
WG14 N1226
March 26, 2007

Regarding DR314

DR314 asks three questions. The proposed committee response to these questions is
flawed by neither quoting the sections of the Standard that apply nor explaining the
reasoning behind the answers. I believe that the answers to the first two questions
uncontroversial and can be easily justified by the text of the standard. The third proposed
answer has the potential to cause much mischief and invalidate a lot of reasonable,
widespread code.

The issues concern type compatibility of objects with struct type declared in different
translation units. I will present a series of examples, and so how the text of the Standard
applies. The part of the Standard that controls is Subclause 6.2.7, Paragraphs 1 and 2,
quoted in the entirety below. I’ve underlined the text in Paragraph 1 that is particularly
important:

1 Two types have compatible type if their types are the same. Additional rules for
determining whether two types are compatible are described in 6.7.2 for type
specifiers, in 6.7.3 for type qualifiers, and in 6.7.5 for declarators.46) Moreover,
two structure, union, or enumerated types declared in separate translation units are
compatible if their tags and members satisfy the following requirements: If one is
declared with a tag, the other shall be declared with the same tag. If both are
complete types, then the following additional requirements apply: there shall be a
one-to-one correspondence between their members such that each pair of
corresponding members are declared with compatible types, and such that if one
member of a corresponding pair is declared with a name, the other member is
declared with the same name. For two structures, corresponding members shall be
declared in the same order. For two structures or unions, corresponding bit-fields
shall have the same widths. For two enumerations, corresponding members shall
have the same values.

2 All declarations that refer to the same object or function shall have compatible

type; otherwise, the behavior is undefined.

DR314 Question 1
Before the examples, I’ll suggest improved wording for question 1 in the DR.

Question 1: Does 6.2.7#2 refer to the types immediately after the declarations, or the
types at any point where the declarations are in scope?

Subclause 6.2.7 Paragraph 2 makes a statement about all declarations of the same object
or function, regardless of where the declarations that object or function are. It requires
that all declarations of the same object or function, even if those declarations are in
different translation units of the program, to have compatible type.

Page 1

WG14 N1226
March 26, 2007

Note also that if an object with struct or union type is declared with an incomplete type,
and that type is later completed in the same scope, the type of the declaration is the
completed type (Subclause 6.2.5, Paragraph 22). Under such conditions, the type of the
object or function is the completed type, and that type must be compatible with any other
declarations.

Example 1

// Translation Unit 1
struct S {int a;};
extern struct S *x;

// Translation Unit 2
struct S {int a;};
extern struct S *x;

There is no undefined behavior in these two translation units. Subclause 6.2.7 Paragraph
2 is met because both declarations of the object x have pointer types that are compatible.
The pointer types are compatible because the types they point to (namely struct s)
are compatible types. We know that struct S in translation unit 1 is compatible with
struct S in translation unit 2 by Paragraph 1 because:

• Both are declared with the same tag, namely S
• Both are complete types, and

o Both have a one-to-one correspondence between their struct members.
o The corresponding struct members have compatible type, namely int
o The struct members are declared in the same order
o The corresponding struct members have the same name, namely a

Example 2

// Translation Unit 1
struct S {int a;};
extern struct S *x;

// Translation Unit 2
struct S;
extern struct S *x;

There is no undefined behavior in these two translation units. Subclause 6.2.7 Paragraph
2 is met because both declarations of the object x have pointer types that are compatible.
The pointer types are compatible because the types they point to (namely struct s)
are compatible types. We know that struct S in translation unit 1 is compatible with
struct S in translation unit 2 by Paragraph 1 because:

Page 2

WG14 N1226
March 26, 2007

• Both are declared with the same tag, namely S
• Both are not complete types (therefore, members do not have to match).

Example 3

// Translation Unit 1
struct S {int a;};
extern struct S *x;

// Translation Unit 2
struct S;
extern struct S *x;

// Translation Unit 3
struct S {float a;};
extern struct S *x;

There is undefined behavior.

The declaration of x in translation unit 1 has compatible type with x in translation unit 2
(just like Example 2).

The declaration of x in translation unit 2 has compatible type with x in translation unit 3
(just like Example 2).

But, the declaration of x in Translation Unit 1 does not have compatible type with x in
translation unit 3: In translation unit 1 struct S has an int member, and in translation
unit 3 struct S has a float member.

Subclause 6.2.7 Paragraph 2 requires that all declarations of the same object or function
have compatible type. It doesn’t matter if some of the declarations of the same object
have compatible type, if one of the declarations does not compatible type with any of the
others, there is undefined behavior.

Example 3 is a simplified version of Example 4 from DR314.

Page 3

WG14 N1226
March 26, 2007

Example 4 (Question 2 in DR314)

// Translation Unit 1:
extern struct t *x;
struct s;
struct t { struct s *a; };

// Translation Unit 2:
extern struct t *x;
struct s { int p; };
struct t { struct s *a; };

// Translation Unit 3:
extern struct t *x;
struct s { long q; };
struct t { struct s *a; };

Although the object x is initially declared to be a pointer to incomplete type struct t, that
type is completed in the same scope as the declaration of x in all three translation units.
Therefore by Subclause 6.2.5 Paragraph 22, the type of x is a pointer to struct t, a
complete type whose sole member named a has type pointer to struct s.

There is undefined behavior because the declaration of x in translation unit 2 does not
have compatible type with the declaration of x in translation unit 3. The types are not
compatible because the type struct t in translation unit 2 does not have compatible
type with the type struct t in translation unit 3. Those types are not compatible
because the a member of struct t in translation unit 2 does not have compatible type
with the a member of struct t in translation unit 3. Those types are not compatible
because the type struct s in translation unit 2 does not have compatible type with the
type struct s in translation unit 3.

Note that the declaration of x in translation unit 1 is compatible with x in translation unit
2 and x in translation unit 3. The reason is that the type struct s in translation unit 1
is a compatible type with struct s in translation unit 2 and the type struct s in
translation unit 1 is a compatible type with struct s in translation unit 3.

But, since Subclause 6.2.7 Paragraph 2 requires all declarations of x to have compatible
type, there is undefined behavior.

Page 4

WG14 N1226
March 26, 2007

Example 5

// Translation Unit 1
#include <stdio.h>
struct s {int i;};
static struct s x = {0};
extern void f(void);
int main()
{
f();
return x.i;

}

// Translation Unit 2
struct s {float f;};
static struct s y = {3.14};
void f()
{
return;

}

There is no undefined behavior. Note that Subclause 6.2.7 Paragraph 2 only requires that
the declarations of the same objects or functions have compatible type. The only object
or function declared more that once is function f, and both of its declarations have
compatible type.

There is no requirement to ever ask if the struct s in translation unit 1 has compatible
type as struct s in translation unit 2. struct s in both translation units is purely a
“local” type.

I believe that this is the answer expected by most C programmers. When I write a struct
declaration I don’t ask myself the question, “Is there somewhere else in the large
program, including all of the code written by others or in the library, that someone else
wrote a struct with the same name that I have to match?”

Page 5

WG14 N1226
March 26, 2007

Example 6

// Translation Unit 1
#include <stdio.h>
struct s {int i;};
extern struct s x = {0};
extern void f(void);
int main()
{
f();
return x.i;

}

// Translation Unit 2
struct s {float f;};
extern struct s y = {3.14};
void f()
{
return;

}

There is no undefined behavior. Although the objects x and y now have external linkage,
there is still only one declaration of x and y, and there is no requirement to ask if the
struct s in translation unit 1 has compatible type as struct s in translation unit 2.

Page 6

WG14 N1226
March 26, 2007

Example 7

// Translation Unit 1
#include <stdio.h>
struct s {int i;};
extern struct s x = {0};
extern void f(void);
int main()
{
f();
return x.i;

}

// Translation Unit 2
struct s {float f;};
extern struct s y = {3.14};
void f()
{
return;

}

// Translation Unit 3
struct s {int i;};
extern struct s x;

// Translation Unit 4
struct s {float f;};
extern struct s y;

There is no undefined behavior. Although there are two declarations of the object x
(translation unit 1 and translation unit 3), both have compatible type under the rules of
Subclause 6.2.7 Paragraph 1. Likewise, the two declarations of object y (translation unit
2 and translation unit 4) have compatible type. There is no requirement that object x
have compatible type with object y, because they are different objects. There is no
reason to care if struct s in translation unit 1 is a compatible type with struct s in
translation unit 2.

Although this example might seem forced, I am sure that similar code appears in many
large programs. Large programs are built upon subsystems containing subsystems, and
libraries calling other libraries. It is common in such environments to share lots of code,
with a large interface, locally within a subsystem, and then have a more constrained
interface to other subsystems. For example, if I write a program using X windows, I
don’t care if two or more modules within X windows use a struct s, as long as
nothing in the interface to X windows that I use has a struct s. I’ll declare my

Page 7

WG14 N1226
March 26, 2007

objects of struct s consistently, and they can declare their objects of struct s
consistently. Neither one of us needs to worry about either other’s “private” use of the
struct named s.

Conclusion

In C, struct, union, and enum types in different translation units only need be compatible
if necessary to determine whether a set of declarations of a particular object or a
particular function need to be compatible.

If there is a need to determine whether two or more struct, union, and enum types in
different translation units are compatible types, Subclause 6.2.7 Paragraph 1 contains the
definition needed.

Page 8

	DR314 Question 1
	Example 1
	Example 2
	Example 3
	Example 4 (Question 2 in DR314)
	Example 5
	Example 6
	Example 7
	Conclusion

