal to fix an accum's fractional bits at the same number as the underlying fract
type is therefore prohibitively expensive on some architectures and needs to be removed.

A.1.2 Overflow and Round ing

A.1.3 Type conversions, usual arithmetic conversions

The fixed point datatypes are positioned 'between' the integer datatypes and the floating point
datatypes: if only integer datatypes are involved then the current standard rules (cf. 6.3.1.1 and
6.3.1.8) are followed, when fixed point operands but no floating point operands are involved the
operation will be done using fixed point datatypes, otherwise everything will be converted to the
appropriate floating point datatype.

Since it is likely that an implementation will support more than one (type-A and/or type-B) fixed point
datatype, in order to assure arithmetic consistency it should be well-defined to which fixed point
datatype a type is converted to before an operation involving fixed point and integer datavalues is
performed. There are several approaches that could be followed here:
- define that the result of any operation on fixed point datatypes should be as if the operation is

done using infinite precision. This gives an implementation the possibility to choose an
implementation dependent optimal way of calculating the result (depending on the required
precision of the expression by selecting certain fixed point operations, or, maybe, emulate the
fixed point expression in a floating point unit), as long as the required result is obtained.

- to define a (implementation defined?) extended fixed point datatype to which every operand is
converted before the operation. It is then important that the programmer has access to the
parameters of this extended fixed point type in order to control the arithmetic and its results.
This could either be the 'largest' type-B fixed point datatype (if supported), or the 'largest' type-A
fixed point datatype.

ISO/IEC WDTR 18037

- 26 -

A.1.4 Operations involving fixed po int types

The decision not to promote integers to fixed-point to balance the operands is clearly a departure
from the way C is normally defined and, in particular, the way the same operations work when
integer and floating-point operands are mixed. The inconsistency has been introduced because
integer values often cannot be promoted honestly to fixed point types. None of the fract types
has any integer bits, and an implementation may have as few as four integer bits in its accum
types.
On such an implementation, it is impossible to convert an integer bigger than 8 to any fixed point
type, which leaves only a limited range of integers to work with. Consider, for example, the problem
of dividing a fixed point value by a (non-constant) integer value which could be as large as 15.

The floating-point types have the property that (on all known machines) the range of all the integers
fits within even the smallest floating-point type, so converting an integer to floating-point at worst
suffers a rounding error (and often not even that). This is definitely not the case for the fixed point
types. On the other hand, unlike with floating-point, fixed point and integer values have very similar
representations, and their operations have similar implementations in hardware. Thus, it is less
trouble for an implementation to mix integer and fixed-point operands and perform the calculation
directly than it would be for floating-point.

The rule about 1 and -1 multiplication results is needed to permit an important optimization for sum-
of-products calculations on many DSPs (sum-of-products being primarily what DPSs are designed
to do). Using the long accum type for the accumulator that holds the running sum, a sum-of-
products (or dot product) can be naturally coded as:

 fract a[N], b[N];
 long accum acc = 0;
 for (ix = 0; ix < N; ++ix) {
 acc += (long accum) a[ix] * b[ix];
 }

While the above would be the obvious code, on many DSPs the multiply-accumulate hardware
really does this:

 acc += (long accum) ((sat long fract) a[ix] * b[ix]);

In other words, the product is saturated to the long fract format before being added into the
accumulator. The only detectable difference between this and the code above occurs when "a[ix]"
and "b[ix]" are both -1, in which case the product is 1, which cannot be represented exactly as a
long fract. In this case (and only this case), the DSP hardware saturates the 1 to the
maximum long fract value before adding.

With the original code above, the rules in the section on "Overflow and Rounding" require that the
product be represented exactly if the result type permits it. Since a 1 can always be represented
exactly by a long accum, the rounding rules do not permit the 1 to be replaced by the maximum
long fract value. (Note that the long fract type makes no appearance in the original
code.) Unfortunately, on processors that only support sum-of-product operations that saturate the

ISO/IEC WDTR 18037

- 27 -

product to long fract, it is not possible to implement the code above efficiently as written
without some compromise. Rather than relax the rounding rules in general, a special case has
been made to cover this condition.

A.1.5 Type-generic functions

If the approach for type-generic functions and function macros, as specified in Clause 7.2 of the
C Standard, was followed for the proposed fixed point related type-generic functions, then first type
specific functions should be defined for each function and each fixed point type, and then, in text
similar to the text of Clause 7.2, the generic function name should be specified, together with the
way in which these generic names correspond to the type specific names.
This approach is not followed, but true type-generic functions are defined without any 'underlying'
type specific functions. What is the rationale here? More text needed?

A.1.6 Fixed po int constants

There are currently two approaches towards fixed point constants:

1. in the `normal' C fashion, by appending a suffix (or a combination of suffixes) to the string
denoting the value of the constant (much like section 6.4.4 of the C standard); or

2. with special syntax "<type-name> (<constant-expression>)".

Both approaches have pro's and con's. It needs to be discussed which approach should be used.

ISO/IEC WDTR 18037

- 28 -

Annex B

Implementing the <iohw.h> header
(Informative annex)

B.1 General

The <iohw.h> header defines a standardised function syntax for basic I/O hardware (iohw)
addressing. This header should normally be created by the compiler vendor.

While this standardised function syntax for basic iohw addressing provides a simple, easy-to-use
method for a programmer to write portable and hardware-platform-independent I/O driver code, the
<iohw.h> header itself may require careful consideration to achieve an efficient implementation.

This section gives some guidelines for implementers on how to implement the <iohw.h> header in a
relatively straightforward manner given a specific processor and bus architecture.

B.1.1 Recommended steps

Briefly, the recommended steps for implementing the <iohw.h> header are:

1. Get an overview of all the possible and relevant ways the I/O register hardware is typically
connected with the given bus hardware architectures, and get an overview of the basic software
methods typically used to address such I/O hardware registers.

2. Define a number of I/O functions, macros and access-specifications which support the relevant
I/O access methods for the intended compiler market.

3. Provide a way to select the right I/O function at compile time and generate the right machine
code based on the access_specification type or access_specification value.

B.1.2 Compiler considerations

In practice, an implementation will often require that very different machine code is generated for
different I/O access cases. Furthermore, with some processor architectures, iohw access will
require the generation of special machine instructions not typically used when generating code for
the traditional C memory model.

Selection between different code generation alternatives must be determined solely from the
access_specification declaration for each I/O register. Whenever possible this access method
selection should be implemented such that it may be determined entirely at compile time, in order to
avoid any runtime or machine code overhead.

ISO/IEC WDTR 18037

- 29 -

For a compiler vendor, selection between code generation alternatives can always be implemented
by supporting different intrinsic access-specification types and keywords designed specially for the
given processor architecture. in addition to the Standard types and keywords defined by the
language.

Simple <iohw.h> implementations limited to the most basic functionality can be implemented
efficiently using a mixture of macros, in-line functions and intrinsic types or functions. See Annex D
regarding simple macro implementations.

Full featured implementations of iohw will require direct compiler support for access_specsifications.
See Annex C regarding a generic access_specification descriptor.

B.2 Overview of I/O Hardware Connec tion Options

The various ways an I/O register can be connected to processor hardware are determined primarily
by combinations of the following three hardware characteristics:

1. The bit width of the logical I/O register.
2. The bit width of the data-bus of the I/O device.
3. The bit width of the processor-bus.

B.2.1 Multi-Address ing and I/O Register Endian

If the width of the logical I/O register is greater than the width of the I/O device data bus, an I/O
access operation will require multiple consecutive addressing operations.

The I/O register endian information describes whether the MSB or the LSB byte of the logical I/O
register is located at the lowest processor bus address.
(Note that the I/O register endian has nothing to do with the endian of the underlying processor
hardware architecture).

Table: Logical I/O register / I/O device address ing overview3

I/O device bus widths

8-bit device bus 16-bit device bus 32-bit device bus 64-bit device bus

Log ical I/O register
widths

LSB-MSB MSB-
LSB

LSB-
MSB

MSB-
LSB

LSB-MSB MSB-
LSB

LSB-
MSB

MSB-
LSB

8-bit register Direct n/a n/a n/a

16-bit register r8{0-1} r8{1-0} Direct n/a n/a

32-bit register r8{0-3} r8{3-0} r16{0-1} r16{1-0} Direct n/a

64-bit register r8{0-7} r8{7-0} r16{0,3} r16{3,0} R32{0,1} r32{1,0} Direct
(For byte-aligned address ranges)

3 Note, that this table describes some common bus and register widths for I/O devices. A given platform may use other
register and bus widths.

ISO/IEC WDTR 18037

- 30 -

B.2.2 Address Interleave

If the size of the I/O device data bus is less than the size of the processor data bus, buffer register
addressing will require the use of address interleave.

Example:
If the processor architecture has a byte-aligned addressing range and a 32-bit processor data bus,
and an 8-bit I/O device is connected to the 32-bit data bus, then three adjacent registers in the I/O
device will have the processor addresses:

<addr + 0>, <addr + 4>, <addr + 8>

This can also be written as
<addr + interleave*0>, <addr+interleave*1>, <addr+interleave*2>

where interleave = 4.

Table: Interleave overview: (bus to bus interleave relations)

Processor bus widthsI/O device bus
widths

8-bit bus 16-bit bus 32-bit bus 64-bit bus

8-bit device bus Interleave 1 interleave 2 Interleave 4 interleave 8

16-bit device bus n/a interleave 2 Interleave 4 interleave 8

32-bit device bus n/a n/a Interleave 4 interleave 8

64-bit device bus n/a n/a n/a interleave 8
(For byte-aligned address ranges)

B.2.3 I/O Conn ection Overview:

The two tables above when combined shows all relevant cases for how I/O hardware registers can
be connected to a given processor hardware bus, thus:

Table: Interleave between adjacent I/O registers in bu ffer

Device bus Processor data bus width

width=8 width=16 width=32 width=64

I/O
Register

width Bus
width

LSB
MSB

No.
Opr.

size 1 size 2 size 4 size 8

8-bit 8-bit n/a 1 1 2 4 8

LSB 2 2 4 8 168-bit

MSB 2 2 4 8 16
16-bit

16-bit n/a 1 n/a 2 4 8

LSB 4 4 8 16 328-bit

MSB 4 4 8 16 32

ISO/IEC WDTR 18037

- 31 -

LSB 2 n/a 4 8 1616-bit

MSB 2 n/a 4 8 16

32-bit n/a 1 n/a n/a 4 8

MSB 8 8 16 32 648-bit

LSB 8 8 16 32 64

LSB 4 n/a 8 16 3216-bit

MSB 4 n/a 8 16 32

LSB 2 n/a n/a 8 1632-bit

MSB 2 n/a n/a 8 16

64-bit

64-bit n/a 1 n/a n/a n/a 8
(For byte-aligned address ranges)

B.2.4 Generic buffer index

The interleave distance between two logically adjacent registers in an I/O register array can be
calculated from 4:

1. The size of the logical I/O register in bytes.
2. The processor data bus width in bytes.
3. The device data bus width in bytes.

Conversion from I/O register index to address offset can be calculated using the following general
formula:

Address_offset = index *
 sizeof(logical_IO_register) *
 sizeof(processor_data_bus) /
 sizeof(device_data_bus)

Assumptions:
• address range is byte-aligned
• data bus widths are a whole number of bytes,
• width of the logical_IO_register is greater than or equal to the width of the

device_data_bus
• width of the device_data_bus is less than or equal to the processor_data_bus.

B.3 Access_sp ecs for diff erent I/O address ing methods

An implementer should consider the following typical addressing methods:

- Address is defined at compile time.

4 For systems with byte aligned addressing

ISO/IEC WDTR 18037

- 32 -

The address is a constant. This is the simplest case and also the most common case with
smaller architectures.

- Base address initiated at runtime.
Variable base-address + constant-offset. I.e. the access_specification must contain an address
pair (address of base register + offset of address).

The user-defined base-address is normally initialised at runtime (by some platform-dependent
part of the program). This also enables a set of I/O driver functions to be used with multiple
instances of the same iohw.

- Indexed bus addressing
Also called orthogonal or pseudo-bus addressing. It is a common way to connect a large
number of I/O registers to a bus, while still only occupying only a few addresses in the processor
address space.
This is how it works: First the index-address (or pseudo-address) of the I/O register is written to
an address bus register located at a given processor address. Then the data read/write
operation on the pseudo-bus is done via the following processor address. i.e. the
access_specification must contain an address pair (the processor-address of indexed bus, and
the pseudo-bus address (or index) of the I/O register itself).

This access method also makes it particularly easy for a user to connect common I/O devices
that have a multiplexed address/data bus, to a processor platform with non-multiplexed busses
using a minimum amount of glue logic. The driver source code for such an I/O device is then
automatically made portable to both types of bus architecture.

- Access via user-defined access driver functions.
These are typically used with larger platforms and with small single device processors (e.g. to
emulate an external bus). In this case the access_specification must contain pointers or
references to access functions.

The access driver solution makes it possible to connect a given I/O driver source library to any kind
of platform hardware and platform software using the appropriate platform-specific interface
functions.

In general, an implementation should always support the simplest addressing case, whether it is the
constant-address or base-address method that is used will depend on the processor architecture.
Apart from this, an implementer is free to add any additional cases required to satisfy a given
domain.
Because of the different number of parameters required and parameter ranges used in an
access_specification, it is often convenient to define a number of different access_specification
formats for the different access methods

ISO/IEC WDTR 18037

- 33 -

B.4 Atomic ope ration

It is a requirement of the <iohw.h> implementation that in each I/O function a given (partial5) I/O
register is addressed exactly once during a READ or a WRITE operation and exactly twice during a
READ-modify-WRITE operation.

It is recommended that each I/O function in an <iohw.h> implementation, be implemented such that
the I/O access operation becomes atomic whenever possible.

However, atomic operation is not guaranteed to be portable across platforms for READ-modify-
WRITE operations (ioor, ioand, ioxor) or for multi-addressing cases.

The reason for this is simply that many processor architectures do not have the instruction set
features required for assuring atomic operation.

B.5 Read-modify-write operations and multi-address ing cases .

In general READ-modify-WRITE operations should do a complete READ of the I/O register,
followed by the operation, followed by a complete WRITE to the I/O register.

It is therefore recommended that an implementation of multi-addressing cases should not use
READ-modify-WRITE machine instructions during partial register addressing operations.

The rationale for this restriction is to use the lowest common denominator of multi-addressing
hardware implementations in order to support as wide a range of I/O hardware register
implementation as possible.
For instance, more advanced multi-addressing I/O register implementations often take a snap-shot
of the whole logical I/O register when the first partial register is being read, so that data will be
stable and consistent during the whole read operation. Similarly, write registers are often made
“double-buffered” so that a consistent data set is presented to the internal logic at the time when the
access operation is completed by the last partial write.
Such hardware implementations often require that each access operation be completed before the
next access operation is initiated.

B.6 I/O initialisation

With respect to the standardisation process it is important to make a clear distinction between I/O
hardware (device) related initialisation and platform related initialisation. Typically three types of
initialisation are related to I/O:
1. I/O hardware (device) initialisation.
2. I/O access initialisation.
3. I/O selector initialisation.

Here only I/O access initialisation and I/O selector initialisation is relevant for basic I/O hardware
addressing.

5 A 32 bit logical register in a device with an 8 bit data bus contains 4 partial I/O registers

ISO/IEC WDTR 18037

- 34 -

I/O hardware initialisation is a natural part of a hardware driver and should always be considered as
a part of the I/O driver application itself. This initialisation is done using the standard functions for
basic iohw addressing. iohw initialisation is therefore not a topic for the standardisation process.

I/O access initialisation concerns the initialisation and definition of access_spec objects.
This process is implementation defined. It depends both on the platform and processor architecture
and also on which underlying access methods are supported by the <iohw.h> implementation.

The function:

io_at_init(access_spec)

can be used as a portable way to specify in the source code where and when such initialisation
should take place.

I/O selector initialisation is used when, for instance, the same I/O driver code needs to service
multiple iohw devices of the same type.

A standard solution is to define multiple access_specification objects, one for each of the hardware
devices, and then have the access_specification passed to the driver functions from a calling
function.

Another solution is to use access_specification copying and access_specsifications with dynamic
access information. The function:

io_at_cpy(access_spec_dest, access_spec_src)

provides a portable way to do this.

With most free-standing environments and embedded systems the platform hardware is well
defined, so all access_specsifications for I/O registers used by the program can be completely
defined at compile time. For such platforms standardised I/O access initialisation is not an issue.

With larger processor systems I/O hardware is often allocated dynamically at runtime. Here the
access_specification information can only be partly defined at compile time. Some platform
software dependent part of it must be initialised at runtime.

When designing the access_spec object a compiler implementer should therefore make a clear
distinction between static information and dynamic information; i.e. what can be defined and
initialised at compile time and what must be initialised at runtime.
Depending on the implementation method and depending on whether the access_spec objects
need to contain dynamic information, the access_spec object may or may not require an
instantiation in data memory. Better execution performance can usually be achieved if more of the
information is static.

ISO/IEC WDTR 18037

- 35 -

Annex C

Generic access_s pec desc riptor for I/O hardware address ing
(Informative annex)

C.1 Generic access_s pec desc riptor

This informative annex proposes a consistent and complete specification syntax for defining I/O
registers and their access methods in C.

C.1.1 Background

Current work has shown that there are three basic requirements which must not be compromised by
any standardised solution for portable I/O register access:

- The symbolic I/O register name used in the I/O driver code must refer to a complete definition
of the access method .

- The standardised solution must be able to encapsulate all knowledge about the underlying
processor, platform, and bus system.

- It should provide a no-overhead solution (for simple access methods).

In order to fulfil the first two requirements in a consistent way, it should be possible to refer to a
complete access_spec specification as a single entity. This is necessary, for instance, to pass
access_spec parameters between functions.

This can been achieved in several different ways. Prior art has used a number of (intrinsic) memory
type qualifiers or special keywords, which have varied from compiler to compiler and from platform
to platform.

However, type qualifiers have always tended to be an inadequate description method when more
complex access methods are needed. For instance, it must be possible to encapsulate all access
method variation possible in the target platform. These differences include the widths of I/O
registers, and the qualities of the I/O device bus and processor bus: register interleave values, I/O
register endian specifications, and so on. Similarly, type qualifiers are usually inadequate when
more complex addressing methods are used (base pointer addressing, pseudo-bus addressing,
addressing via user device drivers, and others).

This paper proposes a generic syntax for defining the access_spec for an I/O register. The syntax is
a new approach and a super-set solution, intended to replace prior art.

C.2 Syntax spec ifi cation

Access specification:

ISO/IEC WDTR 18037

- 36 -

#pragma IODEF ACCESS_METHOD_NAME (parameter list) SYMBOLIC_PORT_NAME;

ACCESS_METHOD_NAME
Identify how the parameter list should be interpreted.

parameter list:
access method independent parameter list , access method specific parameter list

access method independent parameter list:
type for I/O register value (size of I/O register) ,
access limitation type ,
I/O register device bus type (size and endian of I/O device bus)

type for I/O register value (size of I/O register):
uint8_t
uint16_t
uint32_t
uint64_t
bool
(+ optionally any basic type native to the implementation)

access limitation type: // for compile time diagnostic
ro_t //read_only
wo_t //write_only
rw_t //read_write
rmw_t //read_modify_write

I/O register device bus type:
device8 // register width = device bus width = 8 bit
device16 // register width = device bus width = 16 bit
device16l // register width > device bus width, MSB on low address
device16h // register width > device bus width, MSB on high address
device32 // register width = device bus width = 32 bit
device32l // register width > device bus width, MSB on low address
device32h // register width > device bus width, MSB on high address
device64 // register width = device bus width = 64 bit
(+ optionally any bus width native to the implementation)

access method specific parameter list:
// Depends on the given access method. Examples are given later.
// Three typical parameters are:
Primary address constant ,
Processor bus width type,
Address mask constant

Processor bus width type:
bw8 // 8 bit bus
bw16 // 16 bit bus
bw32 // 32 bit bus
bw64 // 64 bit bus
(I.e. any bus widths native to the implementation)

An implementation must define at least one access method for each processor addressing range.
For instance, for the 80x86 CPU family, an implementation must define at least two
access_methods, one for the memory-mapped range, and one for the I/O-mapped range.
If several different access methods are supported for a given address range, then an access
specification method must exist for each access method.

ISO/IEC WDTR 18037

- 37 -

The ACCESS_METHOD_NAME is an identifier for the parameter set enclosed in the parenthesis. It
is an implementation-defined keyword which tells the compiler how to interpret the parameter set. A
compiler will typically support a number of different access_spec descriptors.

C.3 Examples of access_ spec de scriptors

Below are some examples of access_spec parameter combinations for different (typical) access
methods. (Each pragma specification below is in the source code placed on a single line).

Direct addressing:

#pragma IODEF MM_DIRECT(
type for I/O register value (size of I/O register),
access limitation type,
I/O register device bus type (size and endian of I/O device bus),
primary address constant,
processor bus width type
) PORT_NAME;

The I/O register at the primary address is addressed directly. If the bit width of the I/O
register is larger than the I/O device bus width, then the access operation is built from
multiple consecutive addressing operations.

Based addressing:

#pragma IODEF MM_BASED(
type for I/O register value (size of I/O register),
access limitation type,
I/O register device bus type (size and endian of I/O device bus),
primary address constant,
processor bus width type,
base variable
) PORT_NAME;

The I/O register at the primary_address + value of base_variable is addressed directly. If
the bit width of the I/O register is larger than the I/O device bus width, then the access
operation is built from multiple consecutive addressing operations.

Indexed-bus addressing:

#pragma IODEF MM_INDEXED(
type for I/O register value (size of I/O register) ,
access limitation type ,
I/O register device bus type (size and endian of I/O device bus),
primary address constant,
processor bus width type,
secondary address parameter
) PORT_NAME;

The I/O register on an indexed bus (also called a pseudo-bus) is addressed in the following
way. The primary address is written to the register given by the secondary address
parameter (= initiate indexed bus address). The access operation itself is then done on the
location (secondary address parameter+1 = data at indexed bus).

ISO/IEC WDTR 18037

- 38 -

This method is a common way to save addressing bandwidth. The method also makes it
particularly easy to connect devices using a multiplexed address/data bus interface to a
processor system having a non-multiplexed interface.

Device driver addressing:

#pragma IODEF MM_DEVICE_DRIVER(
type for I/O register value (size of I/O register) ,
access limitation type ,
I/O register device bus type (size and endian of I/O device bus),
primary address constant,
processor bus width type,
name of driver function for register write,
name of driver function for register read
) PORT_NAME;

The I/O register is addressed by invoking (user-defined) driver functions. If the bit width of
the I/O register is larger than the I/O device bus width, then the access operation is built
from multiple consecutive addressing operations. (Alternatively, the I/O register device bus
type, processor bus width type and the primary address could be transferred to the driver
functions.)

Direct bit addressing:

#pragma IODEF MM_BIT_DIRECT(
type for I/O register value (size of I/O register),
access limitation type,
I/O register device bus type (size and endian of I/O device bus),
primary address constant,
processor bus width type,
bit location in register constant,
) PORT_NAME;

The I/O register at the primary address is addressed directly.

Examples:

#pragma IODEF MM_DIRECT(uint8_t,rw_t,device8,0x3000,bw8) MYPORT;
uint8_t a = iord(MYPORT,0xAA); // Read single register

MYPORT is an 8-bit read-write register, located in a device with an 8-bit data bus, connected to a
(memory-mapped) 8-bit processor bus at address 0x3000.

#pragma IODEF MM_DIRECT(uint16_t,wo_t,device8l,0x200,bw16) PORTA;
iowr(PORTA,0xAA); // Write single register

PORTA is a 16-bit write-only register, located in a device with an 8-bit data bus (with MSB register
part located at the lowest address), where the device is connected to a (memory-mapped) 16-bit
processor bus at address 0x200.

Use of user-defined device drivers:

ISO/IEC WDTR 18037

- 39 -

// Memory buffer addressed via user-defined access drivers
#pragma IODEF MM_DEVICE_DRIVER

<uint8_t,rmw_t,device8,0xA,my_wr_drv,my_rd_drv> DRVREG;

// User-defined read driver to be invoked by compiler
inline uint8_t void my_rd_drv(int index)

{
// some driver code
}

// User-defined wr driver to be invoked by compiler
inline void my_wr_drv(int index , uint8_t dat)

{
// some driver code
}

// user code
int i;
i = iord(DRVREG); // = call of my_rd_drv(0xA);
for (i = 0; i < 0xA0; i++)
 iowrbuf(DRVREG,i,0x0); // = call of my_wr_drv(i+0xA,0)

C.4 Parsing

The access specifications are parsed at compile time.

If the symbolic port name is used directly in iord(..) / iowr(..) / etc. functions, the code can be
completely optimised at compile time: all information for doing this is available to the compiler at that
stage. Based on the combined parameter set, the compiler will typically select among several
internal intrinsic inline access functions to generate the appropriate code for the access operation.
No memory instantiation of an access_spec object is needed. This will fulfil the third of the primary
requirements in C.1.1 (no-overhead solution).

Example:
#pragma IODEF MM_DIRECT(uint16_t,rmw,device8l,0x3456,bw16) MY_PORT1;
uint16_t d;
//...
d = iord(MY_PORT1); // no-overhead in-line code
iowr(MY_PORT1, 0x456);

If the symbolic port name is referenced via a pointer, then an access_spec object must be
instantiated in memory; (slower) generic functions are invoked by the iord(..)/iowr(..)/etc. functions.
In this case, the access_spec parameter is mostly evaluated at runtime. (This approach is similar to
the one used for extern inline functions in C)

Example:

#pragma IODEF MM_DIRECT(uint16_t,rmw_t,device8l,0x3456,bw16) MY_PORT1;
#pragma IODEF MM_DIRECT(uint16_t,ro_t,device16l,0x7890,bw16) MY_PORT2;

uint16_t foo(MM_DIRECT * iop)
 {
 return iord(iop); // invoke some generic iord function

ISO/IEC WDTR 18037

- 40 -

 }

uint16_t a;
a = foo(MY_PORT1);
a +=foo(MY_PORT2);

C.5 Comments on syntax no tation

The advantages with the proposed notation are: that it can be made reasonable consistent across
processor and bus architectures, and (most importantly) it will be both fairly easy to comprehend
and to use for the average embedded programmer. (In contrast to this are pure macro-based
implementations, which tend to become rather complex to understand, create, and maintain for the
user.)

The header file which defines the hardware will look simple (typically, like a list, with one register
definition per text line). This makes it easy for a user to adapt an existing access_spec definition to
new hardware. Maintenance becomes much simpler.

ISO/IEC WDTR 18037

- 41 -

Annex D

Migration pa th for iohw.h implementations .
(Informative annex)

D.1 Migration path for iohw.h implementations

It may take some time before compilers have full featured support for access_specs based on
intrinsic functionality. Until then efficient iohw implementations with a limited feature set can be
implemented using C macros. This enable new I/O driver functions based on the iohw interface for
basic I/O hardware (iohw) addressing to be used with existing older compilers.

D.2 <iohw.h> implementation exa mple based on C macros

The following example illustrates how a simple but efficient <iohw.h> implementation can be
created.

This implementation provide these recommended features:
- I/O access to 8,16 and 32 bit registers.
- Direct I/O access as memory mapped I/O
- I/O access via (intrinsic or user) access driver functions.
- I/O buffer access with register interleave.

This implementation does not provide these features:
- Support for bit access.
- Register multi-addressing and I/O register endian (register widths larger than the I/O device bus

width)
- More advance addressing methods (other that what can be implemented via access driver

functions)
- Pass of access_spec parameters between functions.

D.2.1 The <iohw.h> header

The first part implements the <iohw.h> macro functions and includes <stdint.h>. The OR, AND, and
XOR operations are here implemented as RD-modify-WR operations on the C source level.
Then a number of access_spec macros are defined for memory mapped I/O access and access via
(intrinsic) driver functions. The purpose of these macros is to simplify the users I/O hardware
register definitions. New access methods can be added along the same line.

//*********************** Start of IOHW ***************************
ifndef IOHW_H
define IOHW_H

// Define standard function macros for I/O hardware access
#define iord(NAME) (NAME##_RDFUNC(NAME##_ADR))
#define iowr(NAME, VAL) (NAME##_WRFUNC(NAME##_ADR, (VAL)))

ISO/IEC WDTR 18037

- 42 -

#define ioor(NAME, VAL) (NAME##_WRFUNC(NAME##_ADR, (NAME##_RDFUNC(NAME##_ADR) | (VAL))))
#define ioand(NAME, VAL) (NAME##_WRFUNC(NAME##_ADR, (NAME##_RDFUNC(NAME##_ADR) & (VAL))))
#define ioxor(NAME, VAL) (NAME##_WRFUNC(NAME##_ADR, (NAME##_RDFUNC(NAME##_ADR) ^ (VAL))))

#define iordbuf(NAME, INDEX) (NAME##_RDFUNC(NAME##_ADR+(INDEX)*NAME##_INTL))
#define iowrbuf(NAME, INDEX, VAL) (NAME##_WRFUNC(NAME##_ADR+(INDEX)*NAME##_INTL, (VAL)))
#define ioorbuf(NAME, INDEX, VAL) (NAME##_WRFUNC(NAME##_ADR+(INDEX)*NAME##_INTL,\
 (NAME##_RDFUNC(NAME##_ADR+(INDEX)*NAME##_INTL) | (VAL))))
#define ioandbuf(NAME, INDEX, VAL) (NAME##_WRFUNC(NAME##_ADR+(INDEX)*NAME##_INTL, \
 (NAME##_RDFUNC(NAME##_ADR+(INDEX)*NAME##_INTL) & (VAL))))
#define ioxorbuf(NAME, INDEX, VAL) (NAME##_WRFUNC(NAME##_ADR+(INDEX)*NAME##_INTL, \
 (NAME##_RDFUNC(NAME##_ADR+(INDEX)*NAME##_INTL) ^ (VAL))))

#define io_at_init(NAME) NAME##_INIT
#define io_at_release(NAME) NAME##_RELEASE
// the only dynamic access_spec parameter in this implementation is the address
#define io_at_cpy(DNAME, SNAME) ((DNAME##_ADR) = (SNAME##_ADR))

// Include standard integer type definitions similar to:
// #define uint8_t unsigned char
// #define uint16_t unsigned short
// #define uint32_t unsigned long
#include <stdint.h>

// Some access_spec macros which simplify the users access_specs definitions
// These macros are platform specific (intrinsic)
// There should be one definition for each addressing range, register width and
// access method supported

// Some access macros for simple memory mapped I/O
#define RDPTR8(address) (* (volatile uint8_t *) (address))
#define WRPTR8(address,val) ((* (volatile uint8_t *) (address)) = (uint8_t)(val))
#define RDPTR16(address) (* (volatile uint16_t *) (address))
#define WRPTR16(address,val) ((* (volatile uint16_t *) (address)) = (uint16_t)(val))
#define RDPTR32(address) (* (volatile uint32_t *) (address))
#define WRPTR32(address,val) ((* (volatile uint32_t *) (address)) = (uint32_t)(val))

// Some access macros for access via (intrinsic) I/O hardware access functions
#define RDFUNC8(address) (_inp((uint16_t)(address)))
#define WRFUNC8(address,val) (_outp((uint16_t)(address),(uint8_t)(val)))
#define RDFUNC16(address) (_inpw((uint16_t)(address)))
#define WRFUNC16(address,val) (_outpw((uint16_t)(address),(uint16_t)(val)))
#define RDFUNC32(address) (_inpd((uint16_t)(address)))
#define WRFUNC32(address,val) (_outpd((uint16_t)(address),(uint32_t)(val)))

// Prototype for the (intrinsic) I/O hardware access functions
uint8_t _inp(uint16_t adr);
uint16_t _inpw(uint16_t adr);
uint32_t _inpd(uint16_t adr);
void _outp(uint16_t adr, uint8_t val);
void _outpw(uint16_t adr, uint16_t val);
void _outpd(uint16_t adr, uint32_t val);

endif
//*********************** End of IOHW ***************************

ISO/IEC WDTR 18037

- 43 -

D.2.2 The users I/O register definitions

For each I/O register (each symbolic name) a complete definition of the access method must be
created. With this iohw implementation the user must define:
- The access method for RD and/or WR operations (which also define the register size and select

between memory mapped I/O or access via driver functions).
- The I/O register address
- The interleave factor for register arrays.

These platform dependent I/O register definitions are normally placed in a separate header file.
Here called <iohw_ta.h>.

//****** Start of user I/O register definitions (IOHW_TA.H) ******
#ifndef IOHW_TA
#define IOHW_TA

#define MYPORTS_INIT {/* No initialization needed in this system */}
#define MYPORTS_RELEASE {/* No release needed in this system */}

// REG_A register is accessed via a base address
extern uint16_t base_adr; // is placed in some platform dependent C module
#define REG_A_ADR base_adr
#define REG_A_WRFUNC WRFUNC8
#define REG_A_RDFUNC RDFUNC8

// MYPORT1 is a bidirectional memory mapped register
#define MYPORT1_ADR 0x1234 // Defines physical address
#define MYPORT1_WRFUNC WRPTR8 // Defines access method, bus type and register size
#define MYPORT1_RDFUNC RDPTR8

// MYPORT2 is a write-only memory mapped register
// iord(),ioor(),ioand(),ioxor() will produce a compiler warning
#define MYPORT2_ADR 0x4567
#define MYPORT2_WRFUNC WRPTR16 // Only write operations is defined

// MYPORT3 is a read-only memory mapped register
// iowr(),ioor(),ioand(),ioxor() will produce a compiler warning
#define MYPORT3_ADR 0x7870
#define MYPORT3_RDFUNC RDPTR16 // Only read operations is defined

// MYPORT4 is a bidirectional port accessed via (intrinsic) driver functions
#define MYPORT4_ADR 0x12
#define MYPORT4_WRFUNC WRFUNC8
#define MYPORT4_RDFUNC RDFUNC8

// MYPORT5 is a bidirectional memory mapped register array
#define MYPORT5_ADR 0x1234 // Defines physical address
#define MYPORT5_WRFUNC WRPTR8 // Defines access method, bus type and register size
#define MYPORT5_RDFUNC RDPTR8
#define MYPORT5_INTL 2 // 16 bit processor bus / 8 bit I/O device bus

// MYPORT6 is yet another register of the same type as MYPORT4
#define MYPORT6_ADR 0x234
#define MYPORT6_WRFUNC WRFUNC8
#define MYPORT6_RDFUNC RDFUNC8
#endif
//************ End of user I/O register definitions ********************

ISO/IEC WDTR 18037

- 44 -

D.2.3 The driver function

The driver function should include <iohw.h> and the user I/O register definitions for the target
system <iohw_ta.h>. The example below tests all operations on all the previous I/O register
definitions.
Note that illegal I/O register access operations in the driver code will be detected at compile time ex.
read of a write-only register or write of a read-only register.

#include <iohw.h> // includes stdint.h
#include <iohw_ta.h> // My register definitions

uint8_t cdat;
uint16_t idat;

uint16_t my_func(void)
 {
 uint16_t t = (uint16_t) iord(REG_A);
 iowr(REG_A,0x80);
 return t;
 }

void my_test_driver (void)
 {
 io_at_init(MYPORTS);

 // Test bidirectional memory mapped I/O port
 cdat = iord(MYPORT1);
 iowr(MYPORT1,0x12);
 iowr(MYPORT1,cdat);
 ioor(MYPORT1, 0x23);
 ioand(MYPORT1,0x34);
 ioxor(MYPORT1,0xf0);

 // Test unidirectional I/O ports
 iowr(MYPORT2,0x3455);
 idat = iord(MYPORT3);

 // Test bidirectional I/O register accessed via functions
 cdat = iord(MYPORT4);
 iowr(MYPORT4,0x12);
 iowr(MYPORT4,cdat);
 ioor(MYPORT4, 0x23);
 ioand(MYPORT4,0x34);
 ioxor(MYPORT4,0xf0);

 // Test buffer functions
 cdat = iordbuf(MYPORT5,20);
 iowrbuf(MYPORT5,43,0x12);
 ioorbuf(MYPORT5,43,0x12);
 ioandbuf(MYPORT5,43,0x02);
 ioxorbuf(MYPORT5,43,0x12);

 // These statements will produce compiler warnings
 // idat = iord(MYPORT2); // Error write-only port
 // iowr(MYPORT3,4565); // Error read-only port

 // REG_A, MYPORT4 and MYPORT6 must be of the same type
 io_at_cpy(REG_A, MYPORT4);

ISO/IEC WDTR 18037

- 45 -

 idat = my_func(); // Access MYPORT4 via driver
 io_at_cpy(REG_A, MYPORT6);
 idat = my_func(); // Access MYPORT6 via driver
 io_at_release(MYPORTS);
 }

ISO/IEC WDTR 18037

- 46 -

Annex E

Embedded s ystems extended memory suppo rt.
(Informative annex)

E.1 Embedded systems extended memory suppo rt

E.1.1 Modifiers for named address s paces

Applications on small-scale embedded systems run in a non-hosted environment, and on resource-
constrained systems. Compilers for such systems are responsible for freeing the application
developer from most, but not all, target-specific responsibilities. Embedded systems, including most
consumer electronics products and DSP-driven devices, are optimized to support the requirements
of their intended applications. Their central processors generally contain many separate address
spaces. C language support for these systems extends the C linear address space to an address
space that, although linear within memory spaces, is not always created equal. Application
developers need the vocabulary to efficiently express their application to the target hardware.

Named address space type modifiers allow the application developer to express a very specific
requirement, that variables be associated with a specific memory space. In turn, the compiler can
generate more correct code for the target implementation.

E.1.1.1 Named address space examples.

Digital signal processing algorithms require efficient access to data contained in two separate
memory arrays. The architecture of DSPs is still evolving, but at the application level, programmers
need to define and access arrays that are used to process filter functions; these arrays almost
always have a hardware identity (separate memory spaces or special indexing modes). There is a
clear need for the application developer to define the buffers used in the X and Y sides of the filter in
separate and non-interfering memory spaces. The alternative is a significant, unnecessary,
performance penalty.

Declarations

fract xside x[size];
fract yside y[size];

The use of named address space modifiers (xside,yside) clearly tell the compiler that the arrays
x and y will be allocated into separate, (presumably) mutually-exclusive, address spaces.

The use of named address space type qualifiers can have a positive effect on the allocation and use
of pointers. Again, drawing from the DSP example,

fract * xside xptr;

ISO/IEC WDTR 18037

- 47 -

Such a declaration describes a pointer that is limited to accessing data located in the xside
memory area. The xptr declaration gives the compiler the option of using shorter references.

E.1.1.2 Embedded system examples

Embedded systems generally support three or four address spaces: execution memory, general
purpose random access memory, input/output access, and sometimes a fast random access
memory. These address spaces are normally supported by the compiler, and the names assigned
would be implementation- and target-specific. Different compiler implementations targeting the
same processors would normally support the same set of multiple address spaces.

Embedded systems often require user-defined address spaces, to support C-language access to
software-driven resources. Examples include external data RAM and non-volatile memory, both of
which are often connected through a software-driven bus.

E.1.2 User-defined device drivers

Many embedded systems include memory that can only be accessed with some form of device
driver. These include memories accessed by serial data busses (I2C, SPI), and on-board
non-volatile memory that must be programmed under software control. Device-driver memory
support is used in applications where the details of the access method can be separated from the
details of the application.

In contrast to memory-mapped I/O, the extended memory layout and its use should be
administrated by the compiler/linker.
Language support for embedded systems needs to address the following issues:

1) Memory with user-defined device drivers. User-defined device drivers are required for
reading and writing user-defined memory.
• Memory-read functions take as an argument an address in the user-defined memory

space, and return data of a user-defined size.
• Memory-write functions take two arguments, an address in the user-defined memory

space and data with a user-specified size. (note re: any return value?)
• Applications require support for multiple user-defined address spaces.
• User-defined memory areas may not be contiguous. Most of the applications have

gaps in the addressing within user-defined memory areas.
2) The compiler is responsible for:

• Allocating variables, according to the needs of the application, in "normal" address
space, and in space accessed by the user-defined memory device drivers.

• Making calls to device drivers, when accessing variables supported by user-defined
device drivers.

• Automating the process of casting and accessing the data, between calls to access
data and the application.

3) Application variables in user-defined memory areas :
• Need to support all of the available data types. For example, declarations for

fundamental data types, arrays, structures.
• Users need to direct the compiler to use a specific memory area.

ISO/IEC WDTR 18037

- 48 -

• The compiler needs to be free to use user-defined memory area as a generic,
general-purpose memory area, for the purposes of a variable spill area.

The following declaration shows all the information that is needed to declare memory for use with
user-defined device drivers.

typemod USER_MEMORY <
 access limitation type ,
 device driver for data read,
 device driver for write,
 mary address constant, // Base address of memory in
 // the drivers address space
 address range // Size of memory handled by
 // the device drivers
 [optional additional address range definitions]
 > memory_name;

The typemod definition is a method of encapsulating the memory declaration. typemod ties variable
declarations to device drivers, and provides the compiler a means of using data that the user
provides to manage variables that are required by an application. User-defined memory may be
global in nature, or local to one program segment.

typemod USER_MEMORY <rmw_t,
 ddram_r,
 ddram_w,
 0x90,0x30
 0xD0,0x30
 > ddram

/* A typemod definition always specifies a linear memory (fragment(s))*/

/* function prototypes to read and write user-defined memory.
 It is the responsibility of the device driver to transfer
 the number of bytes requested. An optimizing compiler
 can pass structures or data, and the driver will
 optimize the transfer */

void ddram_w(int location, char *src, int size);
void ddram_r(int location, char *desc, int size);

char a; /* normal memory declarations */
int b;
long c;

// Modifier puts variable in user-named address space

char ddram wa;
int ddram wb;
long ddram wc;
char ddram ar[10];
unsigned int ddram wc;

wa = 0x33; // ddram_w called (must be stored as an int)

ISO/IEC WDTR 18037

- 49 -

a = wa; // ddram_r called once, MSB turncated
b = wb; // ddram_r called once
c = wc; // ddram_r called more than once (implementation defined)

ISO/IEC WDTR 18037

- 50 -

Annex F

Func tionalit y no t inc luded in this Techn ical Report.
(Informative annex)

F.1 Circu lar buffers

The concept of circular buffers is widely used within the signal processing community. An example
of the use of the concept of circular buffers is in a FIR filter, where it is used to reduce the number of
memory accesses. The functionality of a FIR filter can described in this way with current C:

int x[N+1]; // data values
int h[N+1]; // coefficient values
long int accu = 0;

x[0] = new_value;

accu = x[N] * h[N];

for(i=N-1; i>0; i--)
{
 accu += (long int) x[i] * h[i];
 x[i]= x[i-1];
}

The datavalue copy in the last statement in the for loop would be unnecessary, if the concept of a
circular buffer was employed here, reducing the number of memory accesses. Many digital signal
processors have direct support in their addressing hardware to provide zero-overhead circular
addressing. Zero-overhead means here that calculating the address for an access to a circular
buffer can be done in the same time as performing a regular address calculation, including the
wrap-around check and, if necessary, the execution of the wrap-around. However there are often
many restrictions on how hardware supported circular addressing can be used. E.g., only address
increments by one are allowed in some implementations, and there may be requirements to the size
and/or alignment of the buffer.

Since the functional specifications of the support for circular addressing in various processors is so
divers, it is difficult to define an abstract model that can be used in a natural manner in the
C language, and that also can be translated efficiently for the various hardware paradigms.
Therefore, in this Technical Report no proposals are made for language extensions to support
circular buffers. Should, in the future, a single approach towards circular addressing become
dominant in the market, then an appropriate C language construct could be defined.

ISO/IEC WDTR 18037

- 51 -

Some current approaches to circular addressing are given below.
- Add a new keyword (for instance, circ) to the C language, that allows a programmer to

indicate that an array or pointer with this qualifier is to be accessed with circular addressing.
- Another solution is to define a new library function or macro, CIRC(), which could be used in the

following manner:
int *p;

p = CIRC(p+1, /* array info */);
// this does an increment by one of p

Array info in this example covers the starting address and end address of the address range
where circular addressing is desired. A compiler for an architecture that has direct hardware
support for circular addressing is then free to optimize this function call away, and exploit the
capabilities of the hardware.

- In the current C language there is provision to specify circular buffers, however only when using
array index notation:

accum += (long int) x[i % N]*h[i];
It is possible for a clever optimizer to recognize that this in fact is a circular buffer and exploit the
hardware support for this. This has the advantage that the use of circular buffers is already
possible within the current C language, but it requires the programmer to use array indices
rather than pointers. Furthermore it is not possible to specify any alignment constraint on the
allocated buffer, which might be necessary for the underlying hardware implementation.

No preferred solution is specified here.

F.2 Complex data types

In this Technical Report no complex fixed point datatypes are been defined. However in C complex
datatypes are already existing for floating point numbers. As fract and accum types can be
viewed upon as an alternative to floating-point numbers in some applications it is worthwhile
considering extending the definition of complex types in C to include fract and accum bases. It will
be beneficial for the user community to standardize such data types as they have a clear usage in
an area like communications signal processing.

