Proposal for C2Y
 WG14 N3232

Title:	Round-trip rounding
Author, affiliation:	C FP group
Date:	2024-03-05
Proposal category:	Editorial
Reference:	N3219

This proposal addresses an issue reported to CFP by Vincent Lefevre:

The *_DECIMAL_DIG macros are defined as follows:
number of decimal digits, n, such that any floating-point number with p radix b digits can be rounded to a floating-point number with n decimal digits and back again without change to the value, ...

However, this is true only if rounding to nearest is used for these roundings. Ditto for the DECIMAL_DIG macro.

The same applies to the *_DIG macros.
Suggested changes (change marks relative to N3219):
In 5.2.5.3.3 \#31, change:

- number of decimal digits, n, such that any floating-point number with p radix b digits can be rounded to a floating-point number with n decimal digits and back again, using to-nearest rounding for both roundings, without change to the value, ...

In 5.2.5.3.3 \#31, change:

- number of decimal digits, n, such that any floating-point number in the widest of the supported floating types and the supported ISO/IEC 60559 encodings with $p_{\text {max }}$ radix b digits can be rounded to a floating-point number with n decimal digits and back again, using to-nearest rounding for both roundings, without change to the value, ...

In 5.2.5.3.3 \#31, change:

- number of decimal digits, q, such that any floating-point number with q decimal digits can be rounded into a floating-point number with p radix b digits and back again, using to-nearest rounding for both roundings, without change to the q decimal digits, ...

In H. 3 \#7, change:

- number of decimal digits, n, such that any floating-point number with p bits can be rounded to a floating-point number with n decimal digits and back again, using to-nearest rounding for both roundings, without change to the value, ...

In H. 3 \#7, change:
— number of decimal digits, q, such that any floating-point number with q decimal digits can be rounded to a floating-point number with p bits and back again, using to-nearest rounding for both roundings, without a change to the q decimal digits, ...

