
Fixing std::start_lifetime_as and
std::start_lifetime_as_array

Timur Doumler (papers@timur.audio)
Arthur O’Dwyer (arthur.j.odwyer@gmail.com)

Richard Smith (richardsmith@google.com)
Alisdair Meredith (ameredith1@bloomberg.net)

Robert Leahy (rleahy@rleahy.ca)

Document #: P2679R1
Date: 2022-11-11
Project: Programming Language C++
Audience: Core Working Group, Library Working Group

Abstract

std::start_lifetime_as and std::start_lifetime_as_array, facilities to explicitly start
the lifetime of an object of implicit-lifetime type inside a block of suitably aligned storage, was
introduced in [P2590R2] and voted into C++23. We propose to fix some remaining issues before
C++23 ships. We also discuss possible changes to the API that were considered but rejected.

1 Changes proposed

1.1 Allow size 0 for arrays of unknown bound

std::start_lifetime_as currently does not work with the value 0 for its second parameter (the
size of the dynamic array to be created). Passing 0 is undefined behaviour. This API makes it
unnecessarily difficult and error-prone for generic code to interact with it. We propose to allow the
value 0. This proposal resolves NB comment CA-086 targeting C++23. For the size 0 case, the
pointer returned can only be used in the manner in which pointers past the end of an array can be
used; in particular, the pointer cannot be dereferenced. In generic code, this restriction is typically
fine, and allowing size 0 obviates the need to special-case size 0:

void processData(unsigned char* dataFromNetwork, size_t numObjectsToRead) {
Data* data = std::start_lifetime_as_array<Data>(dataFromNetwork, numObjectsToRead);
for (size_t i = 0; i < numObjectsToRead; ++i)

processObject(data[i]);
}

For the size 0 case, we further propose to allow nullptr as the value of the first parameter, as no
storage is actually needed in this case:

Data* data = std::start_lifetime_as_array<Data>(nullptr, 0); // OK
assert(data == nullptr); // holds

1

mailto:papers@timur.audio
mailto:arthur.j.odwyer@gmail.com
mailto:richardsmith@google.com
mailto:ameredith1@bloomberg.net
mailto:rleahy@rleahy.ca

1.2 Make using wrong overload set ill-formed

std::start_lifetime_as creates objects of non-array type and arrays of known bound (static
arrays); std::start_lifetime_as_array creates arrays of unknown bound (dynamic arrays).
Using the wrong interface with the wrong type should be ill-formed:

unsigned char* buf = /∗ ... ∗/
auto* p1 = std::start_lifetime_as<int[]>(buf); // UB, should be ill-formed

With the current wording, the code above is undefined behaviour as per [res.on.functions] p2.5. The
Mandates clause needs to be adjusted to make this code ill-formed instead.

2 Changes considered (not proposed)
In the previous revision [P2679R0] of this paper, and in NB comment GB-087, we had proposed
further changes to the API of std::start_lifetime_as and std::start_lifetime_as_array.
We felt that the API was inconsistent with other APIs in the standard library that create objects
and accept both array and non-array types, such as std::make_shared and std::make_unique.
These have a version for non-array types, a version for array types of known bound, and a
version for array types of unknown bound, respectively, all with the same name, whereas here,
std::start_lifetime_as handles non-arrays and static arrays, and a version with a different
name, std::start_lifetime_as_array, handles dynamic arrays. In other words, static arrays are
handled with a function that does not have the _array suffix in the name.
Further, the template parameters seem inconsistent between the two overload sets. On the one hand,
for std::start_lifetime_as, when used with an array type U[N] of known bound, the template
argument that the user needs to provide is the type U[N] of the object being created (for example,
std::start_lifetime_as<int[16]>). On the other hand, for std::start_lifetime_as_array,
the template argument is not the type U[] of the object being created, but instead the type of its
elements U.
Finally, the overloads for arrays of unknown bound (the ones with the suffix _array) return a
pointer to the first element of the array, while the overloads without the suffix _array, when used
with an array type of known bound, return a pointer to the array itself. In other words, a call to
std::start_lifetime_as_array<int>(p, 16) will return an int*, but at the same time a call
to std::start_lifetime_as<int[16]>(p) will return an int(*)[16].
We therefore proposed in [P2679R0] to redesign this API such that all overloads have the same
name std::start_lifetime_as (dropping the _array suffix for dynamic arrays), the template
argument is always the type of the object created, and the return type is either a pointer to the
object created (for non-arrays) or a pointer to the first element of the array (for arrays):

unsigned char* buf = /∗ ... ∗/

// Proposed in P2679R0:
int* p1 = std::start_lifetime_as<int>(buf);
int* p2 = std::start_lifetime_as<int[10]>(buf);
int* p3 = std::start_lifetime_as<int[]>(buf, 10);

LEWG has pointed out that returning a pointer to the first element would mean that for arrays there
will be no way to obtain a pointer to the array itself, since arrays are not pointer-interconvertible
with their first element ([basic.compound] p4). In the case of a static array, this design would mean
that the compile-time information about the size of the array, which is embedded in the type, would
be lost. LEWG asked to revise the paper such that for arrays, std::start_lifetime_as returns a
pointer to the created array. For static arrays, this design retains the possibility to pass the created
array by reference, preserving the size information in the type:

2

void processBlock(Data (&block)[8]);

void doStuff() {
// ...
processBlock(*std::start_lifetime_as<Data[8]>(dataFromNetwork));

}

This design would also have made the overload set even more consistent, because then, for all
possible types, std::start_lifetime_as would always return a pointer to the created object.
This design then went to CWG. They pointed out that while returning a pointer to a static array
is useful for use cases like the above, we should never be returning a pointer to a dynamic array
from a standard library function. Every existing standard library API that creates a dynamic array
(new-expression, operator new, std::make_shared, std::make_unique, etc.) only ever returns a
pointer to the first element, with no way to obtain a pointer to the whole array. Making returning
a pointer to the array work in the dynamic array case would require major heroics in the wording,
particularly for the size 0 case, as we do not have a well-defined concept of zero-length arrays (or
pointers to them) in the language today. Notably, a dynamic array T[] is an incomplete type, so
you cannot ever create an object of such a type. But you can also not create an object of type T[n],
because for dynamic arrays, n has a runtime value unknown to the type system. Therefore, the
type of the object actually created falls outside of the C++ type system. We currently get around
this problem in the wording by not specifying the type of the object created, but only describing
the type in quotes (“array of n T”) and never giving the user any way to actually refer to such an
object (such as through a pointer or a reference).
Unlike for static arrays, a pointer to a dynamic array is also not particularly useful, as it does not
contain any information about the size in its type. The only thing you could ever do with such a
pointer is to dereference it and let it decay to a pointer to the first element. It is therefore more
user-friendly to just give them a pointer to the first element.
This line of reasoning made us realise that std::start_lifetime_as (for non-arrays and for static
arrays) and std::start_lifetime_as_array (for dynamic arrays) are two fundamentally different
APIs. In the former, you specify the type of the object to be created, and get a pointer to this
object; in the latter, you specify the element type and the desired array size, and get a pointer to
the first element of the created array. Both APIs do the correct thing for the types they are meant
for. They are also sufficiently different that they should have a different name, which justifies the
_array suffix for the dynamic array version. The API currently in the C++23 draft is therefore the
correct one (with the additions proposed in this paper).
For maximum clarity, the overload set for dynamic arrays should perhaps have been named
std::start_lifetime_as_dynamic_array instead, but this name is uncomfortably long. LEWG
argued further that this API is a low-level facility targeted at expert users who would be able to
figure out the difference, particularly with the (still proposed) change to the Mandates clause to
make usage of either API with the wrong kind of array type ill-formed. In the end, LEWG decided
to leave the basic design of the API unchanged and reject NB comment GB-087.
Each version still needs four overloads: for non-const, const, volatile, and const volatile
pointers, respectively. In an unrelated earlier design consideration, we looked at how we could
reduce the amount of overloads. We considered an alternative approach for this API: have only one
overload per version (instead of four), but restrict the parameter to std::is_void. However, that
approach would forbid conversions, rendering the API difficult to use: in practice, the argument
is rarely a void*, but typically a pointer to storage such as an unsigned char* or a std::byte*.
We therefore rejected such an approach as unviable.

3

3 Proposed wording
The proposed changes are relative to the C++ working paper [N4917].
Modify [obj.lifetime] as follows:
Explicit lifetime management [obj.lifetime]

template<class T>
T* start_lifetime_as(void* p) noexcept;

template<class T>
const T* start_lifetime_as(const void* p) noexcept;

template<class T>
volatile T* start_lifetime_as(volatile void* p) noexcept;

template<class T>
const volatile T* start_lifetime_as(const volatile void* p) noexcept;

Mandates: T is an implicit-lifetime type and not an incomplete type.
Preconditions: [(char*)p, (char*)p + sizeof(T)) denotes a region of allocated storage that
is a subset of the region of storage reachable through ([basic.compound]) p and suitably
aligned for the type T.
Effects: Implicitly creates objects ([intro.object]) within the denoted region as follows: an
object a of type T, whose address is p, and objects nested within a. The object representation
of a is the contents of the storage prior to the call to start_lifetime_as. The value of each
created object o of trivially-copyable type U is determined in the same manner as for a call
to bit_cast<U>(E) ([bit.cast]), where E is an lvalue of type U denoting o, except that the
storage is not accessed. The value of any other created object is unspecified. [Note: The
unspecified value can be indeterminate. — end note]
Returns: A pointer to a.

template<class T>
T* start_lifetime_as_array(void* p, size_t n) noexcept;

template<class T>
const T* start_lifetime_as_array(const void* p, size_t n) noexcept;

template<class T>
volatile T* start_lifetime_as_array(volatile void* p, size_t n) noexcept;

template<class T>
const volatile T* start_lifetime_as_array(const volatile void* p, size_t n) noexcept;

Mandates: T is a complete type.
Preconditions: n > 0 is true.p is suitably aligned for an array of T or is null. n <= size_t(-1)

/ sizeof(T) is true. If n > 0 is true, [(char*)p, (char*)p + (n * sizeof(T))) denotes
a region of allocated storage that is a subset of the region of storage reachable through
([basic.compound]) p.
Effects: If n > 0 is true, eEquivalent to: return *start_lifetime_as<U>(p); where U is
the type “array of n T”. Otherwise, there are no effects.
Returns: A pointer to the first element of the array, if any; otherwise, a pointer that compares
equal to p ([expr.eq]).

Document history

— R0, 2022-10-15: Initial version.

— R1, 2022-11-11: Removed API redesign requested in NB comment GB-087 as it was rejected
by LEWG; added support for n == 0 case resolving NB comment CA-086.

4

Acknowledgements
Many thanks to Daniel Krügler, Peter Dimov, and Ville Voutilainen for their valuable comments.

References

[N4917] Thomas Köppe. Working Draft, Standard for Programming Language C++. https:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/n4917.pdf, 2022-09-05.

[P2590R2] Timur Doumler and Richard Smith. Explicit lifetime management. https://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2590r2.pdf, 2022-07-15.

[P2679R0] Timur Doumler, Arthur O’Dwyer, and Richard Smith. Fixing std::start_lifetime_as
for arrays. https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2679r0.
pdf, 2022-10-15.

5

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/n4917.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/n4917.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2590r2.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2590r2.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2679r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2679r0.pdf

	1 Changes proposed
	2 Changes considered (not proposed)
	3 Proposed wording
	References

