
Document Number: P 1910R0
Date: 2019-10-07
Authors: Michael Wong
Project: Programming Language C++, SG14 Games Dev/Low Latency/Financial
Trading/Banking/Simulation/Embedded
Reply to: Michael Wong <michael@codeplay.com>

SG14: Linear Algebra SIG Meeting Minutes 2019/08/07-
2019/10/02

Contents
Minutes for 2019/08/07 SG14 Conference Call ... 2

Minutes for 2019/09/04 SG14 Conference Call ... 8

Minutes for 2019/10/02 SG14 Conference Call ... 13

Minutes for 2019/08/07 SG14 Conference Call

Bob Steagall

Mark Hoemann

Javier Cabezas

Jayesh Badwail

Klaus Iglberger

Mateusz Nowak

Matthew BUtler

Richard Dosselmann

William Tambellini

Michael Wong

Cem Bassoy

Nevin Liber

Graham Lopez

Jens Maurer

BS: discussion with Christian David Jayesh, Bob

had lunch for collaboration

working implementation mdspan and mdarray, and is aiming to create a test

implementation

Guy and Bob feels it is a complimentary proposal

DOE proposal is a layer upon which Bob/Guy one can be

ship vehicle for Bob/Guy aiming for C++23

MH: Mark will want to aim for C++23

public github repo from DOE LA

MH: DOE proposal

LEWGi: come back after exploring concepts and ranges

instead of using concrete type

ranges and lazy evaluation

uncomfortable writing an expression template library

due to caution from Eigen

Mdspan is not owning

expression template hard sell to the committee due to valarray

valarray was abandoned by original author, when David proposed full

expression template treatment for it,

P1674 talked about this

interest in lazy evaluation in ranges style, this can solve problems with

arbitrary arithmetic evaluation witout multiple passes

this solves it for large class Blas-1, but still cannot fuse the matri and

matrix multiply

even if we dont ship expression template library in the future

they build their expression template ontop of blas

KI: scale a vector with an expression template, so where do you set your

boundary, where do you support view? yes we debated this a lot, we just

want to introduce it and see where people go with it

major complaint to Blas is it takes too many arguments

KI:where you draw the line with transforming view: 0 layer is a drop in

replacement for at least what existign Blas has, and not preclude that; but

still need transform and scale to do what existign Blas can do

We were also thining of ways to reduce the number of arguments with BLAS

KI: But in your proposal I think there is one part where you were trying to

do more. What part should we expand? scale with 2 positions ..; yes we

have an alpha nad beta so I think it is there

KI: Is that for matrix vector? Yes, where you can have the plus y at the

end. Yes I thought that was a bit of extending, but I like it; ok it is in

GEMV

The only difference in functionality is that alpha nad beta means different

There would not be ABI problems in future as we are changign the accessor

policy for mdspan

A triangular matrix is not an accessor

BS: Bob/Guy proposal:

returnig temporaries, expression templates, we are neutral on this, provdie

an interface for implementator to decide

our interface can adopt for the future inclusing of expression templates,

MW: what games deveoper do - either proposal will work well to gamer

MW: will solver be part of the proposal: neither will support solver

BS: if you want customized operator, what is the complexity? If allowed

this customization, they may not take the best advantage as possible

Andrew Lumsdaine mentioned that we shoudl think in terms of algorithms,

concepts first, that we should not get ahead of the game

my thinking is to use the imperfect analogy of standard algorithm and

containers, 1673 has wrapper aroudn blas which are algo, mdspan is iterator

to provide access to data, matrix type holds the data

we created mdarray as a view cannot create a matrix, so mdarray, then we

need a way to iterate over them

this is actually a good analogy

single vector type vs row and column vector, havng a seingle vector type is

messy, from c++now and Klaus also mentioned this

wait until LEWG review to decide on this

KI: Klaus believes we can expresss thing better with 2 different vector

types, this keeps it more generic, inner or outer allow people to do more

things

also believe this helps people to debug their code more easily, at compile

you can detect it and 2 vector types helps that

MH: when people do outer product, they are really aiming for a matrix

update,

so its not like you dont need it, but it is a different context for inner

product

GL: What are the situation beside multiplication that you wan tto

differentiate? expand is generic, row vector into a row matrix, or column

to column matrix, 2 different functions is not generic

the more generic the operations are the better I can express the things I

want to have

for multiplication and expand, could impose a cognitive overhead for most

situation (other then these), so this could make it harder to decide which

to use

also dividing the type into row and column does not cover the degeneracy,

now you can describe 2 different kinds of multiplication but I can think of

5 different kinds of multiplication like permutation expand

GL: are you sure in future we dont need 2 different kinds of vectors?

mathematically never need 2 types of vector, can always express with one

type of vector

e.g. a dot product is different then an outer product? yes vectors are

objects and you do operations on them, mathematically are not coupled ways,

I am worry that in math we never talk about row and column vectors

MH: some people talk about covariance and contravariance?

GL: yes but that does

not say much about their orientation in space and in most cases I dont care

about the type differentiation

BS: by imposing 2 different types, we use the language to impose a

specification we want, its like shapes squares and rectangles

??: dont believe this is significant cognitive overload, people are already

exposed to but at advanced level

JM: a slightly more abstract question, both proposals are forwarded to LEWG

both libraries are not small, will they have enough expertise

games use 3-d vectors

B/G proposal: uses fixed sized can be hand coded SSD, while dynamically

sized can be more BLAS like things

1673 has a lot of in out parameters so how is this passe thorugh vector, so

a vector x scalar operation will be done in register

DOE proposal thinks can be done in mdarray, in/out as a reference parameter

may not be current convention, a ref is a ptr to memory internally

What Jens is concerned how many thing you can return in register

MW: can we show same examples with both interface

or qualities comparison (though this could be dangerous)

not trying for a runoff but to support your claim that these are

complimentary and could build on top of each other

mdspan can have more then 2 orders, while B/G proposal has submatrixes with

2 dimensions like a view

MH: left off batch linear algebra

JM: remember the valarray, afraid of having deadcode

1673 is in markdown, should be html or pdf

BS: Michael Parks has a system for creating standards paper, whch starts

with markdown and change to tex and pdf

wg21 document creator

LM: 1673 is an updating matrix vector product, has 2 declarations shown

before going on with requires, why? I forgot to delete the first

declaration, the execution policy should not to be there

all uses of execution policy were for algo, now using matrices or vectors,

can mdspan skip? yes it is polymorphic on the unique layout: mapping from 2

dim to 1 dim is 1-1

symmetric is an example as in if you want to multiply all with scalar

at the end of proposal is a reason for thin blas, this is important for

floating point accuracy, where I use a class scalar template argument.

But if I want a better guarantee, does it tell me it is a scalar type? dot

can have intermediate storage, but does not say the evaluation accuracy

we would like dot and dotc to use ...

If you go for vector and matrix then have a dot product taking a scalar,

i.e.e separate dot product is a good thing: one function that does both in

a single pass

thinks plain C++ wrapper around Blas may not deliver enough

is it really interesting to have the low level as well? Vendors like to

have it this low, vendors want even lower

if this is just to add this bag of LA algorithm, is that still not C++

enough? Yes

yes Mathias Kretz was in SG14 on SIMD question and it may be orthogonal,

then if all else fails then we need

not trying for tensor library

Lewgi also interested multidimensional ranges

see a lot of unconstraint template parameters: new library needs concepts:

But LEWG has not settled on that yet, because once set they are hard to

change.

These Algorithms take concrete types

Runtime parameter of this is bad, we actually have a layout called

transpose view that abstract away so if you intend to call the BLAS that

is what you have to do

Dot product has both conjugated and non conjugated, this is a good example

where you should make a better effort to return things by value instead of

scalar, similar to std:accumulate; but reduce is not order dependent

Minutes for 2019/09/04 SG14 Conference Call

04 Sep 2019

SG 14 linear algebra conference call

Present:

 - Mark Hoemmen (scribe)

 - Michael Wong

 - 18655743073 (unidentified)

 - Bob Steagall

 - Jayesh Badwaik

 - Klaus Igelberger

 - Marco Foco

 - Paul Preney

 - William Tambellini

 - Nevin Liber

 - Matthew Butler

MW: Today I would mainly like to discuss

1. the possibility of integrating/merging P1385 and P1673, and

2. any implementation experience with the two proposals.

Also, on Wed 18 Sep. at CppCon, SG14 will meet. If you'll be there,

let's discuss the linear algebra proposals. The idea is to give them

more dissemination, esp. since there will be more gamers there.

Bob and Mark will be at CppCon and will have a slot on Wed. Matthew

Butler will also be there. There will be other SG14 proposals, but I

want to make sure linear algebra gets exposure, since it looks like

it's a likely candidate for C++23.

BS: After the August linear algebra conference call, Mark and I had a

conversation about integration and the layering of the two proposals.

We are in complete agreement about how things should be layered and

how to proceed. Mark says they will begin implementing headers and

providing API, so we can begin including and using them in our

implementation. That work will pick up the pace after CppCon and

we'll have something to review at Belfast. Guy can't make it today

and sends his regrets. Recent thought about minor change to improve

interface; I might bring it up at CppCon and Belfast.

MH: We are working on implementing our proposal (P1673). Also, I had

a phone conversation earlier this week with Andrew Lumsdaine to

discuss our proposal. Andrew walked through some MTL3 (Matrix

Template Library, version 3) interfaces and examples. His singular

value decomposition (SVD) example showed the value of nonowning

"views" of parts of a matrix or vector. In general, I'm convinced

that a usable library would need both owning and nonowning matrix and

vector data structures. This is partly why we added mdarray (P1684).

BS: We have owning matrices -- could be dynamically allocated memory

or part of built-in array -- as well as nonowning view types.

MW: I'm glad you talked to Andrew. For everyone: talk to John

Mcfarlane about (discounted) SG14 tickets.

BS: If you read the reflector for SG21, John posted a no-cost

registration link there.

MW: The next level of review your proposals will meet is LEWG

directly. It's fine if the two proposals go as separate proposals,

but anticipate that LEWG will ask why we need two different proposals.

Also, to confirm: You're not thinking of a TS, right? You're targeting C++23?

BS: Yes.

MH: Yes.

MW: If you attempt integrating your two proposals, I applaud it, but

I'm not trying to push you. If you do integrate, the resulting

proposal will be large. Thus, try to have optional sections that you

think are more controversial. This gives reviewers a "shopping list."

Putting wording in might be premature. LWG committees will be doing a

lot of reviews for C++20. We don't know what changes LWG would make

to your proposal. The idea is to have something ready. Just be

prepared for a lot of rework.

BS: I don't think we intend to have complete and final wording done,

but we want to practice the wording and have tables that are expected,

even though they might change.

MW: Let's lay out a schedule. If you optimistically get through LEWG

in 2 sessions, then going to Prague already, before you get to LWG.

Even in Prague, LWG will _still_ be busy. Best bet for LWG review is

now Bulgaria. Worst case is Hawaii, a year after that, but that's

golden. If you can get it in by Feb 2021, it's a shoe-in for 2023.

Door closes for 2023 at beginning of 2022.

NL: I think 2 is optimistic.

MW: Good if you can do it in 5.

NL: Big paper takes longer to go through LWG, and they are not domain

experts. This is like getting Ranges through.

MW: Average is 5-8, which means you'll be tight. You might not get

everything in until end of 2022.

MH: I'm willing to be patient. The time scale for some of our codes

is 40 years.

MW: I want this to happen, my company wants it, etc.

PP: Did you get my last e-mail, BS, about GCC 9 build?

BS: Yes, I got it, thanks, I will try it on a different system.

Minutes for 2019/10/02 SG14 Conference Call

Call cancelled.

