Draft Minutes for 03 August - 07 August, 2020

MEETING OF ISO/IEC JTC 1/SC 22/WG 14
WG 14 / N 2581

Dates and Times:

3 August, 2020 12:30 — 16:00 UTC
4 August, 2020 12:30 — 16:00 UTC
5 August, 2020 12:30 — 16:00 UTC
6 August, 2020 12:30 — 16:00 UTC
7 August, 2020 12:30 — 16:00 UTC

Meeting Location

Teleconference

1. Opening Activities
1.1 Opening comments (Keaton)

Keaton: We have learned since the last meeting of the unfortunate passing of Walter Banks
(Bytecraft, Canada), on December 9, 2019. He was a major contributor to Embedded C, TR 18037.

1.2 Introduction of participants/roll call

Etienne Alepins		Canada	
Aaron Bachmann		Austria	Invited guest
Roberto Bagnara	University of Parma	Italy	Italy NB
Aaron Ballman	Self	USA	WG21 liaison
Andrew Banks	LDRA Ltd.	UK	MISRA liaison
Rajan Bhakta	IBM	Canada	PL22.11 Chair

Melanie Blower	Intel	USA	
Alex Gilding	Perforce / Programming Research Ltd.	USA	Recording Secretary
Jens Gustedt	INRIA	France	
Barry Hedquist	Perennial	USA	PL22.11 IR
Tommy Hoffner	Intel	USA	
David Keaton	Keaton Consulting	USA	Convener [
Philipp Krause	Albert-Ludwigs-Universit	Germany	
JeanHeyd Meneide	Self	Netherlands	
Joseph Myers	CodeSourcery / Siemens	UK	
Miguel Ojeda		Spain	Invited guest
Clive Pygott	LDRA Inc.	USA	WG23 liaison
Robert Seacord	NCC Group	USA	
Martin Sebor	IBM	USA	[

| Peter Sewell | University of Cambridge | UK | Memory Model SG

| Nick Stoughton | USENIX, ISO/IEC JTC 1 | | sC 22 OR
| David Svoboda | CERT/SEI/CMU | USA |

| Fred Tydeman | Tydeman Consulting | USA | PL22.11 Vice Chair
| Martin Uecker | University of Goettingen | Germany

| Freek Wiedijk | Plum Hall | USA |

| Michael Wong | | Canada | WG21 liaison

1.3 Procedures for this meeting (Keaton)

Keaton: procedure is as usual, taking straw polls in which anyone can vote.

David Keaton is the meeting chair.

Alex Gilding is the recording secretary.

1.4 JTC 1 required reading

The codes of conduct were observed.

Keaton: We avoid generating heat with no light.

1.5 Approval of previous minutes [N 2519]
[PL2211 motion, WG 14 motion] by Tydeman, Bhakta. Approved.

1.6 Review of action items and resolutions

Ballman: to produce wording documenting WG14 procedures for new members.
e OPEN

Uecker: to investigate a GitLab hosting solution at the University of Goettingen.
e DONE

Ballman: to study the character encoding type for string literals from #error,
static_assert, and nodiscard.
e OPEN

Ballman: to submit a follow-up to n2480 with updated footnote.
e DONE (n2510)

Seacord: to submit a paper that proposes just the %w conversion specifier from n2465.
e DONE (n2511)

Svoboda: to submit a clarification request for C17 s3.4.3p3 (as outlined in n2466 p1).
e DONE

1.7 Approval of agenda [N 2538]
[PL2211 motion, WG 14 motion] by Bhakta, Tydeman. Approved.

1.8 Identify national bodies sending experts
Canada, France, Germany, Netherlands, UK, USA

1.9 INCITS antitrust guidelines and patent policy

The antitrust policy was observed without discussion.

1.10 INCITS official desighated member/alternate information

2. Reports on liaison activities

2.11S0, IEC, JTC 1, SC 22
2.1.1 Recent changes to the Directives

Keaton: There is a major change to the ISO directives. The relevant national bodies must now be
notified when someone is invited as a guest and may dispute the invitation, which may impose a
chilling effect. Last year codified that guests can be invited. There may be an impact if we try to
invite large numbers of WG21 members.

Ballman: how do we resolve a dispute, and how much notice do we give?

Keaton: invitations are sent as soon as possible. National bodies can respond right away, but might
respond more slowly.

Gustedt: Why does this impact WG21? Can all SC22 members not attend all meetings?

Keaton: This was an unwritten rule, but was accidentally prohibited in 2017 and was not fixed in
2019.

Bhakta: does this apply to virtual meetings?

Keaton: yes, but there are no travel arrangements to disrupt.

2.2 PL22.11/WG 14

2.2.1 Document system

Keaton: The C-number system has been delayed by Covid-19 increasing Dan's workload. The ISO
document system still has bugs, which breaks some N-documents. JeanHeyd Meneide is writing
new software for the C-document system during the delay.

2.2.2 Optionally marking some future papers that clarify or fix text as "may
be of interest to readers of prior editions of the standard"

In response to the reflector discussion there was a proposal to mark some papers as “maybe of
interest” to readers of prior Standards, because WG21 wanted to know if changes are retroactive.
Old Standards are withdrawn, not maintained, but topics can still be “interesting”.

Ballman: thank you — as an implementor, customers care about old Standards. Can we capture
topics from the meeting discussion? It may be that paper authors don't think like implementors.

Gilding: volunteer to maintain this list.

2.2.3 Outreach

Keaton: this is made more important by the tightened guest rules.

Ballman: suggest an “incubator” group for members, non-members and champions.
Gustedt: maybe one big group for every theme?

Krause: what is the advantage over an n-document or a newsgroup post?

Keaton: we are not having internal debates in an external space — we can have an internal space
with external posters.

Pygott: can we use the ACCU for this?
Keaton: that's external but worth making contact to advise them to look at the n-documents.
Ballman: who are the non-members this is for? Anyone can apply to join a national body.

Keaton: yes, if they want ongoing participation, but less effective for one-shot papers. Membership
costs money.

Seacord: can a paper be developed in any context, outside the process?

Keaton: yes.

Ballman: We do have many one-shot papers, and this would make it easier for WG21 authors to
port ideas over, and other people who need access to the committee without being members (a
product of the new rules). This may also steer people into joining the group. Papers are rarely
resolved positively in just one meeting. There are a number of areas where WG14 and WG21 differ
on a common objective: could there be a formal common group? Though this sounds like

unethically bypassing the ISO rules. A JWG needs an SC resolution, and WG documents can't be
shared outside the WG.

Keaton: ISO n-documents are private; for JTC-1 most n-documents are public, and this is not
problematic.

Krause: participation is not just about money. For instance there aren't enough people to mirror a
group.

Gustedt: some people are affiliated to more than one standards bodys; this is more inclusive to such
experts.

Bhakta: goal is good but we mustn't violate ISO rules by avoiding the NBs.

Ballman: ISO has made it difficult to participate with the constituency.

Keaton: request further debate and reconsideration next meeting.

2.3 PL22.16/WG 21

Ballman: WG21 has been holding weekly update calls instead of meetings, I haven't attended.
Process is not yet fully coordinated. Work is progressing, and the mailings are now monthly instead
of per-meeting, providing faster turnaround.

Gustedt: a shared calendar already exists; I have found the weeklies very focused and efficient,
fixing problems well.

Keaton: two-weekly is difficult, need more focus.

2.4 PL22

Keaton: unhappy that we have such short notice on virtualization, making travel plans hard. ISO
prolongs for three-month blocks. Want a better rule.

2.5 WG 23

Pygott: The C report is published, as well as Ada and Language Independent. New work on
parallelism and OOP in the Independent report; not looking at C right now. C++ is active and
working with SG12, two weeks per topic in weekly short meetings.

2.6 MISRAC

Banks: no change since the last meeting, nothing to report. We continue to progress C18.

2.7 Other Liaison Activities

None.

3. Reports from Study Groups
3.1 C Floating Point activity report

Bhakta: interchange types are now in the Annex. DRs are open on C2x, papers in this meeting and
using the 2019 floating point standard.

3.2 C Safety and Security Rules Study Group

Pygott: the group is fading out, no recent calls. There are few active members, and the objective is
unclear.

Keaton: Coronavirus and Charles's job change merit leeway, but the group must progress or
disband.

Pygott: we have no Plan B after the failure to merge with MISRA.

3.3 C Memory Object Model Study Group

Sewell: We agreed to push a TS, which is drafted and sent. We encourage technical commentary and
review by the WG. We suggest intervening meetings.

Keaton: I will send the required elements of a TS. I will ask for an 8-week work item ballot at the
SC22 plenary August.

Sewell: Hand-count of interested members?
(Ballman, Gilding, Gustedt, Krause, Seacord, Uecker, Wiedijk)

The focused meeting to discuss end-zap with WG21 went well.

4. Future Meetings

4.1 Future Meeting Schedule
® 12-16 October, 2020 — Virtual, 13:00-16:30 UTC each day
e 30 November - 4 December, 2020 — Virtual, 14:00-17:30 UTC each day
e Spring, 2021 — Strasbourg, France (tentative)
e 4-8 October, 2021 — Minneapolis, Minnesota, US (tentative)
e 31 January - 4 February, 2022 — Portland, Oregon, US (tentative)

Keaton: Meetings are virtual to the end of the year. There will be two meetings to replace
Minneapolis. A decision about Strasbourg will be made in October.

Seacord: can virtual meetings have a location for business purposes?

Keaton: yes, this is “Freiburg 2”. The mailing schedule has been reduced.

5. Document Review

Monday
5.1 Alepins, Unsequenced functions [n2539]

Alepins: to standardize a very old idea, 20 y.o. ; for better optimization, and for better safety ;
introduces five properties, cumulative over each other ; two are equivalent to GCC attributes ;
intentionally not yet applied to the standard library — need to consider floating-point state, errno,
etc.

Seacord: why does noleak refer only to memory and not other resources?
Ballman: Files, locks, sockets, etc.

Gilding: How would this interop with C++'s constexpr/consteval? Is this intended to lead
towards introducing those features to C?

Alepins: haven't considered the C++ interop at all, proposed without awareness of that feature.

Ballman: remember that these are attributes, can't change C's constant expression rules.

Gustedt: constexpr requires more than just unsequenced ; other leaking resources have other
attributes? (to Seacord) other resources always touch some other global object state, so they are
considered covered. n2522 adds more ways to describe the parts of state.

Myers: Isn't noleak a good property for any function? All functions shouldn't leak. Does the
specification require a particular format?

Gustedt: Ideally, yes, but we cannot assume this because it is an allowed behaviour right now.
Svoboda: realloc etc. can “leak” in their arguments.

Ballman: These attributes are really useful in practice, but the proposal has a huge implementation
burden: implicitly marking functions is too expansive: can't infer properties from a declaration only;
can't infer properties for a function making external calls — proposes attributes which are “viral”,
recursively propagating. There is a ton of good field experience with pure and const, but none with
the other three.

Gustedt: the intent of the paper is to only be “viral” if you can see a definition — to deduce
properties mainly for small inline functions. Aim is to be easy to use for application programmers.

Ballman: Great when the definition is visible; unusable when e.g. system headers are involved (e.g.
applying noleak to a pool allocator built atop VirtualAlloc/VirtualFree).

Gustedt: there is a mechanism to define for C library; for 3rd-party code, will have to have an
override mechanism to make it usable — puts verification burden on the user.

Uecker: recursiveness — attributes are not part of a function type, so pointer calls obscure this, e.g. a
noleak function calling a pointer to a noleak function.

Alepins: We might need two kinds of attribute? Compiler-checked, and “assume”; pointers are not
addressed in the paper.

Gilding: allow appertaining these to pointer parameters too? This will make visible on the caller-
side how it will be used (or, if it will be called at all).

Ballman: I prefer flow analysis to a fully static pass, but this would cripple compiler performance
by requiring dataflow analysis just to type check!

Gustedt: the check stays static if the property is “imposed”.
Alepins: what is the compiler burden? It needs to analyze this anyway for optimization.

Ballman: the problem is the same, should be solved both ways. Don't want the annotated library to
impose long compile times — this is what needs field experience. Correct compilation can't rely on
“implementation heroics”.

Bhakta: didn't like the “have to diagnose” requirement.

Alepins: will produce a new paper. Further discussion on the reflector.

Straw Poll: would the Committee like to see something along the lines of n2539 in C2x?
Result: 15-0-1

5.2 Ballman, Querying attribute support [n2481]

Ballman: this is returned from Ithaca: WG21 needed to allow changes to C++ to make possible ; C+
+ has added has cpp attribute, but the question is the same and so will be the answer
(guaranteed by standard). National Body question raised to change this before C++20, but WG21

rejected because they wanted to allow the same name to have different semantics; considered silly
from an implementation perspective. There are no normative changes to the paper.

Answer is unsatisfying and a good example of non-collaboration ; may make changes at a
directional level to take WG14 comments more seriously ; Direction Group agreed that this is a
visible failure, but C++20 has shipped and the name cannot change. has c¢_attribute also
already exists in the wild.

Bhakta: did the DG look amenable to a future common feature? (__has_attribute)

Ballman: EWG said no, but social factors affect this; there is some sentiment to support. We can't
use has attribute, could use another name.

Banks: anything beginning is reserved? What is the risk of adding it? Prefer a non-specific query
to force change on the C++ side.

Ballman: be careful not to break C++!

Myers: do the dates need updates?

Ballman: Yes, and two predicates allow for different results for both languages, which is one
advantage. Otherwise need to use macro names.

Gilding: Can we additionally specify has cpp attribute in C? Precedent of forbidding
__cplusplus.

Ballman: maybe with a recommended practice, but that's novel.

Wong: for context — agree that divergence is part of a process problem — sometimes divergence is
for good reasons, but features pass one way or the other with little time to react — most go back and
forth, fall out of sync, and slip in the cracks; propose common meetings to agree on the core, have
that back and forth at co-located meetings.

Ballman: then we need to schedule a common meeting.

Keaton: add a new agenda item, 7.5 C & C++ common issues.

Ballman: has cpp attribute exists; has c attribute exists at least in Clang, but could be
renamed; the fact that different dates are returned is a “sharp edge for users”; separating the names
at least forces users to consider the dates may be out of sync.

Krause: has_attribute isn't a problem?

Ballman: yes it is. Implementation experience shows that this doesn't work — GNU attributes work
differently and the same name can have different semantics between contexts.

Krause: the answer is still “true”. Problem only for implementations supporting only one style.

Ballman: this only provides information for one full set — it doesn't tell me the standard attribute
itself is available. Usage is affected as well as syntax, and there has to be a hard division between
the two features.

Banks: what about _has std attribute?

Krause: has std attribute looks as if it doesn't apply to implementation-specific attributes.
Actually, GCC documentation states "__has_cpp_attribute (operand) is equivalent to
__has_attribute (operand) except that when operand designates a supported standard attribute it
evaluates to an integer constant of the form YYYYMM indicating the year and month when the
attribute was first introduced into the C++ standard."

Keaton: If WG14 had originated it, this wouldn't be OK — but we don't have control of the situation.
Need to continue liaising to converge the two features.

Ojeda: +1 Keaton's suggestion, there are already too many similar attributes when one works
around C, C++ and several vendors. Any effort to simplify/converge is appreciated.

Ballman: are we comfortable maybe not resolving them? Joint meetings would keep the
coordination common. We need a process to avoid accidental future divergences.

Keaton: because we don't have control, the divergence remains if we don't.

Krause: GCC documents them as the same except for the return value; implies not such a bad
problem in practice.

Keaton: let's discuss the process now, before voting.

7.5 C & C++ common issues

Keaton: we know there are problems with getting a company to send delegates to multiple meetings
—a virtual SG could help mitigate this.

Seacord: a dedicated study group is better than co-locating WG meetings, to force the agenda.

Wong: definitely issues co-locating — the size of C++ makes difficult; C spinning off SGs similarly
to C++ (safety etc. to help MISRA), C & C++ on the same SG, like memory model SG. Serial co-
location worked better in the past; teleconference needed anyway for triage and maybe % co-located
for dedicated collaboration work. There is a history of “bungled” issues as changes go back and
forth, already between SGs. This is the latest casualty of a slow process, needs to be faster or
divergence is inevitable.

Ballman: what's a JWG?

Banks: experience at SC7 — formal liaison committees, by SC; tend to be delegated power for a
specific scope, e.g. the metrics group; C Core could be a subordinated scope for a JWG
Ballman: this is common to n2522.

Keaton: this is addressed by ISO directive 1.12.6: only possible between SCs, not WGs. We can
create a JSG, as study groups are unofficial.

Ballman: want a group with authority so that the Core group can rein in the language-specific
interests; it impacts the C++ ecosystem a lot if C diverges, C less so — lack of visibility could lead to
a decision with a big financial impact.

Gustedt: each WG should create a study group consisting of the same members as the other and
always co-locate their meetings. Authority rests with the individual members.

Keaton: on authority — historically, conveners dislike gratuitous differences (charter commitment to
compatibility).
Ballman: C++ has no charter to be compatible — has the DG ever considered a charter?

Wong: actually, both groups are at fault. The charter doesn't prevent C from making changes
anyway; a co-located group fixes real-time feedback and communication, which the charter doesn't
address. I really push for any format of integrated meeting, occurring 1-2 times per year, as a
common SG.

Keaton: physical meetings remain problematic, but virtual might work.

Myers: We could also make more use of the liaison@lists.isocpp.org mailing list that's existed since
May 2019.

Ballman: I agree, it's not just a C++ problem. Bringing in attributes illustrated the feedback cycle
problem. A charter provides instructions which a chair can refer to in discussion, guide discussion
and consistently apply to both groups; would be a cultural addition like CWG.

Seacord: additional costs to a new WG vs. free participation in a SG. This will not be received well.
Keaton: that's national-body specific.

Banks: what costs? BSI doesn't charge for membership.

(discussion reveals that Commonwealth countries do not charge for membership, others do)

Wong: a joint SG that meets virtually, leaving open the door for face-to-face; having a charter
doesn't hurt... but must have the same chair.

Keaton: what about co-chairs?
Gustedt: there should be just one.

Action Item: David Keaton to coordinate with Herb Sutter on establishing co-located study groups
between WG14 and WG21.

5.2 Ballman, Querying attribute support [n2481]
Straw Poll: does the Committee wish to adopt n2481 into C2x as-is?
Result: 16-1-1

Paper will go on the queue for the new SG.

Myers: with editorial updates to the dates?

Ballman: yes. Will submit fixes and go in by next meeting.

5.3 Ballman, Minor attribute wording cleanups [n2527]

Ballman: this is based on implementor feedback and WG21 differences. Clarifies name spaces (the
C term); provides wording symmetry with C++; removes unintentional restrictions on the syntax;
unintentional other omissions (fallthrough); for is still asymmetric, but applies to both languages —
this is an unintentional oversight; editorial change still needed for opt. Omnibus paper for general
compatibility and consistency.

Propose voting on the non-for content first and to bring that later.
Gilding: what's the asymmetry?

Ballman: unintentional — thought this was already in C++, will propose the change there as well,
then bring back with consensus from WG21.

Pygott: so this is cyclic..?

Straw Poll: would the Committee like to adopt n2527 as-is except for the section titled "Allow
attributes on an expression in the clause-1 position of a for loop" into C2x?

Result: 17-0-1

Gustedt: can we have a direction for the for-loop?

Straw Poll: would the Committee like to adopt something along the lines of the for-loop proposal
from n2527 into C2x?

Result: 12-1-4

Bhakta: I voted “no” because I want to see more before agreeing — that wasn't a hard-no.

Tuesday
5.4 Ballman, Unclear type relationship between a format specifier and its
argument [n2483]

Ballman: This was last seen in Ithaca; the current wording is that the behaviour is UB if the “correct
type” isn't used. This is ambiguous — can Bool ever be correct? Should rewrite in terms of va_arg
promoted type, which needs to match. Now uses the wording from stdarg.h etc., added to
fprintf, scanf and friends. Seacord suggested some editorial changes — bullet points assume a
“next argument”, which needs to split out; only major change.

Bhakta: fprintf “will be stored into”? You can't store into an integer, only into an object. This
wording doesn't actually say “object” or “type”, though it implies it.
Keaton: you can't store into a “type”, only an object.

Ballman: agree. We should lift into its own description for formatted input/output rather than
describe it in four separate places, but not right now.

Bhakta: this isn't an editorial change, but “along the lines” is OK.

Ballman: we already got direction in Ithaca.

Gustedt: I think this is an editorial change.

Bhakta: I trust Jens, retract the objection.

Keaton: we can vote, but we need exact wording anyway.

Ballman: do we want “if there is no next argument” split into two? This could have an impact.
Seacord: I think it would be clearer, but not different.

Ballman: the rationale to clarify the bullets mentions types.

Wiedijk: type was already mentioned; the previous sentence needs to change or be moved since it's
meaningless if there is no argument, though the current structure is OK.

Bhakta: another change of mind — we need new text.

Ballman: I will bring this back later.

5.5 Ballman, What we think we reserve [n2493]

Ballman: Also returning from Ithaca. We carve out reserved identifiers in awesome and terrible
ways. Reservations using underscore or underscore-capital are well-understood, but pattern-
matching on is, to etc. is not. toilet is runtime UB, because we might use it. All existing library
identifiers are already explicitly reserved — this is too heavy a hammer for safety-critical code.

Proposal to introduce informatively-reserved patterns that are only actually reserved when used. We
can add a recommended practice without needing to use UB.

Thousands of vanilla-English words are banned and no tool reports it all by default, so this helps
toolmakers; users ignore the blanket bans anyway.

Krause: Not really counter-intuitive that according to 7.31.19 in N2479, toilet is reserved for use
by wctype.h.

Myers: reservation is also mentioned in headers, not just the Future Library Directions. There are
implementation-defined areas in e.g. float.h.

Ballman: hadn't included this in the survey.
Myers: it's not clear that all prefixes are equal - str, is, to, mem but not f_etc.

Ballman: some are also reserved and in use for compiler extension spaces — will need to examine
them all and determine the classification.

Straw Poll: does the group want to see progress in the direction described by n2493 to include
informatively-reserved identifiers into C2x?

Result: 12-1-2

Krause: can we have fewer reservations as well? We could cull some patterns? Reserving a lot is a

problem, and we introduce new things in other patterns anyway, e.g. the floating-point namespace
explosion.

Stoughton: POSIX reserves strictly by header, only if included. stdlib.h and string.h cause the
most problems.

Ballman: in Ithaca some said, the reservation applies even in a different TU, as the external
identifier will be linked. POSIX doesn't fix this; also since any identifier can be a macro, the
preprocessor-level is also reserved.

Myers: new symbols will inevitably fall outside these. Patterns are for clear categories and can't
generally cover everything. It will always be possible to require a diagnostic on a fixed list of names
with external linkage.

Ballman: we could state that the list is not exhaustive.

Krause: non-exhaustive notwithstanding, can we have a list of non-reserved identifiers guaranteed
to work? Standard functions are allowed to be used without including the corresponding header,
which breaks the POSIX idea.

Gustedt: I like the paper, but the wording is really missing. The second aspect is that we also would
have to stick to these rules when we actually do new things.

Ballman: that raises the question about intent, and whether we intend the patterns to be exhaustive.
(to Keaton) Was the pattern means to be a promise?

Keaton: [wouldn't agree with the “whole bunch”, but a good chance that most will come from the
list.

Ballman: it is non-exhaustive, then.
Seacord: I would say no, these were reserved for certain purposes.

Gustedt: this also provides implementation convenience, not just future expansion? e.g. additional
errno values that don't need to check whether POSIX is enabled or not to be made available.

Conditional reservation existed in C90 for wchar.h/wctype.h on header inclusion — why was that
rule removed in C99?

Krause: implementors reserve all external identifiers unconditionally (7.1.3)
Gilding: this introduces an item to the “of interest to users of obsolete standards” list.
Keaton: right, but it's not retroactive!

Ballman: I will bring back a new paper separating identifiers.

5.6 Bachmann, Make pointer type casting useful without negatively
impacting performance [n2484]

Bachmann: this proposes to re-allow pointer casting and access in a local scope — there is no global
effect, and the strict-aliasing rule continues to apply. It is important to be able to avoid assembly and
still be able to use bigger-than-char copies ; this is important in the embedded domain ;
standardizing C should allow for users to write core operations in C ; prior attempts were more
radical, this tries to keep performance advantages and doesn't disable type rules.

Wiedijk: what about type punning with unions? Can this replace casting?
Bachmann: no, because objects have a declared type which we can't change.

Krause: the implementation already knows if it's safe to use a coarser granularity than bytes.
Efficiency should already be possible because optimizers fuse byte copies.

Bachmann: GCC still often can't do this in practice.

Myers: I don't think the wording works — the pointer conversions don't define that the result of an
object-pointer conversion is actually usable for read/write, only that it will round-trip.
Implementations give warnings for the most obvious cases of bad pointer conversions, which
should help new users know about the issue. It's problematic for implementations to talk about
block scope because optimization happens after scopes are messed up by inlining. We need a
reinterpret cast operator to explicitly mark 1-values as being re-typed, not pointers at all, and
impossible to alias.

Bachmann: so better to use a keyword, like restrict? I'll try that if we proceed.

Gustedt: I like the idea (needed), but you should coordinate with the memory object model group
who do a lot on reinterpreting. n2522 also has an attribute for this, to re-type for the duration of a
call — coordinate here too?

Bachmann: does this help? You need to “peel off” the head and tail for e.g. memset, when the
alignment is less than the word size, and use smaller accesses to avoid off-the-end writes.

Gustedt: there are lots of applications for this (e.g. matrix to vector), but it should not be
unrestricted. In n2522 this is restricted to types with the same representation.

Bachmann: I will establish contact with the memory object model group and completely rewrite the
wording. Rules for a user should not be too complicated — the SG's wording rules are not easy for
users, and the language is for users.

Gustedt: the intent of the memory object model group is not to overcomplicate! but to generate
wording.

Uecker: I like the direction, but also want to send to the memory object model group, as this impact
effective types and so on. We should vote on the direction anyway.

Straw Poll: does the Committee want something along the lines of n2484 casting added to C2x?

Result: 6-3-6 (no consensus)
(abstainers want to hear from the memory object model group first)

Seacord: I'm voting no because I prefer the reinterpret cast which I'm interpreting as being
along different lines.

Myers: Likewise, I'd like a way of doing such accesses but not this one.
Ballman: Yeah, I generally like the approach taken by the C++ named casts.
Bhakta: I like changing type via cast, but is there direction on which way?

Bachmann: this would be for Ivalues — pointers are just a way to convey this.

5.7 Bachmann, Allow memory-reuse via pointer-casting [n2537]

Bachmann: this complements the previous proposal, and would allow for the implementation of
malloc, memory pools, etc. directly in C. This is for global scope. It may apply to memory
allocated during before-main; we do not lose the effective-type rules by inverting the char-access
rule and allowing other types to alias char. Observing real program behaviour, there is no aliasing
because accesses are sequenced by type. There is no conflict, because malloc doesn't reuse the
memory until after free.

Myers: C++ experts need to weigh in on whether this conflicts with the rules for placement new. It
must not be incompatible.

Gustedt: exactly — this redefines the effective type — a good idea, but something handled by the
memory object model SG, who are also converging on a placement-new equivalent — this is not
trivial to integrate into the memory object model.

Bachmann: I will get in touch with the memory object model SG.
Ballman: I like the direction.

Straw Poll: does the Committee want something along the lines of the memory reuse described in
n2537 to be added to C2x?

Result: 9-1-6 (direction yes)

5.8 Bachmann, Add explicit_memset() as non-optional part of C2X [n2485]

Bachmann: (there is an error in the paper: musl doesn't have this function)

There is a need to erase memory in secure contexts ; the standard library should provide it, but prior
work differs ; the signature of memset is well-known ; the proposed name is based on common
usage.

Gustedt: this is a good idea; I prefer the feature of non-zero “poisoning” of cleared memory; prefer
the memset explicit name pattern though because it fits with existing namespace reservations.
Maybe the signature should add volatile?

Krause: We can't just stick to names already in use. We reserve names for future use. People come
up with functions, avoiding reserved names. We promote functions into the standard. By sticking
with established names, we get exactly those identifiers that are not reserved.

Seacord: I was the original author of one such proposal, which was pushed to Annex K; the obvious
solution (barring the minor dependency issue on other Annex K features) is to pull memset s and its
dependencies up from Annex K? These are already in use. It was wrong to force duplication on
Annex K implementors.

Ballman: the wording lifted from Annex K about “strictly according the rules of the abstract
machine” - does this achieve the intended goal? 5.1.2.3 has “needed side effect”, which ensure that
the call cannot be removed.

Svoboda: I presented memset s and didn't know about 5.1.2.3! We couldn't really formalize out-of-
scope technologies like cache, disk, etc. in the Standard. memset s doesn't use handlers, and can be
transferred; changing errno_t is a trivial transformation.

Bachmann: memset_s is suitable for single-threaded execution only.

Seacord: the multithreaded problem is solved elsewhere.

Ballman: would Annex K remain optional? Can't really rely on it being available.

Seacord: rather than duplicating functionality, we should just promote the most popular functions
and their support mechanisms to the main Standard as non-optional.

Svoboda: separate papers needed for errno_t etc. will need to cover the interactions.

Seacord: a mechanisms paper can be written first — this isn't a rabbit-hole, just the features that are
actually needed.

Sebor: no objection to the API, but the wording of the last sentence implies the object remains
accessible, by requiring that the values stay in the object. I am opposed to moving anything up from
Annex K, especially constraint handlers — these are problematic for a security-oriented API. I prefer
an established name and signature — changing it is confusing to new adopters and legacy
maintainers. Tweaking a signature is error-prone, maintaining existing practice is safer.

Bachmann: this isn't an invented name — there is practice.

Sebor: the signature differing would be a concern for usability, and should be consistent. I don't see
how the wording provides any guarantees — it has no teeth.

Wiedijk: agree that this is like volatile, the wording is not adequate — the as-if rule allows the
write to be omitted; I favour something like this but don't know how to specify it acceptably.
Svoboda: the last sentence, “shall assume”, comes from memset s, which may give the impression
that memory must be accessible with values — we wanted to express that the old value is gone, not
available for future reads, so it should say “does not” contain, though maybe this implies
indeterminate content.

Tydeman: would a “must execute” attribute help?

Ballman: wouldn't be needed if the functionality is specified correctly and doesn't add anything to
the clear expression of the behaviour.

Myers: A better use for an attribute might be on a function as a hint to clear memory not directly
accessible as a C object at all (see the brief reference to that kind of thing in the next paper).
Ballman: The problem with an attribute is that ignoring the attribute would change the semantics of
the program because you could observe that effect. Sort of observe that effect, maybe?

Svoboda: The attribute would also have the same problem with the wording that memset s has. It
might be useful if you want to use it for other functions too.

Myers: A stack-clearing attribute would be a hint about what the implementation should do with
things not accessible by valid C code at all.

Ballman: I still think "needed side effect" is the right specification approach as we already talk
about that in the abstract machine section.

Myers: The whole point of this sort of thing is that an attacker might subsequently gain read access
to the program's memory (i.e. what happens after subsequent undefined behaviour, or what's visible
by means not described in the standard, since e.g. speculative execution attacks might not involve
undefined behaviour.)

Krause: I don't think we'll easily find a better wording than stating that the writes happen as if for
volatile.

Wiedijk: I think the wording really should contain the words "side effect", as introduced in 5.1.2.3.

Svoboda: The next paper has some discussion about better wording. I think we should table
wording discussion until we’ve reviewed the next paper.

Gilding: cache and disk are a problem, and we need to express that somehow, otherwise the user
might trust the function to do more than it actually does.

Gustedt: we can't act on anything outside the abstract machine scope, which is what we have.
Wording along the same lines as volatile, which should also be in the signature as it will probably
need to accept volatile operands anyway. Also link to Niall's paper about cache. Recommended
practice is the tool to express cache and other out of scope issues.

Pygott: we can't specify as “can't be the old value” because the old value might be rewritten.
Svoboda: intent is needed here.

Seacord: the abstract machine language from volatile was a way to express security, but the idea
that anything imperfect isn't secure isn't what s means. Nothing is perfect and we can't dismiss this
because it's not perfect, that prevents progress. This is incremental progress and we can address
other aspects separately.

Gilding: my concern is that the user would trust the function too much, but a footnote telling them
not to could work.

Bachmann: I would rephrase with volatile qualification and base the wording on the volatile
qualifier.

Keaton: we'll compare and contrast after seeing Miguel's paper.

5.9 Ojeda, secure_clear [n2505]

Ojeda: This feature is in use in the Linux kernel and elsewhere. Implementations are buggy and
depend on optimizers. This was already discussed in WG21 by LWG and SG1, where it was
positively received. C++ were concerned about wording; wording is not part of this proposal, no
specific implementation.

This differs by not accepting a value ; value is not important for this use case, only overwrite ;
indeterminate, could be zero or something else. If the compiler knows there is nothing to erase, it
mustn't make it less secure — hard to express correctly ; neutral on the caches etc. issue, memory
object model SG want it to be recommended practice or Qol, to give freedom to implementors to do

the things we can't express. Tend against volatile because in C++ this means memory must be
touched ; WG21 didn't like memset s wording; volatile wording may imply a set of writes vs.
one write; how many should be specified. The intent is clear but specifying the side effect is
movable by the optimizer and could be removed. Seeking direction to review wording with the
memory object model SG. One option is to avoid abstract machine specification entirely and only
convey intent in the recommended practice.

Differences from Aaron's proposal include coordination with C++ (and some C++ content to avoid
mistakes); not specifying a value to write; coordinating with the LLVM team to ensure the proposal
is implementable; and providing an option to avoid non-memory writes. This is not equivalent to
the Annex K function.

Agree with Martin's concerns about the name, and the C++ committee is very concerned about
mistakes — don't call it “secure” if it isn't, and don't encourage user-side errors — we want user
clarity. C++ naming is more flexible in general than C naming though.

Krause: Having secure in the name might create a false sense of security. While the function would
be about an aspect of security, other aspects probably got missed. Also, again I'd prefer a name from
the reserved space. So memset_explicit, memclear, etc. seem like good names to me.

Gilding: is “indeterminate” the right word here? Though that could have a useful impact. The intent
to avoid writes when a value is stored in a register — does this imply the value is allowed to remain
there?

Ojeda: only a memory clear is expected — I hadn't considered a register clear, which is hard to
describe in Standardese, but the value shouldn't be left there. “Call could be elided” is only
supposed to imply that memory writes can be elided.

Uecker: This is one issue with all these functions, information could leak in registers, in the cache,
on the stack, etc... I am not opposed to add some best effort function, but it will never be secure. A
non-ignorable function property is needed to fix it.

Krause: In SDCC it would be hard to reliably clear registers, as the last stage is a peephole
optimizer, which is likely to optimize out writes to registers that are not read again.

Gilding: additional overloads would also be an option in C, we can express that now. We can make
the value optional, or force a constraint error on attempting to clear a pointer object. Either way we
should be compatible with C++.

Svoboda: there was some debate on the wording for memset s about ten years ago, but less than
this. Where did “indeterminate” come from? C++?

Ojeda: it's original, but C++ liked it. The use case is targetted towards clearing, not setting, so the
focus is off the value — we don't care what is there afterwards. Normally the object will not be
reused as-is.

Svoboda: in that case a function that did nothing would be a valid implementation! Intent is
important here because we don't have the terminology to make it exact — this depends on intent even
more than memset_s.

Ojeda: The memset s wording is only chosen as an example. The value is not important from a user
perspective.

Svoboda: clearing registers is out of scope anyway, as you can't take their address.

Ojeda: varying opinions from implementors here on how do-able and relevant this is. AN attribute
was discussed, but faces the removal problem and implementation issues. Stack-clear has little
implementation experience and is not widely implemented. Providing memory clear is the
minimum actually required by users — other solutions are more advanced and could work on them
as they come up.

Svoboda: Given that we have two papers that ‘fix’ memset s, I don’t want to wait to fix Annex K.
We should treat memset_s separately, for now.

Krause: Promoting memset s to required would introduce a lot of Annex K baggage (rsize t,
runtime constraint handlers).

Svoboda: As it is, yes. but clearly we can separate memset s from that baggage, as Aaron and
Miguel have done.

Blower: If we have volatile on the function argument, does that mean the function call cannot be
removed? By the optimizer?

Krause: But then it should no longer have the name memset s, so instead of promoting memset_s,
we'd accept N2485 or N2505, or something similar.

Myers: Constraint handlers are a problem because of action-at-a-distance (a library has no idea what
effect an error in a function it calls might have), not just because of the thread-local issue.

Seacord: I prefer the memset s signature to this and the previous proposal; maybe a clear, not a set?
No requirement right now to overwrite with random data. I am opposed because we have the
function in Annex K, and the problem is that the future of Annex K is unresolved. We have had
discussion of experience and how to handle Annex K, but no consensus to remove in prior
meetings. There are good ideas in Annex K, from Microsoft in particular — can we fix it? What
changes would be needed to make Annex K required, and then memset s will be brought along too,
and fill the “gaping” void.

Ojeda: value vs. n-value is a good interface choice; opposed to making better in what we guarantee
vs. what we permit. Can Annex K be fixed in a reasonable timescale? There's opposition to a lot of
content.

Seacord: Martin Sebor brought an experience paper; I refuted it; the committee was split with
abstentions.

Ojeda: we can do this ahead of Annex K and merge when Annex K is promoted to required.

Seacord: that's convoluted, and it's hard to remove content once it has been added. The solution to
the single-threaded issue for instance depends on the fate of Annex K being resolved. Removing the
problems implementors have would simplify the process.

Bachmann: writing a defined value is better than an unspecified one for the same effort. There could
be multiple following code paths, and the next path may want to reuse memory with zero, which is
better than duplicating the operation. On the reuse path we could have just one call.

Ojeda: this is about the user not caring — I don't think the performance matters. If you are reusing
memory, set a sequence point and give the value normally? The bigger point is whether we want it
in the interface, not whether it is zero.

Ballman: interesting signature focus on clearing rather than setting, I like the perspective. The issue
with memset s is that attackers can even learn something from that zeroed page — there is a security

benefit in letting the implementation do a random scrub, so does setting the value potentially hurt
security?

Ojeda: the use case is to tell the compiler to dispose of values and make them hard to recover.
memset s biased the proposal, but the purpose is disposal.

Gilding: is the implementation experience from Linux and elsewhere better than Annex K? What
interfaces are preferred?

Ojeda: there's a list; most zero or support choosing a value, but the wide variety shows the different
ways users want and use the feature.

Pygott: Common to both proposals is that they can't be optimized away — there was a prior proposal
for a defensive attribute, which we rejected.

Gilding: That was for a different use context and was much harder to implement than on a function
call boundary.

Bhakta: The memset s use case relies on volatile in practice, and users assume that it works,
which might be wrong.

Gustedt: I like unspecified values too, and the template-style interface would be able to do the
register-clear — we could reformulate this to pass an object and destroy or zero it, similarly to the
C++ interface.

Krause: defensive was to prevent the compiler from optimizing out reads and writes - volatile
does this anyway. There were performance concerns, but hard to address in a better way than
volatile. Don't want it to look like a new syntactic structure.

Gustedt: it would look like a macro call, and specify an action on an argument.
Keaton: we need a vote.

Bachmann: mine was first, but work on either Annex K or this paper would fulfil my goal, so I am
willing to pull my submission.

Bhakta: do we have sentiment to do something? Not to promote from Annex K without an actual
proposal.

Myers: vote on specified vs. unspecified values?

Ojeda: I want to separate the interface and the implementation. If we don't want unspecified values,
then we should decide on a value afterwards.

Straw Poll: would the Committee like to see a non-elidable, non-optional memory-erasing function
added to C2x?

Result: 14-0-2 (clear direction)

Straw Poll: would the Committee like the non-elidable, non-optional memory-erasing function not
to specify a value in its interface?

Result: 6-5-6 (unclear direction)

Straw Poll: would the Committee like to be able to specify a value in the interface to the non-
elidable, non-optional memory-erasing function?

Result: 7-4-6 (clearer direction)
Ojeda: are there other polls or results to consider? Because WG21 liked not having the value.

Keaton: no cross-committee polls.

Ballman: I abstained because there's already research here — I want this research to inform the
decision.

Straw Poll: would the Committee like to have both no-value and value-specifying interfaces to the
non-elidable, non-optional function available?

Result: 5-6-7
Keaton: this sounds like more discussion is needed.
Wiedijk: I do think this needs to be taken up with the memory object model study group too.

Ballman: FWIW, my abstain is because I'd like the paper to research the security implications of
specifying a value vs not.

Stoughton: And for me, my votes were driven by the level of existing practice, strongly in favour of
just clearing.

Seacord: just clearing is different then overwriting with random values. I should know this, but will
overwriting with random values for example eliminate row-hammer and other side channel leaks?

Wednesday
5.10 Krause, register at file scope [n2486]

Krause: This proposal uses the “correct” meaning of the keyword — no-address, plus a hint. This is
most useful to communicate across translation units; currently, the keyword is allowed where it is
not needed, and not allowed where it would be useful. Globals are still used extensively for data
passing on small systems. An attribute could do this, but the keyword already exists. Arrays are not
considered by the proposal, which only moves the application of the keyword.

Gilding: does this consider C++ interop? register is removed as of C++17, it's just an identifier.
This could impact header interoperability.

Krause: didn't know that... but it's still available in C.
Ballman: register in C++ is still reserved, which makes the edge a bit sharper.
Gustedt: what linkages are available for register objects?

Krause: the only change is that you can't take the address, so it adds to the storage duration rather
than replacing it. The default linkage is external and it is UB if not consistently declared.

Gustedt: what about functions?
Krause: hadn't considered those.
Gustedt: will bring forward an attribute for this tomorrow anyway.

Myers: there's no obvious use for this with static, as the implementation can see all usages. It
gives information when combined with extern, but this is still a basic LTO and fairly obsolete in
that context.

Krause: most C compilers still don't support LTO, especially on microcontrollers which don't have
C++'s investment. It's not realistic to expect that kind of compiler power for small targets.

Uecker: the attribute wouldn't be the same as a language feature? It can be ignored? It shouldn't be
allowed to be ignored and require a diagnostic for inconsistent declaration. I therefore prefer a
keyword. Since this removes an arbitrary restriction, it simplifies the language by allowing the

keyword in more places and makes it easier to understand. We have the right to keep a feature
regardless of what C++ does.

Krause: agree that an attribute relies entirely on Qol.

Ballman: I have the opposite take on attributes — they are trying to give information to the
implementation, and a correct program can ignore them without changing semantics — this is not
different from e.g. maybe unused, nodiscard.

Krause: compare const - if you remove it, the program stays correct, but you can't ignore it.
Argument either way but prefer existing keyword.

Myers: register no longer has anything to do with registers. An attribute would be more
meaningful to users reading code, contrary to the language expectation to bind real registers, which
has nothing to do with the name.

Seacord: how likely are we to remove the keyword? If not, we don't break so much.

Krause: it does get used in embedded code, we would need a good reason to break it, it's not unsafe
and has wide usage.

Uecker: I like the name register! “Addressless storage” makes sense and is easy to explain.
Keaton: what is the impact on TR18037 “Embedded C”?

Krause: I haven't checked but did see that GCC implements this. Don't know that this feature is
used much, not as much as pointer namespaces.

Straw Poll: would the Committee like to see something to specify that the address of a global
cannot be taken?

Result: 8-0-9 (clear direction)

Straw Poll: would the Committee like to use the keyword register to prevent taking the address
of a global?

Result: 8-6-3 (no consensus)

Straw Poll: would the Committee like to see an attribute that would mark an object as non-
addressable?

Result: 12-5-1

Wiedijk: I would like the hint, but not taking the address is not the same as non-addressable.
Bhakta: I agree with Martin. Do we also want it for block scope, or two different features?
Ballman: Yes, I want it for block scope.

Gilding: Perhaps it's time to “obsolete but not remove” register, to avoid maintaining two
specifications.

Keaton: I am wary of impacting the Embedded C feature.
Uecker: Why would we remove and replace an existing feature?

Ballman: Users don't understand it in practice, it is misused and misapplied. Rules ban it. An
attribute lets us put a new clear name on the feature and fix the design.

Bhakta: This is catering to a small subset and not the wide usage in the field, pruning features not
useful to some? My users are not confused, and widely use it.

Keaton: The paper does not propose removal.

Gustedt: Both have their own field of application — they aren't the same, one is much stronger, as
the attribute doesn't require identical declarations. We shouldn't deprecate a widely-used feature.

Myers: this is useful for Embedded C, and should be kept there. Other usages are confusing and
legacy usages. Most users don't care about addressability, only the hint, which is not useful in
Standard C.

Uecker: I think it does — people use it correctly, to give hints and enforce non-addressability.
Optimization is better if the address isn't taken, and the paper just expands existing use. This is its
intended purpose and I disagree that it's misleading.

Krause: register in Embedded C allows naming a register and actually does use it — I don't see a
conflict here, named vs. unnamed syntax.

5.11 Krause, short float [n2487]

Krause: This is a follow-up to Nvidia's 2016 proposal, which the committee liked, but Nvidia no
longer wants it, or even long double! In the spirit of the original, this proposes minimum
requirements but not a fixed representation. This is important in image processing and in machine
learning, and for small systems without hardware floats, which are still the majority, where floats
are emulated and need a cheaper format that is not tied to representation.

Uses for 8-bit floats are very rare, and it's not really needed, but we do want multiple
representations.

Gilding: could we add both short float and char float for symmetry with integers? Have both
available?

Krause: I don't like that syntax... 8-bit is really obscure, this proposal is mostly about adding 16-bit
floats.

Bhakta: I agree we don't want the sign limit. In 2016 there was a lot of ambiguity — a lot of
implementation experience since then shows support is gone: ML is much more abstracted and not
language-specific now. The original motivators no longer exist. If software emulation is a burden,
adding this increases that burden! Most people won't want this.

Krause: IAR, Cosmic etc. don't provide floats at all, or provide just one type. Providing the smaller
type makes it cheap enough to be usable; defining a smaller type makes it even more cheap.
Ballman: there's an explosion of floating types, losing the thread of when to use which type. has the
floating point group seen this?

Bhakta: we did discuss it, favoured IEEE in 2016 who later removed the arithmetic type, and kept
the spec as an interchange format. Float16 fits into C2x like “the rest” in that model; it doesn't
add cognitive load if you're already familiar with it.

Ballman: What about file I/O specifiers? Any other library changes?

Krause: These are intentionally not included yet, first checking if we want the type itself. Would a
format specifier even work?

Ballman: yes, with length modifiers.

Myers: raised concerns on the reflector that code really needs to know the format details, and a
generic type won't help. Annex F specifies how to provide some types but not others, would need

separate listings for bfloat16 and Float16. In C99 there was a DR for complex floats in va_args
- we didn't want to promote anything new in variadic argument lists.

Krause: It would be weird if float promoted and not short float? The types look different but
should behave similarly to basic types and promote to double. The compiler can optimize the
precision for math.

Hoeffner: users care about every bit. Without a guaranteed format, they wouldn't use it. Who is the
target? The withdrawal by Nvidia indicates that.

Gustedt: if you're looking for floats with a lower bar, why not relax the requirements on float?
Krause: existing software relies on the guarantees of the old specification.

Myers: bfloat16 adjusted flt round to precision define modes; this applies to all types. Intel
version doesn't work with it, fe_setround not affecting all modes, rounds to even only, while on
ARM rounds to all: so bfloat16 on hardware doesn't match the Standard's model.

Keaton: bfloat16 is more useful for machine learning, IEEE is better for image processing and
other things, so there's a different choice depending on the application.

Bhakta: as Tommy said, use cases know what they use every bit for. We can't make this work
without a ton of macros and configuration, and the implementors don't even want it!

Krause: Get the impression the committee doesn't want this; I don't feel a vote is needed and will
not pursue this.

5.12 Krause, accessing const objects from signal handlers v2 [n2523]

Krause: this is a normative follow-up to n1812. The rules are restrictive and there is no reason to
forbid const reads. Implementation experience confirms.

Myers: There is still an issue even when “referring” to Thread local variables, which computes
an address and may be in allocated memory. This might not actually be distinguishable from
“access”.

Krause: OK, not an expert on thread local storage.

Sebor: I support the relaxation, modulo Thread local. But the original paper addressed the
handler ac