
SC22/WG14/N1331

August 6, 2008

Reply to: Thomas Plum, tplum@plumhall.com

Critical Undefined Behavior
At the Delft meeting, paper N1278 was discussed and the general sentiment requested a
revision of that paper. Since then, discussion on the reflector has clarified several issues,
and highlighted the need to refine basic concepts. I’m going to attempt an overview
summary again.

I’ll use the word “bug” for a software error that causes an incorrect result to be produced.
There’s a discipline (“cause-effect analysis”, I think) that graphs the dependence of
downstream results on prior results; in this sense, a bug in some component can lead to
incorrect results in all downstream components.

A component may be a critical component; a security example might be password
authentication; in safety-critical code, most or all of the code may be critical components.
The point here is that any bug in a critical component might cause a vulnerability or a
hazard.

However, my main concern is with the non-critical components. There is a small set (I
think it’s small) of undefined behaviors which if they happen, even in a non-critical
component, can directly cause a vulnerability or hazard. The cause-effect analysis
described above assumes that each component modifies only certain objects –
colloquially, it modifies its outputs, and if it’s buggy, it may produce buggy outputs. The
outputs are the values and objects which are produced or modified by the statements in
the C program. But there are other values and objects that aren’t meant to be directly
accessed by the program statements, they’re meant to be manipulated only by the system
itself – such things as bookkeeping data in the heap, or a function return pointer, or the
stack-frame layout in general. The distinction I’m after is that the critical undefined
behavior category includes those that might modify this system data. Once a critical u.b.
takes place, cause-effect analysis is (almost?) useless; the set of possible “downstream”
effects is unbounded, or “all bets are off”.

The “poster child” for critical control-flow u.b. is invocation via a pointer-to-function
which has been hijacked by an attacker. For another example, system integrity can’t be
guaranteed if a caller assumes the wrong type for the called function. Those cases seem
reasonably clear. But at Delft, Rich Peterson suggested that my “critical” category was
too broad, in the area of program control flow, and I think that’s correct. Joseph Myers
posted some really interesting examples and questions on the reflector. I suspect that
merely taking a “flaky” path through statements within one block (caused perhaps by
buggy, or indeterminate, data) shouldn’t be in the same “critical” category.

Doug Gwyn pointed out that if a fetch of a “trap representation” creates undefined
behavior, that behavior might not actually be a trap, but just the loading of an unexpected
value. (In several places, the standard refers to “explicit trap” or “produce a trap”
without further definition; I used “perform a trap” to mean the same, intuitive thing.)

Discussion after Delft suggested that we don’t need to change any “undefined behavior”
instances into compile-time errors; tools for the security and safety markets are already
entitled to diagnose those instances severely as-is; see N1309.

This version of this paper attempts to reflect the comments by Gwyn and Myers in email
messages 11497-11500; details to be provided at the next meeting. In particular, note
that fetching an indeterminate value is permitted to perform a trap, but failing that, the
value produced is not required to be deterministic (e.g., an indeterminate bool might be
sometimes true and sometimes false).

Note also that various other undefined behaviors that produce incorrect pointer values are
only one step away from an out-of-bounds store; still we maintain the distinction that the
out-of-bounds store is the critical undefined behavior. In other words, an incorrect
pointer value, that never got used, never actually produced a critical undefined behavior.

Proposed Wording

Replace
3.4.3 undefined behavior
behavior, upon use of a nonportable or erroneous program construct or of
erroneous data, for which this International Standard imposes no requirements

as follows (re-numbering as needed):

3.4.3a out-of-bounds store
an (attempted) access (3.4.1) which, at run-time, for a given computational state,
would modify one or more bytes (or for an object declared volatile, would fetch
one or more bytes) that lie outside the bounds permitted by the standard

3.4.3b improper control flow
an (attempted) alteration of the flow of control which would violate the semantics
specified by the standard [needs work] or invoke a function which is not
compatible with the type of the invoking expression; however, performing a trap
is not an improper control flow

3.4.3c undefined behavior
behavior, upon use of a nonportable or erroneous program construct or of
erroneous data, for which this International Standard imposes no requirements,
except that the behavior shall not perform an out-of-bounds store or improper
control flow

3.4.3d critical undefined behavior
behavior, upon use of a nonportable or erroneous program construct or of
erroneous data, for which this International Standard imposes no requirements

NOTE the behavior might perform an out-of-bounds store or an improper control
flow

Identify the following undefined behavior situations as critical undefined behavior:

6.2.4 An object is referred to outside of its lifetime
6.3.2.1 An lvalue does not designate an object when evaluated
6.3.2.3 A pointer is used to call a function whose type is not compatible with the
pointed-to type
6.5.2.2 A function is defined with a type that is not compatible with the type (of
the expression) point to by the expression that denotes the called function
6.5.2.2 For a call to a function without a function prototype in scope where the
function is defined with a function prototype, either the prototype ends with an ellipsis or
the types of the arguments after promotion are not compatible with the types of the
parameters
6.5.2.2 For a call to a function without a function prototype in scope where the
function is not defined with a function prototype, the types of the arguments after
promotion are not compatible with those of the parameters after promotion
6.5.2.2 For a call to a function without a function prototype in scope, the number
of arguments does not equal the number of parameters
6.5.3.2 The operand of the unary * operator has an invalid value
6.5.6 Addition or subtraction of a pointer into, or just beyond, an array object
and an integer type produces a result that points just beyond the array object and is used
as the operand of a unary * operator that is evaluated
7.1.4 An argument to a library function has an invalid value or a type not
expected by a function with variable number of arguments
7.13.2.1 The longjmp function is invoked to restore a nonexistent environment
7.20.3 The value of a pointer that refers to space deallocated by a call to the
free or realloc function is used
7.20.4.3 During the call to a function registered with the atexit function, a call is
made to the longjmp function that would terminate the call to the registered function
7.21.1, c7.24.4 A string or wide string utility function is instructed to access an
array beyond the end of an object

