
C TSS Destructor Specification
Owen Shepherd

Public Domain C Library Project

The full revision history of this document may be found at
https://e43oss.atlassian.net/wiki/display/PDCLIB/C+TSS+

. Editing of that page is restricted,Destructor+Specification
but comments are welcomed

Table of Contents

http://www.owenshepherd.net/
http://pdclib.e43.eu/
John Benito
TextBox
Document: N1687

1 Table of Contents
2 Introduction
3 Existing implementations and specifications

3.1 POSIX.1 2008
3.2 Microsoft Windows
3.3 C++2011

4 Proposed Behavior
4.1 Implementation Considerations
4.2 Proposed Technical Corrigendum

5 Change History
6 Page Properties

Introduction
The final release of the C11 international standard leaves many aspects regarding thread local storage unspecified. Specifically, the following
aspects are unspecified:

If or when destructors for thread specific storage ("tss") objects are invoked
The ordering (or lack thereof) of destructor invocation
The identity of the thread invoking the TSS destructors
The number of times TSS destructors may be invoked (and the meaning of the constant)TSS_DTOR_ITERATIONS

The behavior of TSS destructor invocation in the face of parallel modifications

This ambiguity leaves the utility of the TSS feature in a fully conforming application (i.e. one not relying on additional assertions by the
implementation) greatly reduced. In particular, it prevents the usage of the thread specific storage feature for reliable resource cleanup

This proposal is submitted in relation to specification defect reports (by the same author as this proposal) and . This proposal willDR 416 DR 424
look at existing implementations of thread specific storage and their behavior, and will then propose alterations to the C11 standard .

Existing implementations and specifications
This proposal will look at the specifications of thread specific storage and related mechanisms under two common platforms (POSIX.1 2008 and
Microsoft Windows) and additionally at the defined behaviour of the C++11 international standard.

POSIX.1 2008

POSIX.1 implements thread specific storage under the POSIX Threads ("pthreads") API. It is implemented in terms of the type ,pthread_key_t

which mirrors , and four functions, which exactly mirror those provided by the C11 standard:tss_t

C11 Function POSIX.1 Function

tss_create pthread_key_create

tss_get pthread_getspecific

tss_set pthread_setspecific

tss_delete pthread_key_delete

In addition, POSIX.1 defines the constant which has a description which presumably matches the intent ofPTHREAD_DESTRUCTOR_ITERATIONS

the C11 specification's constant.TSS_DTOR_ITERATIONS

POSIX.1 defines that, at thread exit time

For each key which was created with a destructor, the value associated with the key will be set to and the key's destructor will beNULL

invoked with the value that the key had immediately prior to being set to NULL

The ordering of destructor calls for distinct keys is undefined
If after invoking the destructor for each key created with one there remain keys with destructors which have values which are non-NULL,
the process will be repeated up to times.PTHREAD_DESTRUCTOR_ITERATIONS

POSIX.1 leaves undefined the behaviour of invoking (the function which exits a thread, analogously to C11's pthread_exit thrd_exi

) from within a destructort

POSIX.1 defines that and do cause destructor invocations.pthread_key_delete exit not

POSIX.1 leaves undefined whether destructors for keys created or destroyed concurrently with a thread running destructors (in another thread, or
from a destructor running on the thread executing destructors) will alter the set of destructors run by said thread.

Microsoft Windows

http://open-std.org/JTC1/SC22/WG14/www/docs/dr_416.htm
http://open-std.org/JTC1/SC22/WG14/www/docs/dr_424.htm

Thread Specific Storage on Microsoft Windows is implemented in terms of four functions:

// Common Win32 API types, defined for those unfamiliar:
typedef uint32_t DWORD;
typedef void *LPVOID;

// Win32 TLS functions
DWORD TlsAlloc(void);
BOOL TlsFree(DWORD dwTlsIndex);
BOOL TlsSetValue(DWORD dwTlsIndex, LPVOID lpTlsValue);
LPVOID TlsGetValue(DWORD dwTlsIndex);

The function is used in order to allocate a new thread specific storage "index.", Note that the Windows API does not directly have anyTlsAlloc

concept of a thread local storage destructor. The function is used to deallocate a thread specific storage index. The and TlsFree TlsSetValue

 functions, aside from the differences in the types involved and method of indicating errors, behave in the same manner as the TlsGetValue tss

 and functions in the C11 standard._set tss_get

Windows does not directly provide destructor support for thread specific storage objects, but does provide mechanisms by which they may be
implemented:

A dynamic link library ("DLL") may provide an entry point, conventionally called , which receives notifications on various events,DllMain

including thread startup and termination
On recent versions of Windows (5.1/XP, released 2001) and above, an executable may request to have similar notifications delivered to
one or more functions by placing a structure pointing to them in a table placed in a specifically located executable segment

Either method may be used to implement thread local storage destructors (the former is used by, for example, the library topthreads-win32
implement the POSIX.1 threading library on top of Windows).

A caveat which must be noted with either of the above methods of implementing thread specific storage destructors is that in both cases the
notifications are delivered while the system holds a lock on an internal mutex (The "Loader lock", which is also taken internally during calls to
certain functions exposed by the system)

C++2011

C++2011 introduces the language keyword , aligned to the macro introduced by and thread_local thread_local <threads.h> _Thread_l

 keyword in , which introduces an object of thread local storage duration. C++ objects have both constructors and destructors, andocal C11

therefore must be allocated and constructed before first use in a thread, and destroyed and deallocated at thread exit.

C++ defines that thread local storage destructors are called

As a result of calling for objects associated with the thread that invoked , prior to commencing invocation of functionsexit exit

registered with atexit

Upon return from main, for the objects associated with the process' initial thread (following the rule that an application which returns from

main shall behave as if exit was invoked with the value returned)

Upon thread exit (in unspecified order)

It is noted that the requirement that destructors be called from differs from that of POSIX.1. It is also noted that C++ does not need to invokeexit

destructors multiple times because of the nature of C++ objects.

Proposed Behavior
The proposed behavior is to align the C specification behavior with POSIX.1

http://www.sourceware.org/pthreads-win32/

Implementation Considerations

The behavior of the thread specific storage primitives defined in the POSIX.1 specification are thought to be possible to implement on all platforms
which support threads. On platforms which do not implement thread specific storage destructors natively, or which do so in a manner incompatible
with the mechanisms defined by POSIX.1 can be handled either by

Implementation of the invocation of thread specific storage destructors using a platform dependent mechanism, as done by pthreads-w

, referenced abovein32

Implementation of the invocation of thread specific storage destructors entirely within the C library

An example implementation would be for the C library to invoke destructors manually from within the function. This would bethrd_exit

sufficient to support fully conforming C programs, though may not be useful for applications where some components may not use the C library
threading primitives.

Proposed Technical Corrigendum

This proposed corrigendum is a lightly edited version of that originally proposed in DR 416:

After 7.26.5.1p2, add

Returning from shall have the same behaviour as invoking with the returned valuefunc thrd_exit

Change 7.26.5.5 part 2 from

The function terminates execution of the calling thread and sets its result code to .thrd_exit res

to

For every thread specific storage key which was created with a non-NULL destructor and for which the value is non-NULL, shathrd_exit

ll set the value associated with the key to NULL and then invoke the destructor with its previous value. The order in which destructors are
invoked is unspecified.

If after this process there remain keys with both non-NULL destructors and values, the implementation shall repeat this process up to TSS_

 times.DTOR_ITERATIONS

Following this, the thrd_exit function terminates execution of the calling thread and sets its result code to res.

After 7.26.6.1p2, add

The value NULL shall be associated with the newly created key in all existing threads. Upon thread creation, the value associated with all
keys shall be initialized to NULL

Note that destructors associated with thread specific storage are not invoked at process exit.

It is undefined to call from within a destructor invocation.tss_create

It is undefined if calls to or for a storage are valid on a thread if the call which allocated ittss_set, tss_get tss_delete tss_create

completed after the thread commenced executing destructors.

To 7.26.6.2p2, append

If is called while another thread is executing destructors, whether this will affect the number of invocations of the destructortss_delete

associated with on that thread is unspecified. If the thread from which is invoked is executing destructors, then no furtherkey tss_delete

invocations of the destructor associated with will occur on said thread.key

Calling will not result in the invocation of any destructors.tss_delete

After 7.26.6.4p2, add

This action will not invoke the destructor associated with the key on the value being replaced.

(This additionally clarifies whether or not a destructor will be invoked for a storage created after a thread has already begun executing destructors:
because is an undefined operation, a value may never be associated with the storage and therefore the destructor may never betss_set

invoked)

Changes since DR 416:

Revert change to 2.26.5.5 part 3 to language in the existing international standard
State that invoking from within a destructor invocation is undefinedtss_create

State that invoking , or on a storage created after a thread has begun executing destructors from withintss_set tss_get tss_delete

that thread is undefined

Change History
Version Date Comment

 (v. 3)Current Version Mar 19, 2013 15:41 :Owen Shepherd
Revision for submission

v. 2 Mar 05, 2013 23:17 : Owen Shepherd
Include link to page in header. Modify page
labels

v. 1 Mar 05, 2013 23:11 Owen Shepherd

Page Properties

Standard ISO C11

Resolution Open

Status Submitted

WG Documents

https://e43oss.atlassian.net/wiki/display/PDCLIB/viewpage.action?pageId=6520834
https://e43oss.atlassian.net/wiki/display/PDCLIB/viewpage.action?pageId=6979585
https://e43oss.atlassian.net/wiki/display/PDCLIB/viewpage.action?pageId=6520836

	C TSS Destructor Specification

