
ISO/IEC JTC 1/SC 22/WG14

August 20, 2016

N 2069

v 1
Mandatory C library headers
simplify the transition to a new C standard

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

The transition from one version of the C standard to the next forces C implementors and C programmers
to use cascades of non-portable preprocessor conditionals, that are a nightmare for maintenance. These
difficulties have an adversary effect for early adoption of a new standard. To be able to deal better with
such transitions, C needs tools to identify partial implementations of library features such that new tools
can be shipped early and such that C programmers can prepare for them without knowledge of specific
versions of implementations.

The transition from one C standard to the next is a difficult exercise for everybody, for
compiler and library providers that have to implement new features and for the programmers
that want to upgrade their code to these new features. Usually this difficulty is not in
the implementation of individual features themselves, but in the coordination of the effort
between the different parties.

In particular upgrading a compiler frontend to a new C language standard is often done
independently from upgrading different parts of the C library. This is because most modern
platforms are not monolithic but very heterogeneous:

— Several compiler frontends are provided by several sources. E.g on most POSIX platforms
there are versions of the open source compilers gcc and clang, but also commercial
compilers provided by hardware or OS vendors.

— These compiler frontends are used with different C libraries (e.g on Linux or Windows
systems) or versions thereof.

This proposal tries to improve on that situation and to simplify the life for both ends, C
implementors and C programmers.

Goal 1. Allow optional C library headers to be incomplete.

Goal 2. Provide feature test macros for completeness of headers.

Goal 3. Provide a version macro for all C library headers.

Goal 4. Distinguish test macros for compiler and library features.

Goal 5. Make all C library headers mandatory.

C11’s approach to query the __STDC_VERSION__, and the feature test macros

— __STDC_HOSTED__
— __STDC_NO_ATOMICS__
— __STDC_NO_COMPLEX__
— __STDC_NO_THREADS__

is not a satisfactory solution to deal with library versions: they have to be queried before
any header file has been included and thus cannot easily deal with different versions of the C
library. This is in particular not appropriate during a transition phase between C versions,
where newly implemented features should get as much coverage as possible.

The solution to these difficulties is usually to impose complicated preprocessor tests that
ensure that a certain header can be included and that provide fallbacks if certain features
are not yet implemented. These preprocessor tests usually use specific compiler and library
knowledge, in particular version numbers, and are in most cases a maintenance nightmare,
for C implementors as well as for C programmers.

© 2016 Jens Gustedt. Distributed under a Creative Commons Attribution 4.0 International License

N2069:2 Jens Gustedt

Depending on the platform definitions, most of the standard library headers can be op-
tional. As of C11, the minimal requirement is only to have <float.h>, <iso646.h>, <limits
.h>, <stdalign.h>, <stdarg.h>, <stdbool.h>, <stddef.h>, <stdint.h>, <stdnoreturn
.h> in a free standing environment. The presence of all other C library headers can be
checked by feature test macros, see Table I.

header C11 feature test macro new
<assert.h> __STDC_HOSTED__ __STDC_ASSERT__
<complex.h> __STDC_NO_COMPLEX__ __STDC_COMPLEX__
<errno.h> __STDC_HOSTED__ __STDC_ERRNO__
<fenv.h> __STDC_HOSTED__ __STDC_FENV__
<inttypes.h> __STDC_HOSTED__ __STDC_INTTYPES__
<locale.h> __STDC_HOSTED__ __STDC_LOCALE__
<math.h> __STDC_HOSTED__ __STDC_MATH__
<setjmp.h> __STDC_HOSTED__ __STDC_SETJMP__
<signal.h> __STDC_HOSTED__ __STDC_SIGNAL__
<stdatomic.h> __STDC_NO_ATOMICS__ __STDC_STDATOMIC__
<stdio.h> __STDC_HOSTED__ __STDC_STDIO__
<stdlib.h> __STDC_HOSTED__ __STDC_STDLIB__
<string.h> __STDC_HOSTED__ __STDC_STRING__
<tgmath.h> __STDC_HOSTED__ __STDC_TGMATH__
<threads.h> __STDC_NO_THREADS__ __STDC_THREADS__
<time.h> __STDC_HOSTED__ __STDC_TIME__
<uchar.h> __STDC_HOSTED__ __STDC_UCHAR__
<wchar.h> __STDC_HOSTED__ __STDC_WCHAR__
<wctype.h> __STDC_HOSTED__ __STDC_WCTYPE__

Table I. Feature test macros for C library headers with optional features

This proposal is intended to invert the situation, namely that the feature test macros can
be made dependent of the header file. The “only” requirements for this to be possible, is to
mandate the presence of all these (currently 29) headers and to allow them to be mostly
empty, eventually.

So in particular, this does not mean that free-standing environments would have to pro-
vide all features of the C library, they would just have to provide mostly empty files or have
some simple fallback for the include <> construct.

As a consequence of our approach, some of the macros that are mandated in the corre-
sponding header files can also be used as feature test macros. E.g user code could provide
an alternative for assert macros on freestanding environments:

1 #include <assert .h>
2 #ifndef static_assert
3 # define static_assert(X, DOC) \
4 typedef char _Dummy["" DOC "" && s izeo f (char[(X)])]
5 #endif

That is the header can be included unconditionally, the presence of the feature can then
be tested and an alternative can be provided.

With our approach updating an existing header file to a new C version should be easy. Be-
fore implementing additional features that might be requested in most cases simply adding
the feature test macro should suffice. E.g for the atomics extension:

#ifndef __STDC_LIB_VERSION__
define __STDC_LIB_VERSION__ __STDC_VERSION__

Mandatory C library headers N2069:3

#endif
#define __STDC_STDATOMIC__ 201112L
#i f __STDC_LIB_VERSION__ > __STDC_STDATOMIC__
define __STDC_LIB_VERSION__ __STDC_STDATOMIC__
#endif

This clearly indicates to C programmers that certain feature are not yet available, but that
they can rely on features of a previous version of the standard. A free standing environment
that does not implement <setjmp.h>, say, would just have to add a header

#ifndef __STDC_SETJMP__
define __STDC_SETJMP__ 0L
undef __STDC_HOSTED__
define __HOSTED__ 0
#endif

or trigger such definitions for any unknown header file that is included with <>.

Sections of the C standard to be amended
6.10.8:
Remove p1 about stating that the macros remain constant throughout compiling the
same TU. This has to be elaborated specifically for the different sections.

Modify the first phrase of p2 from:

None of these macro names, nor the identifier defined, shall be the subject

of a #define or a #undef preprocessing directive.

by

None of these macro names shall be the subject of a #define or a #undef

preprocessing directive other than effected by the inclusion of a standard

header.
The identifier defined shall not be the subject of a #define or a

#undef preprocessing directive.

Note: we’d have to think of a better place this constraint for defined.
Add a new paragraph.

Macros that reflect versions of ISO/IEC 9989 shall expand to the value

of __STDC_VERSION__ of the corresponding version, to 199000L

if the version is ISO/IEC 9899:1990, or to 0L if no version is supported.

N2069:4 Jens Gustedt

6.10.8.1, add:

The values of the predefined macros __DATE__, __TIME__,

__STDC__ and __STDC_VERSION__ remain constant throughout

the translation unit.

Add the following item and footnote to the list in Section 6.10.8.1:

__STDC_LIB_VERSION__ The minimal version of ISO/IEC 9899 for
which all included library headers are feature complete.FOOTNOTE

FOOTNOTE: The intent is that this macro should only differ

from __STDC_VERSION__ during the transition of an

implementation to a new version of ISO/IEC 9899.

Move the item for __STDC_HOSTED__ from Section 6.10.8.1 to 6.10.8.3. and
add the following text at its end.

This macro shall be defined whenever one of the standard headers
that are optional for a hosted environment is included. Its

value shall be 1 as long as the included standard headers

provide all mandated features. Its value shall be 0 if any of

the included standard headers misses any of the mandated

features.

6.10.8.2, describes language and not library features, therefore they should not change
during complilation. Add as new first paragraph

The values of the predefined macros listed in the following

subclause are either defined or not before inclusion of all
standard headers and remain unchanged throughout the translation unit.

6.10.8.3, add a new first paragraph with example:

Each standard header with name of the form <xxxxx.h> that is not
listed in clause 4, p6, defines a macro __STDC_XXXXX__ that expands

to the maximum version number of ISO/IEC 9989 to which this header complies.

This version is greater or equal to __STDC_LIB_VERSION__.

EXAMPLE: In a hosted environment, the header <locale.h> defines the

macro __STDC_LOCALE__ with a value that is at least 199000L.
In a freestanding environment, this macro can also evaluate to the

value 0L to indicate that no conforming implementation of the locale

feature is available. In that case, the macro __STDC_HOSTED__

also is 0 after inclusion of <locale.h>.

Mandatory C library headers N2069:5

Then replace the three items

__STDC_NO_ATOMICS__ The integer constant 1, intended to

indicate that the implementation does not support atomic

types (including the _Atomic type qualifier) and the

<stdatomic.h> header.

__STDC_NO_COMPLEX__ The integer constant 1, intended to

indicate that the implementation does not support complex

types or the <complex.h> header.

__STDC_NO_THREADS__ The integer constant 1, intended to

indicate that the implementation does not support the

<threads.h> header.

as follows:
__STDC_NO_ATOMICS__, after inclusion of the <stdatomic.h>

header, the integer constant 1, intended to indicate that

the implementation does not support atomic features including

the _Atomic type qualifier.

__STDC_NO_COMPLEX__, after inclusion of the <complex.h>

header, the integer constant 1, intended to indicate that

the implementation does not support complex types.

__STDC_NO_THREADS__, after inclusion of the <threads.h>

header the integer constant 1, intended to indicate that

the implementation does not support the threads

interface.

7.1.2, p2, remove the footnote (currently number 183). Then add at the end the
following paragraph and example after the list of the headers.

All these headers shall be present for a conforming implementation. If

a header describes an optional feature that can be tested by a

predefined macro (see Section 6.10.8) the header defines some or all

of the corresponding features and provides the necessary feature test

macros after inclusion.

Example: In a freestanding environment the header <locale.h>

shall be available, but must not necessarily implement all

features. After the inclusion the macros __STDC_LOCALE__ and

__STDC_HOSTED__ are defined. If not all locale features

of a specific version of ISO/IEC 9989 are implemented by the

header they evaluate to 0L and 0, respectively.

N2069:6 Jens Gustedt

Additionally, other of the macros that are specified by library headers can be used as
tests for partial features, see Table IV.

This interpretation of the presence of these macros could be enforced with some redac-
tional effort, but we think that it is sufficient to recommend a reasonable usage. We propose
the following

Sections of the C standard to be amended
Add to the end of 7.1.2 p2:

RECOMMENDED PRACTICE. If an implementation does not support all

features of a specific header or of a new version of it, it should

use the macros that are to be provided by the header as test macros

for partial features. Therefore an initialization or manipulation

macro for a specific type should only be provided if the data types

and its operations are also provided. E.g the presence of

ATOMIC_VAR_INIT should indicate that the _Atomic

qualifier and operators for atomic objects are provided, and

likewise the presence of the macro ONCE_FLAG_INIT should

indicate the availability of the type once_flag and the

function call_once.

header macro feature
<complex.h> I, complex _Complex
<math.h> FP_FAST_FMA fma

FP_ILOGB0 ilogb
MATH_ERRNO math_errhandling

<signal.h> SIG_DFL signal
<stdatomic.h> ATOMIC_VAR_INIT _Atomic

ATOMIC_XXXX_LOCK_FREE type atomic_xxxx
ATOMIC_FLAG_INIT atomic_flag

<stdio.h> BUFSIZ setbuf
_IONBF setvbuf
FOPEN_MAX fopen
TMP_MAX tmpnam
SEEK_SET fseek

<stdlib.h> EXIT_SUCCESS exit
RAND_MAX rand

<threads.h> thread_local _Thread_local
ONCE_FLAG_INIT once_flag
TSS_DTOR_ITERATIONS tss_t

<time.h> TIME_UTC timespec_get
CLOCKS_PER_SEC clock

Table IV. Macros to test partial features

